xenocara/driver/xf86-video-sunffb/src/ffb_driver.c

992 lines
26 KiB
C

/*
* Creator, Creator3D and Elite3D framebuffer driver.
*
* Copyright (C) 2000 Jakub Jelinek (jakub@redhat.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* JAKUB JELINEK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include "xf86.h"
#include "xf86_OSproc.h"
#include "mipointer.h"
#include "micmap.h"
#include "fb.h"
#include "xf86cmap.h"
#include "ffb.h"
static const OptionInfoRec * FFBAvailableOptions(int chipid, int busid);
static void FFBIdentify(int flags);
static Bool FFBProbe(DriverPtr drv, int flags);
static Bool FFBPreInit(ScrnInfoPtr pScrn, int flags);
static Bool FFBScreenInit(SCREEN_INIT_ARGS_DECL);
static Bool FFBEnterVT(VT_FUNC_ARGS_DECL);
static void FFBLeaveVT(VT_FUNC_ARGS_DECL);
static Bool FFBCloseScreen(CLOSE_SCREEN_ARGS_DECL);
static Bool FFBSaveScreen(ScreenPtr pScreen, int mode);
static void FFBDPMSSet(ScrnInfoPtr pScrn, int mode, int flags);
/* Required if the driver supports mode switching */
static Bool FFBSwitchMode(SWITCH_MODE_ARGS_DECL);
/* Required if the driver supports moving the viewport */
static void FFBAdjustFrame(ADJUST_FRAME_ARGS_DECL);
/* Optional functions */
static void FFBFreeScreen(FREE_SCREEN_ARGS_DECL);
static ModeStatus FFBValidMode(SCRN_ARG_TYPE arg, DisplayModePtr mode,
Bool verbose, int flags);
static void FFBDPMSMode(ScrnInfoPtr pScrn, int DPMSMode, int flags);
/* ffb_dga.c */
extern void FFB_InitDGA(ScreenPtr pScreen);
void FFBSync(ScrnInfoPtr pScrn);
#define FFB_VERSION 4000
#define FFB_NAME "SUNFFB"
#define FFB_DRIVER_NAME "sunffb"
#define FFB_MAJOR_VERSION PACKAGE_VERSION_MAJOR
#define FFB_MINOR_VERSION PACKAGE_VERSION_MINOR
#define FFB_PATCHLEVEL PACKAGE_VERSION_PATCHLEVEL
/*
* This contains the functions needed by the server after loading the driver
* module. It must be supplied, and gets passed back by the SetupProc
* function in the dynamic case. In the static case, a reference to this
* is compiled in, and this requires that the name of this DriverRec be
* an upper-case version of the driver name.
*/
_X_EXPORT DriverRec SUNFFB = {
FFB_VERSION,
FFB_DRIVER_NAME,
FFBIdentify,
FFBProbe,
FFBAvailableOptions,
NULL,
0
};
typedef enum {
OPTION_SW_CURSOR,
OPTION_HW_CURSOR,
OPTION_NOACCEL
} FFBOpts;
static const OptionInfoRec FFBOptions[] = {
{ OPTION_SW_CURSOR, "SWcursor", OPTV_BOOLEAN, {0}, FALSE },
{ OPTION_HW_CURSOR, "HWcursor", OPTV_BOOLEAN, {0}, FALSE },
{ OPTION_NOACCEL, "NoAccel", OPTV_BOOLEAN, {0}, FALSE },
{ -1, NULL, OPTV_NONE, {0}, FALSE }
};
#ifdef XFree86LOADER
static MODULESETUPPROTO(ffbSetup);
static XF86ModuleVersionInfo sunffbVersRec =
{
"sunffb",
MODULEVENDORSTRING,
MODINFOSTRING1,
MODINFOSTRING2,
XORG_VERSION_CURRENT,
FFB_MAJOR_VERSION, FFB_MINOR_VERSION, FFB_PATCHLEVEL,
ABI_CLASS_VIDEODRV,
ABI_VIDEODRV_VERSION,
MOD_CLASS_VIDEODRV,
{0,0,0,0}
};
_X_EXPORT XF86ModuleData sunffbModuleData = { &sunffbVersRec, ffbSetup, NULL };
pointer
ffbSetup(pointer module, pointer opts, int *errmaj, int *errmin)
{
static Bool setupDone = FALSE;
if (!setupDone) {
setupDone = TRUE;
xf86AddDriver(&SUNFFB, module, 0);
/*
* Modules that this driver always requires can be loaded here
* by calling LoadSubModule().
*/
/*
* The return value must be non-NULL on success even though there
* is no TearDownProc.
*/
return (pointer)TRUE;
} else {
if (errmaj) *errmaj = LDR_ONCEONLY;
return NULL;
}
}
#endif /* XFree86LOADER */
static Bool
FFBGetRec(ScrnInfoPtr pScrn)
{
/*
* Allocate an FFBRec, and hook it into pScrn->driverPrivate.
* pScrn->driverPrivate is initialised to NULL, so we can check if
* the allocation has already been done.
*/
if (pScrn->driverPrivate != NULL)
return TRUE;
pScrn->driverPrivate = xnfcalloc(sizeof(FFBRec), 1);
return TRUE;
}
static void
FFBFreeRec(ScrnInfoPtr pScrn)
{
FFBPtr pFfb;
if (pScrn->driverPrivate == NULL)
return;
pFfb = GET_FFB_FROM_SCRN(pScrn);
free(pScrn->driverPrivate);
pScrn->driverPrivate = NULL;
return;
}
static const OptionInfoRec *
FFBAvailableOptions(int chipid, int busid)
{
return FFBOptions;
}
/* Mandatory */
static void
FFBIdentify(int flags)
{
xf86Msg(X_INFO, "%s: driver for Creator, Creator 3D and Elite 3D\n", FFB_NAME);
}
/* Mandatory */
static Bool
FFBProbe(DriverPtr drv, int flags)
{
int i;
GDevPtr *devSections;
int *usedChips;
int numDevSections;
int numUsed;
Bool foundScreen = FALSE;
EntityInfoPtr pEnt;
/*
* The aim here is to find all cards that this driver can handle,
* and for the ones not already claimed by another driver, claim the
* slot, and allocate a ScrnInfoRec.
*
* This should be a minimal probe, and it should under no circumstances
* change the state of the hardware. Because a device is found, don't
* assume that it will be used. Don't do any initialisations other than
* the required ScrnInfoRec initialisations. Don't allocate any new
* data structures.
*/
/*
* Next we check, if there has been a chipset override in the config file.
* For this we must find out if there is an active device section which
* is relevant, i.e., which has no driver specified or has THIS driver
* specified.
*/
if ((numDevSections = xf86MatchDevice(FFB_DRIVER_NAME,
&devSections)) <= 0) {
/*
* There's no matching device section in the config file, so quit
* now.
*/
return FALSE;
}
/*
* We need to probe the hardware first. We then need to see how this
* fits in with what is given in the config file, and allow the config
* file info to override any contradictions.
*/
numUsed = xf86MatchSbusInstances(FFB_NAME, SBUS_DEVICE_FFB,
devSections, numDevSections,
drv, &usedChips);
free(devSections);
if (numUsed <= 0)
return FALSE;
if (flags & PROBE_DETECT)
foundScreen = TRUE;
else for (i = 0; i < numUsed; i++) {
pEnt = xf86GetEntityInfo(usedChips[i]);
/*
* Check that nothing else has claimed the slots.
*/
if(pEnt->active) {
ScrnInfoPtr pScrn;
/* Allocate a ScrnInfoRec and claim the slot */
pScrn = xf86AllocateScreen(drv, 0);
/* Fill in what we can of the ScrnInfoRec */
pScrn->driverVersion = FFB_VERSION;
pScrn->driverName = FFB_DRIVER_NAME;
pScrn->name = FFB_NAME;
pScrn->Probe = FFBProbe;
pScrn->PreInit = FFBPreInit;
pScrn->ScreenInit = FFBScreenInit;
pScrn->SwitchMode = FFBSwitchMode;
pScrn->AdjustFrame = FFBAdjustFrame;
pScrn->EnterVT = FFBEnterVT;
pScrn->LeaveVT = FFBLeaveVT;
pScrn->FreeScreen = FFBFreeScreen;
pScrn->ValidMode = FFBValidMode;
xf86AddEntityToScreen(pScrn, pEnt->index);
foundScreen = TRUE;
}
free(pEnt);
}
free(usedChips);
return foundScreen;
}
/* Mandatory */
static Bool
FFBPreInit(ScrnInfoPtr pScrn, int flags)
{
FFBPtr pFfb;
sbusDevicePtr psdp;
MessageType from;
int i;
if (flags & PROBE_DETECT) return FALSE;
/*
* Note: This function is only called once at server startup, and
* not at the start of each server generation. This means that
* only things that are persistent across server generations can
* be initialised here. xf86Screens[] is (pScrn is a pointer to one
* of these). Privates allocated using xf86AllocateScrnInfoPrivateIndex()
* are too, and should be used for data that must persist across
* server generations.
*
* Per-generation data should be allocated with
* AllocateScreenPrivateIndex() from the ScreenInit() function.
*/
/* Allocate the FFBRec driverPrivate */
if (!FFBGetRec(pScrn))
return FALSE;
pFfb = GET_FFB_FROM_SCRN(pScrn);
/* Set pScrn->monitor */
pScrn->monitor = pScrn->confScreen->monitor;
/* This driver doesn't expect more than one entity per screen */
if (pScrn->numEntities > 1)
return FALSE;
/* This is the general case */
for (i = 0; i < pScrn->numEntities; i++) {
EntityInfoPtr pEnt = xf86GetEntityInfo(pScrn->entityList[i]);
/* FFB is purely UPA (but we handle it as SBUS) */
if (pEnt->location.type == BUS_SBUS) {
psdp = xf86GetSbusInfoForEntity(pEnt->index);
pFfb->psdp = psdp;
} else
return FALSE;
}
/*********************
deal with depth
*********************/
if (!xf86SetDepthBpp(pScrn, 24, 0, 32, Support32bppFb)) {
return FALSE;
} else {
/* Check that the returned depth is one we support */
switch (pScrn->depth) {
case 24:
/* OK */
break;
default:
xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
"Given depth (%d) is not supported by this driver\n",
pScrn->depth);
return FALSE;
}
}
/* Collect all of the relevant option flags (fill in pScrn->options) */
xf86CollectOptions(pScrn, NULL);
/* Process the options */
if (!(pFfb->Options = malloc(sizeof(FFBOptions))))
return FALSE;
memcpy(pFfb->Options, FFBOptions, sizeof(FFBOptions));
xf86ProcessOptions(pScrn->scrnIndex, pScrn->options, pFfb->Options);
/*
* This must happen after pScrn->display has been set because
* xf86SetWeight references it.
*/
if (pScrn->depth > 8) {
rgb weight = {8, 8, 8};
rgb mask = {0xff, 0xff00, 0xff0000};
if (!xf86SetWeight(pScrn, weight, mask)) {
return FALSE;
}
}
if (!xf86SetDefaultVisual(pScrn, -1))
return FALSE;
/*
* The new cmap code requires this to be initialised.
*/
{
Gamma zeros = {0.0, 0.0, 0.0};
if (!xf86SetGamma(pScrn, zeros)) {
return FALSE;
}
}
/* Set the bits per RGB for 8bpp mode */
from = X_DEFAULT;
/* determine whether we use hardware or software cursor */
pFfb->HWCursor = TRUE;
if (xf86GetOptValBool(pFfb->Options, OPTION_HW_CURSOR, &pFfb->HWCursor))
from = X_CONFIG;
if (xf86ReturnOptValBool(pFfb->Options, OPTION_SW_CURSOR, FALSE)) {
from = X_CONFIG;
pFfb->HWCursor = FALSE;
}
xf86DrvMsg(pScrn->scrnIndex, from, "Using %s cursor\n",
pFfb->HWCursor ? "HW" : "SW");
if (xf86ReturnOptValBool(pFfb->Options, OPTION_NOACCEL, FALSE)) {
pFfb->NoAccel = TRUE;
xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Acceleration disabled\n");
}
if (xf86LoadSubModule(pScrn, "fb") == NULL) {
FFBFreeRec(pScrn);
return FALSE;
}
if (!pFfb->NoAccel) {
if (xf86LoadSubModule(pScrn, "xaa") == NULL) {
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Loading XAA failed, acceleration disabled\n");
pFfb->NoAccel = TRUE;
}
}
if (pFfb->HWCursor && xf86LoadSubModule(pScrn, "ramdac") == NULL) {
FFBFreeRec(pScrn);
return FALSE;
}
if (xf86LoadSubModule(pScrn, "dbe") == NULL) {
FFBFreeRec(pScrn);
return FALSE;
}
/*********************
set up clock and mode stuff
*********************/
pScrn->progClock = TRUE;
if(pScrn->display->virtualX || pScrn->display->virtualY) {
xf86DrvMsg(pScrn->scrnIndex, X_WARNING,
"FFB does not support a virtual desktop\n");
pScrn->display->virtualX = 0;
pScrn->display->virtualY = 0;
}
xf86SbusUseBuiltinMode(pScrn, pFfb->psdp);
pScrn->currentMode = pScrn->modes;
pScrn->displayWidth = pScrn->virtualX;
/* Set display resolution */
xf86SetDpi(pScrn, 0, 0);
return TRUE;
}
/* Determine the FFB/AFB board type. We need this information even
* if acceleration is disabled because the ramdac support layer needs
* to know what kind of FFB/AFB this is.
*/
static void
FFBProbeBoardType(FFBPtr pFfb)
{
ffb_fbcPtr ffb = pFfb->regs;
volatile unsigned int *afb_fem;
unsigned int val;
afb_fem = ((volatile unsigned int *) ((char *)ffb + 0x1540));
val = *afb_fem;
val &= 0x7f;
xf86Msg(X_INFO, "%s: ", pFfb->psdp->device);
if (val == 0x3f || val == 0x07 || val == 0x01) {
/* When firmware has not been loaded onto AFB we
* just assume it is an M6 board.
*/
if (val == 0x3f || val != 0x07) {
pFfb->ffb_type = afb_m6;
ErrorF("AFB: Detected Elite3D/M6.\n");
} else {
pFfb->ffb_type = afb_m3;
ErrorF("AFB: Detected Elite3D/M3.\n");
}
/* These attributes are invariant on AFB. */
pFfb->has_double_res = 0;
pFfb->has_z_buffer = 1;
pFfb->has_double_buffer = 1;
} else {
unsigned char sbits;
/* Read the board strapping bits twice, because sometimes
* the strapping pins can get misrouted to the bus interface
* on the first attempt. The second attempt will get the
* correct value.
*/
sbits = *((volatile unsigned char *)pFfb->strapping_bits);
sbits = *((volatile unsigned char *)pFfb->strapping_bits);
switch (sbits & 0x78) {
case (0x0 << 5) | (0x0 << 3):
pFfb->ffb_type = ffb1_prototype;
ErrorF("Detected FFB1 pre-FCS prototype, ");
break;
case (0x0 << 5) | (0x1 << 3):
pFfb->ffb_type = ffb1_standard;
ErrorF("Detected FFB1, ");
break;
case (0x0 << 5) | (0x3 << 3):
pFfb->ffb_type = ffb1_speedsort;
ErrorF("Detected FFB1-SpeedSort, ");
break;
case (0x1 << 5) | (0x0 << 3):
pFfb->ffb_type = ffb2_prototype;
ErrorF("Detected FFB2/vertical pre-FCS prototype, ");
break;
case (0x1 << 5) | (0x1 << 3):
pFfb->ffb_type = ffb2_vertical;
ErrorF("Detected FFB2/vertical, ");
break;
case (0x1 << 5) | (0x2 << 3):
pFfb->ffb_type = ffb2_vertical_plus;
ErrorF("Detected FFB2+/vertical, ");
break;
case (0x2 << 5) | (0x0 << 3):
pFfb->ffb_type = ffb2_horizontal;
ErrorF("Detected FFB2/horizontal, ");
break;
case (0x2 << 5) | (0x2 << 3):
pFfb->ffb_type = ffb2_horizontal;
ErrorF("Detected FFB2+/horizontal, ");
break;
default:
pFfb->ffb_type = ffb2_vertical;
ErrorF("Unknown boardID[%08x], assuming FFB2, ", sbits);
break;
};
if (sbits & (1 << 2)) {
ErrorF("DoubleRES, ");
pFfb->has_double_res = 1;
} else {
pFfb->has_double_res = 0;
}
if (sbits & (1 << 1)) {
ErrorF("Z-buffer, ");
pFfb->has_z_buffer = 1;
} else {
pFfb->has_z_buffer = 0;
}
if (sbits & (1 << 0)) {
/* This state really means to the driver that the double
* buffers are available for hw accelerate Dbe. When the
* FFB is in high-resolution mode, the buffers are combined
* into one single large framebuffer. So in high-resolution
* hw accelerated double-buffering is not available.
*/
if ((ffb->fbcfg0 & FFB_FBCFG0_RES_MASK) != FFB_FBCFG0_RES_HIGH)
pFfb->has_double_buffer = 1;
else
pFfb->has_double_buffer = 0;
} else {
pFfb->has_double_buffer = 0;
}
if (pFfb->has_double_buffer)
ErrorF("Double-buffered.\n");
else
ErrorF("Single-buffered.\n");
}
}
/* Mandatory */
/* This gets called at the start of each server generation */
static Bool
FFBScreenInit(SCREEN_INIT_ARGS_DECL)
{
ScrnInfoPtr pScrn;
FFBPtr pFfb;
int ret;
unsigned int afb_fem;
VisualPtr visual;
/*
* First get the ScrnInfoRec
*/
pScrn = xf86ScreenToScrn(pScreen);
pFfb = GET_FFB_FROM_SCRN(pScrn);
/* Map the FFB framebuffer, for each view. */
/* 24-bit RGB Dumb view */
pFfb->fb = pFfb->dfb24 =
xf86MapSbusMem (pFfb->psdp, FFB_DFB24_VOFF, 0x1000000);
if (! pFfb->dfb24)
return FALSE;
/* 8-bit R Dumb view */
pFfb->dfb8r =
xf86MapSbusMem (pFfb->psdp, FFB_DFB8R_VOFF, 0x400000);
if (! pFfb->dfb8r)
return FALSE;
/* 8-bit X Dumb view */
pFfb->dfb8x =
xf86MapSbusMem (pFfb->psdp, FFB_DFB8X_VOFF, 0x400000);
if (! pFfb->dfb8x)
return FALSE;
/* 32-bit RGB Smart view */
pFfb->sfb32 =
xf86MapSbusMem (pFfb->psdp, FFB_SFB32_VOFF, 0x1000000);
if (!pFfb->sfb32)
return FALSE;
/* 8-bit R Smart view */
pFfb->sfb8r =
xf86MapSbusMem(pFfb->psdp, FFB_SFB8R_VOFF, 0x400000);
if (!pFfb->sfb8r)
return FALSE;
/* 8-bit X Smart view */
pFfb->sfb8x =
xf86MapSbusMem(pFfb->psdp, FFB_SFB8X_VOFF, 0x400000);
if (!pFfb->sfb8x)
return FALSE;
/* Map the rendering pipeline */
pFfb->regs =
xf86MapSbusMem (pFfb->psdp, FFB_FBC_REGS_VOFF, 16384);
if (! pFfb->regs)
return FALSE;
/* Map the ramdac */
pFfb->dac =
xf86MapSbusMem (pFfb->psdp, FFB_DAC_VOFF, 8192);
if (! pFfb->dac)
return FALSE;
/* Map the board strapping bits */
pFfb->strapping_bits = (volatile unsigned int *)
xf86MapSbusMem(pFfb->psdp, FFB_EXP_VOFF, 8192);
if (! pFfb->strapping_bits)
return FALSE;
/* Probe for the type of FFB/AFB we have. */
FFBProbeBoardType(pFfb);
/* Now that we have the board type, we can init the ramdac layer. */
if (FFBDacInit(pFfb) == FALSE)
return FALSE;
/* OK, a fun gross hack to detect if this is
* AFB and if so whether the correct firmware
* has been loaded. The machine will flatline
* if you try to use certain acceleration features
* without the full firmware loaded.
*
* The bootup Elite3D/AFB firmware is minimal, and
* will leave the FloatEnableMask register at a
* value of 0x01. Creator{,3D} lacks the FEM register
* and will return a "nonsense" value on attempts to
* read this location. After experimentation, an
* appropriate definition for "nonsense" seems to
* be anything with all low 7 bits not 0x3f, 0x07,
* of 0x01.
*
* If the FEM register is non-zero and is some value
* other than 0x1 (usually 0x3f or 0x7 depending upon
* whether the card has 3 or 6 floats) we can assume
* the correct firmware has been loaded. -DaveM
*/
afb_fem = *(unsigned int *)((char *)pFfb->regs + 0x1540);
if ((afb_fem & 0x7f) != 0x3f &&
(afb_fem & 0x7f) != 0x07 &&
(afb_fem & 0x7f) != 0x01)
xf86Msg(X_INFO, "%s: Detected Creator/Creator3D\n", pFfb->psdp->device);
else {
xf86Msg(X_INFO, "%s: Detected Elite3D M3/M6, checking firmware...\n", pFfb->psdp->device);
if (afb_fem == 0x1) {
xf86Msg(X_INFO, "%s: ... AFB firmware not loaded\n", pFfb->psdp->device);
if (!pFfb->NoAccel) {
xf86Msg(X_WARNING, "%s: Forcing no acceleration on Elite3D M3/M6\n", pFfb->psdp->device);
pFfb->NoAccel = TRUE;
}
} else
xf86Msg(X_INFO, "%s: ... AFB firmware is loaded\n", pFfb->psdp->device);
}
/* Darken the screen for aesthetic reasons and set the viewport */
FFBSaveScreen(pScreen, SCREEN_SAVER_ON);
/*
* The next step is to setup the screen's visuals, and initialise the
* framebuffer code. In cases where the framebuffer's default
* choices for things like visual layouts and bits per RGB are OK,
* this may be as simple as calling the framebuffer's ScreenInit()
* function. If not, the visuals will need to be setup before calling
* a fb ScreenInit() function and fixed up after.
*/
/*
* Reset visual list.
*/
miClearVisualTypes();
/* Setup the visuals we support. */
if (!miSetVisualTypes(24, TrueColorMask,
pScrn->rgbBits, TrueColor))
return FALSE;
if (!miSetPixmapDepths())
return FALSE;
/*
* Call the framebuffer layer's ScreenInit function, and fill in other
* pScreen fields.
*/
ret = fbScreenInit(pScreen, (pFfb->NoAccel ? pFfb->dfb24 : pFfb->sfb32),
pScrn->virtualX, pScrn->virtualY,
pScrn->xDpi, pScrn->yDpi,
2048, 32);
if (!ret)
return FALSE;
if (pScrn->bitsPerPixel > 8) {
/* Fixup RGB ordering */
visual = pScreen->visuals + pScreen->numVisuals;
while (--visual >= pScreen->visuals) {
if ((visual->class | DynamicClass) == DirectColor) {
visual->offsetRed = pScrn->offset.red;
visual->offsetGreen = pScrn->offset.green;
visual->offsetBlue = pScrn->offset.blue;
visual->redMask = pScrn->mask.red;
visual->greenMask = pScrn->mask.green;
visual->blueMask = pScrn->mask.blue;
}
}
}
if (!fbPictureInit(pScreen, NULL, 0) &&
(serverGeneration == 1))
xf86DrvMsg(pScrn->scrnIndex, X_WARNING,
"RENDER extension initialisation failed.\n");
xf86SetBlackWhitePixels(pScreen);
if (!pFfb->NoAccel) {
if (!FFBAccelInit(pScreen, pFfb))
return FALSE;
xf86Msg(X_INFO, "%s: Using acceleration\n", pFfb->psdp->device);
}
xf86SetBackingStore(pScreen);
xf86SetSilkenMouse(pScreen);
/* Initialise cursor functions */
miDCInitialize (pScreen, xf86GetPointerScreenFuncs());
/* Initialize HW cursor layer.
* Must follow software cursor initialization.
*/
if (pFfb->HWCursor) {
if(!FFBHWCursorInit(pScreen)) {
xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
"Hardware cursor initialization failed\n");
return(FALSE);
}
xf86SbusHideOsHwCursor(pFfb->psdp);
}
/* Initialise default colourmap. */
if (!miCreateDefColormap(pScreen))
return FALSE;
/* Initialize colormap layer.
* Must follow initialization of the default colormap.
*/
if (!xf86HandleColormaps(pScreen, 256, 8,
FFBDacLoadPalette, NULL,
CMAP_LOAD_EVEN_IF_OFFSCREEN |
CMAP_RELOAD_ON_MODE_SWITCH))
return FALSE;
/* Setup DGA support. */
if (!pFfb->NoAccel)
FFB_InitDGA(pScreen);
xf86DPMSInit(pScreen, FFBDPMSSet, 0);
pFfb->CloseScreen = pScreen->CloseScreen;
pScreen->CloseScreen = FFBCloseScreen;
pScreen->SaveScreen = FFBSaveScreen;
/* Report any unused options (only for the first generation) */
if (serverGeneration == 1) {
xf86ShowUnusedOptions(pScrn->scrnIndex, pScrn->options);
}
/* unblank the screen */
FFBSaveScreen(pScreen, SCREEN_SAVER_OFF);
/* Done */
return TRUE;
}
/* Usually mandatory */
static Bool
FFBSwitchMode(SWITCH_MODE_ARGS_DECL)
{
return TRUE;
}
/*
* This function is used to initialize the Start Address - the first
* displayed location in the video memory.
*/
/* Usually mandatory */
static void
FFBAdjustFrame(ADJUST_FRAME_ARGS_DECL)
{
/* we don't support virtual desktops */
return;
}
/*
* This is called when VT switching back to the X server. Its job is
* to reinitialise the video mode.
*/
/* Mandatory */
static Bool
FFBEnterVT(VT_FUNC_ARGS_DECL)
{
SCRN_INFO_PTR(arg);
FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn);
pFfb->vtSema = FALSE;
if (!pFfb->NoAccel)
CreatorVtChange (pScrn->pScreen, TRUE);
if (pFfb->HWCursor)
xf86SbusHideOsHwCursor (pFfb->psdp);
FFBDacEnterVT(pFfb);
return TRUE;
}
/*
* This is called when VT switching away from the X server.
*/
/* Mandatory */
static void
FFBLeaveVT(VT_FUNC_ARGS_DECL)
{
SCRN_INFO_PTR(arg);
FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn);
FFBDacLeaveVT(pFfb);
if (!pFfb->NoAccel)
CreatorVtChange (pScrn->pScreen, FALSE);
if (pFfb->HWCursor)
xf86SbusHideOsHwCursor (pFfb->psdp);
pFfb->vtSema = TRUE;
return;
}
/*
* This is called at the end of each server generation. It restores the
* original (text) mode. It should really also unmap the video memory too.
*/
/* Mandatory */
static Bool
FFBCloseScreen(CLOSE_SCREEN_ARGS_DECL)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn);
/* Disable hardware cursor. */
FFBDacCursorEnableDisable(pFfb, 0);
/* Restore kernel ramdac state before we unmap registers. */
FFBDacFini(pFfb);
pScrn->vtSema = FALSE;
xf86UnmapSbusMem(pFfb->psdp, pFfb->dfb24, 0x1000000);
xf86UnmapSbusMem(pFfb->psdp, pFfb->dfb8r, 0x400000);
xf86UnmapSbusMem(pFfb->psdp, pFfb->dfb8x, 0x400000);
xf86UnmapSbusMem(pFfb->psdp, pFfb->sfb32, 0x1000000);
xf86UnmapSbusMem(pFfb->psdp, pFfb->sfb8r, 0x400000);
xf86UnmapSbusMem(pFfb->psdp, pFfb->sfb8x, 0x400000);
xf86UnmapSbusMem(pFfb->psdp, pFfb->regs, 16384);
xf86UnmapSbusMem(pFfb->psdp, pFfb->dac, 8192);
xf86UnmapSbusMem(pFfb->psdp, (void *)pFfb->strapping_bits, 8192);
if (pFfb->HWCursor)
xf86SbusHideOsHwCursor (pFfb->psdp);
pScreen->CloseScreen = pFfb->CloseScreen;
return (*pScreen->CloseScreen)(CLOSE_SCREEN_ARGS);
}
/* Free up any per-generation data structures */
/* Optional */
static void
FFBFreeScreen(FREE_SCREEN_ARGS_DECL)
{
SCRN_INFO_PTR(arg);
FFBFreeRec(pScrn);
}
/* Checks if a mode is suitable for the selected chipset. */
/* Optional */
static ModeStatus
FFBValidMode(SCRN_ARG_TYPE arg, DisplayModePtr mode, Bool verbose, int flags)
{
if (mode->Flags & V_INTERLACE)
return MODE_BAD;
return MODE_OK;
}
/* Do screen blanking */
/* Mandatory */
static Bool
FFBSaveScreen(ScreenPtr pScreen, int mode)
/* This function blanks the screen when mode=SCREEN_SAVER_ON and
unblanks it when mode=SCREEN_SAVER_OFF. It is used internally in the
FFBScreenInit code `for aesthetic reasons,' and it is used for
blanking if you set "xset s on s blank." The work (such as it is) is
done in "ffb_dac.c" `for aesthetic reasons.'
*/
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
return FFBDacSaveScreen(GET_FFB_FROM_SCRN(pScrn), mode);
}
static void
FFBDPMSSet(ScrnInfoPtr pScrn, int mode, int flags)
{
FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn);
FFBDacDPMSMode(pFfb, mode, 0);
}
/*
* This is the implementation of the Sync() function.
*/
void
FFBSync(ScrnInfoPtr pScrn)
{
return;
}
/*
Hook for DPMS Mode.
*/
static void
FFBDPMSMode(ScrnInfoPtr pScrn, int DPMSMode, int flags)
{
FFBDacDPMSMode(GET_FFB_FROM_SCRN(pScrn), DPMSMode, flags);
}