xenocara/driver/xf86-video-nv/src/riva_hw.c

975 lines
32 KiB
C

/*
* Copyright (c) 1993-1999 NVIDIA, Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "riva_local.h"
#include "compiler.h"
#include "riva_include.h"
#include "riva_hw.h"
#include "riva_tbl.h"
/*
* This file is an OS-agnostic file used to make RIVA 128 and RIVA TNT
* operate identically (except TNT has more memory and better 3D quality.
*/
static int nv3Busy
(
RIVA_HW_INST *chip
)
{
return ((chip->Rop->FifoFree < chip->FifoEmptyCount) || (chip->PGRAPH[0x000006B0/4] & 0x01));
}
static void vgaLockUnlock
(
RIVA_HW_INST *chip,
Bool Lock
)
{
CARD8 cr11;
VGA_WR08(chip->PCIO, 0x3D4, 0x11);
cr11 = VGA_RD08(chip->PCIO, 0x3D5);
if(Lock) cr11 |= 0x80;
else cr11 &= ~0x80;
VGA_WR08(chip->PCIO, 0x3D5, cr11);
}
static void nv3LockUnlock
(
RIVA_HW_INST *chip,
Bool Lock
)
{
VGA_WR08(chip->PVIO, 0x3C4, 0x06);
VGA_WR08(chip->PVIO, 0x3C5, Lock ? 0x99 : 0x57);
vgaLockUnlock(chip, Lock);
}
static int ShowHideCursor
(
RIVA_HW_INST *chip,
int ShowHide
)
{
int current;
current = chip->CurrentState->cursor1;
chip->CurrentState->cursor1 = (chip->CurrentState->cursor1 & 0xFE) |
(ShowHide & 0x01);
VGA_WR08(chip->PCIO, 0x3D4, 0x31);
VGA_WR08(chip->PCIO, 0x3D5, chip->CurrentState->cursor1);
return (current & 0x01);
}
/****************************************************************************\
* *
* The video arbitration routines calculate some "magic" numbers. Fixes *
* the snow seen when accessing the framebuffer without it. *
* It just works (I hope). *
* *
\****************************************************************************/
#define DEFAULT_GR_LWM 100
#define DEFAULT_VID_LWM 100
#define DEFAULT_GR_BURST_SIZE 256
#define DEFAULT_VID_BURST_SIZE 128
#define VIDEO 0
#define GRAPHICS 1
#define MPORT 2
#define ENGINE 3
#define GFIFO_SIZE 320
#define GFIFO_SIZE_128 256
#define MFIFO_SIZE 120
#define VFIFO_SIZE 256
#define ABS(a) (a>0?a:-a)
typedef struct {
int gdrain_rate;
int vdrain_rate;
int mdrain_rate;
int gburst_size;
int vburst_size;
char vid_en;
char gr_en;
int wcmocc, wcgocc, wcvocc, wcvlwm, wcglwm;
int by_gfacc;
char vid_only_once;
char gr_only_once;
char first_vacc;
char first_gacc;
char first_macc;
int vocc;
int gocc;
int mocc;
char cur;
char engine_en;
char converged;
int priority;
} nv3_arb_info;
typedef struct {
int graphics_lwm;
int video_lwm;
int graphics_burst_size;
int video_burst_size;
int graphics_hi_priority;
int media_hi_priority;
int rtl_values;
int valid;
} nv3_fifo_info;
typedef struct {
char pix_bpp;
char enable_video;
char gr_during_vid;
char enable_mp;
int memory_width;
int video_scale;
int pclk_khz;
int mclk_khz;
int mem_page_miss;
int mem_latency;
char mem_aligned;
} nv3_sim_state;
static int nv3_iterate(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo)
{
int iter = 0;
int tmp;
int vfsize, mfsize, gfsize;
int mburst_size = 32;
int mmisses, gmisses, vmisses;
int misses;
int vlwm, glwm;
int last, next, cur;
int max_gfsize ;
long ns;
vlwm = 0;
glwm = 0;
vfsize = 0;
gfsize = 0;
cur = ainfo->cur;
mmisses = 2;
gmisses = 2;
vmisses = 2;
if (ainfo->gburst_size == 128) max_gfsize = GFIFO_SIZE_128;
else max_gfsize = GFIFO_SIZE;
max_gfsize = GFIFO_SIZE;
while (1)
{
if (ainfo->vid_en)
{
if (ainfo->wcvocc > ainfo->vocc) ainfo->wcvocc = ainfo->vocc;
if (ainfo->wcvlwm > vlwm) ainfo->wcvlwm = vlwm ;
ns = 1000000 * ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz;
vfsize = ns * ainfo->vdrain_rate / 1000000;
vfsize = ainfo->wcvlwm - ainfo->vburst_size + vfsize;
}
if (state->enable_mp)
{
if (ainfo->wcmocc > ainfo->mocc) ainfo->wcmocc = ainfo->mocc;
}
if (ainfo->gr_en)
{
if (ainfo->wcglwm > glwm) ainfo->wcglwm = glwm ;
if (ainfo->wcgocc > ainfo->gocc) ainfo->wcgocc = ainfo->gocc;
ns = 1000000 * (ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz;
gfsize = (ns * (long) ainfo->gdrain_rate)/1000000;
gfsize = ainfo->wcglwm - ainfo->gburst_size + gfsize;
}
mfsize = 0;
if (!state->gr_during_vid && ainfo->vid_en)
if (ainfo->vid_en && (ainfo->vocc < 0) && !ainfo->vid_only_once)
next = VIDEO;
else if (ainfo->mocc < 0)
next = MPORT;
else if (ainfo->gocc< ainfo->by_gfacc)
next = GRAPHICS;
else return (0);
else switch (ainfo->priority)
{
case VIDEO:
if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once)
next = VIDEO;
else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once)
next = GRAPHICS;
else if (ainfo->mocc<0)
next = MPORT;
else return (0);
break;
case GRAPHICS:
if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once)
next = GRAPHICS;
else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once)
next = VIDEO;
else if (ainfo->mocc<0)
next = MPORT;
else return (0);
break;
default:
if (ainfo->mocc<0)
next = MPORT;
else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once)
next = GRAPHICS;
else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once)
next = VIDEO;
else return (0);
break;
}
last = cur;
cur = next;
iter++;
switch (cur)
{
case VIDEO:
if (last==cur) misses = 0;
else if (ainfo->first_vacc) misses = vmisses;
else misses = 1;
ainfo->first_vacc = 0;
if (last!=cur)
{
ns = 1000000 * (vmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz;
vlwm = ns * ainfo->vdrain_rate/ 1000000;
vlwm = ainfo->vocc - vlwm;
}
ns = 1000000*(misses*state->mem_page_miss + ainfo->vburst_size)/(state->memory_width/8)/state->mclk_khz;
ainfo->vocc = ainfo->vocc + ainfo->vburst_size - ns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gocc - ns*ainfo->gdrain_rate/1000000;
ainfo->mocc = ainfo->mocc - ns*ainfo->mdrain_rate/1000000;
break;
case GRAPHICS:
if (last==cur) misses = 0;
else if (ainfo->first_gacc) misses = gmisses;
else misses = 1;
ainfo->first_gacc = 0;
if (last!=cur)
{
ns = 1000000*(gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz ;
glwm = ns * ainfo->gdrain_rate/1000000;
glwm = ainfo->gocc - glwm;
}
ns = 1000000*(misses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz;
ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gocc + ainfo->gburst_size - ns*ainfo->gdrain_rate/1000000;
ainfo->mocc = ainfo->mocc + 0 - ns*ainfo->mdrain_rate/1000000;
break;
default:
if (last==cur) misses = 0;
else if (ainfo->first_macc) misses = mmisses;
else misses = 1;
ainfo->first_macc = 0;
ns = 1000000*(misses*state->mem_page_miss + mburst_size/(state->memory_width/8))/state->mclk_khz;
ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gocc + 0 - ns*ainfo->gdrain_rate/1000000;
ainfo->mocc = ainfo->mocc + mburst_size - ns*ainfo->mdrain_rate/1000000;
break;
}
if (iter>100)
{
ainfo->converged = 0;
return (1);
}
ns = 1000000*ainfo->gburst_size/(state->memory_width/8)/state->mclk_khz;
tmp = ns * ainfo->gdrain_rate/1000000;
if (ABS(ainfo->gburst_size) + ((ABS(ainfo->wcglwm) + 16 ) & ~0x7) - tmp > max_gfsize)
{
ainfo->converged = 0;
return (1);
}
ns = 1000000*ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz;
tmp = ns * ainfo->vdrain_rate/1000000;
if (ABS(ainfo->vburst_size) + (ABS(ainfo->wcvlwm + 32) & ~0xf) - tmp> VFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(ainfo->gocc) > max_gfsize)
{
ainfo->converged = 0;
return (1);
}
if (ABS(ainfo->vocc) > VFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(ainfo->mocc) > MFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(vfsize) > VFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
if (ABS(gfsize) > max_gfsize)
{
ainfo->converged = 0;
return (1);
}
if (ABS(mfsize) > MFIFO_SIZE)
{
ainfo->converged = 0;
return (1);
}
}
}
static char nv3_arb(nv3_fifo_info * res_info, nv3_sim_state * state, nv3_arb_info *ainfo)
{
long ens, vns, mns, gns;
int mmisses, gmisses, vmisses, eburst_size, mburst_size;
int refresh_cycle;
refresh_cycle = 0;
refresh_cycle = 2*(state->mclk_khz/state->pclk_khz) + 5;
mmisses = 2;
if (state->mem_aligned) gmisses = 2;
else gmisses = 3;
vmisses = 2;
eburst_size = state->memory_width * 1;
mburst_size = 32;
gns = 1000000 * (gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz;
ainfo->by_gfacc = gns*ainfo->gdrain_rate/1000000;
ainfo->wcmocc = 0;
ainfo->wcgocc = 0;
ainfo->wcvocc = 0;
ainfo->wcvlwm = 0;
ainfo->wcglwm = 0;
ainfo->engine_en = 1;
ainfo->converged = 1;
if (ainfo->engine_en)
{
ens = 1000000*(state->mem_page_miss + eburst_size/(state->memory_width/8) +refresh_cycle)/state->mclk_khz;
ainfo->mocc = state->enable_mp ? 0-ens*ainfo->mdrain_rate/1000000 : 0;
ainfo->vocc = ainfo->vid_en ? 0-ens*ainfo->vdrain_rate/1000000 : 0;
ainfo->gocc = ainfo->gr_en ? 0-ens*ainfo->gdrain_rate/1000000 : 0;
ainfo->cur = ENGINE;
ainfo->first_vacc = 1;
ainfo->first_gacc = 1;
ainfo->first_macc = 1;
nv3_iterate(res_info, state,ainfo);
}
if (state->enable_mp)
{
mns = 1000000 * (mmisses*state->mem_page_miss + mburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz;
ainfo->mocc = state->enable_mp ? 0 : mburst_size - mns*ainfo->mdrain_rate/1000000;
ainfo->vocc = ainfo->vid_en ? 0 : 0- mns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gr_en ? 0: 0- mns*ainfo->gdrain_rate/1000000;
ainfo->cur = MPORT;
ainfo->first_vacc = 1;
ainfo->first_gacc = 1;
ainfo->first_macc = 0;
nv3_iterate(res_info, state,ainfo);
}
if (ainfo->gr_en)
{
ainfo->first_vacc = 1;
ainfo->first_gacc = 0;
ainfo->first_macc = 1;
gns = 1000000*(gmisses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz;
ainfo->gocc = ainfo->gburst_size - gns*ainfo->gdrain_rate/1000000;
ainfo->vocc = ainfo->vid_en? 0-gns*ainfo->vdrain_rate/1000000 : 0;
ainfo->mocc = state->enable_mp ? 0-gns*ainfo->mdrain_rate/1000000: 0;
ainfo->cur = GRAPHICS;
nv3_iterate(res_info, state,ainfo);
}
if (ainfo->vid_en)
{
ainfo->first_vacc = 0;
ainfo->first_gacc = 1;
ainfo->first_macc = 1;
vns = 1000000*(vmisses*state->mem_page_miss + ainfo->vburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz;
ainfo->vocc = ainfo->vburst_size - vns*ainfo->vdrain_rate/1000000;
ainfo->gocc = ainfo->gr_en? (0-vns*ainfo->gdrain_rate/1000000) : 0;
ainfo->mocc = state->enable_mp? 0-vns*ainfo->mdrain_rate/1000000 :0 ;
ainfo->cur = VIDEO;
nv3_iterate(res_info, state, ainfo);
}
if (ainfo->converged)
{
res_info->graphics_lwm = (int)ABS(ainfo->wcglwm) + 16;
res_info->video_lwm = (int)ABS(ainfo->wcvlwm) + 32;
res_info->graphics_burst_size = ainfo->gburst_size;
res_info->video_burst_size = ainfo->vburst_size;
res_info->graphics_hi_priority = (ainfo->priority == GRAPHICS);
res_info->media_hi_priority = (ainfo->priority == MPORT);
if (res_info->video_lwm > 160)
{
res_info->graphics_lwm = 256;
res_info->video_lwm = 128;
res_info->graphics_burst_size = 64;
res_info->video_burst_size = 64;
res_info->graphics_hi_priority = 0;
res_info->media_hi_priority = 0;
ainfo->converged = 0;
return (0);
}
if (res_info->video_lwm > 128)
{
res_info->video_lwm = 128;
}
return (1);
}
else
{
res_info->graphics_lwm = 256;
res_info->video_lwm = 128;
res_info->graphics_burst_size = 64;
res_info->video_burst_size = 64;
res_info->graphics_hi_priority = 0;
res_info->media_hi_priority = 0;
return (0);
}
}
static char nv3_get_param(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo)
{
int done, g,v, p;
done = 0;
for (p=0; p < 2; p++)
{
for (g=128 ; g > 32; g= g>> 1)
{
for (v=128; v >=32; v = v>> 1)
{
ainfo->priority = p;
ainfo->gburst_size = g;
ainfo->vburst_size = v;
done = nv3_arb(res_info, state,ainfo);
if (done && (g==128))
if ((res_info->graphics_lwm + g) > 256)
done = 0;
if (done)
goto Done;
}
}
}
Done:
return done;
}
static void nv3CalcArbitration
(
nv3_fifo_info * res_info,
nv3_sim_state * state
)
{
nv3_fifo_info save_info;
nv3_arb_info ainfo;
char res_gr, res_vid;
ainfo.gr_en = 1;
ainfo.vid_en = state->enable_video;
ainfo.vid_only_once = 0;
ainfo.gr_only_once = 0;
ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8);
ainfo.vdrain_rate = (int) state->pclk_khz * 2;
if (state->video_scale != 0)
ainfo.vdrain_rate = ainfo.vdrain_rate/state->video_scale;
ainfo.mdrain_rate = 33000;
res_info->rtl_values = 0;
if (!state->gr_during_vid && state->enable_video)
{
ainfo.gr_only_once = 1;
ainfo.gr_en = 1;
ainfo.gdrain_rate = 0;
res_vid = nv3_get_param(res_info, state, &ainfo);
res_vid = ainfo.converged;
save_info.video_lwm = res_info->video_lwm;
save_info.video_burst_size = res_info->video_burst_size;
ainfo.vid_en = 1;
ainfo.vid_only_once = 1;
ainfo.gr_en = 1;
ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8);
ainfo.vdrain_rate = 0;
res_gr = nv3_get_param(res_info, state, &ainfo);
res_gr = ainfo.converged;
res_info->video_lwm = save_info.video_lwm;
res_info->video_burst_size = save_info.video_burst_size;
res_info->valid = res_gr & res_vid;
}
else
{
if (!ainfo.gr_en) ainfo.gdrain_rate = 0;
if (!ainfo.vid_en) ainfo.vdrain_rate = 0;
res_gr = nv3_get_param(res_info, state, &ainfo);
res_info->valid = ainfo.converged;
}
}
static void nv3UpdateArbitrationSettings
(
unsigned VClk,
unsigned pixelDepth,
unsigned *burst,
unsigned *lwm,
RIVA_HW_INST *chip
)
{
nv3_fifo_info fifo_data;
nv3_sim_state sim_data;
unsigned int M, N, P, pll, MClk;
pll = chip->PRAMDAC[0x00000504/4];
M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F;
MClk = (N * chip->CrystalFreqKHz / M) >> P;
sim_data.pix_bpp = (char)pixelDepth;
sim_data.enable_video = 0;
sim_data.enable_mp = 0;
sim_data.video_scale = 1;
sim_data.memory_width = (chip->PEXTDEV[0x00000000/4] & 0x10) ? 128 : 64;
sim_data.memory_width = 128;
sim_data.mem_latency = 9;
sim_data.mem_aligned = 1;
sim_data.mem_page_miss = 11;
sim_data.gr_during_vid = 0;
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
nv3CalcArbitration(&fifo_data, &sim_data);
if (fifo_data.valid)
{
int b = fifo_data.graphics_burst_size >> 4;
*burst = 0;
while (b >>= 1) (*burst)++;
*lwm = fifo_data.graphics_lwm >> 3;
}
else
{
*lwm = 0x24;
*burst = 0x2;
}
}
/****************************************************************************\
* *
* RIVA Mode State Routines *
* *
\****************************************************************************/
/*
* Calculate the Video Clock parameters for the PLL.
*/
static int CalcVClock
(
int clockIn,
int *clockOut,
int *mOut,
int *nOut,
int *pOut,
RIVA_HW_INST *chip
)
{
unsigned lowM, highM, highP;
unsigned DeltaNew, DeltaOld;
unsigned VClk, Freq;
unsigned M, N, P;
DeltaOld = 0xFFFFFFFF;
VClk = (unsigned)clockIn;
if (chip->CrystalFreqKHz == 13500)
{
lowM = 7;
highM = 12;
}
else
{
lowM = 8;
highM = 13;
}
highP = 3;
for (P = 0; P <= highP; P ++)
{
Freq = VClk << P;
if ((Freq >= 128000) && (Freq <= chip->MaxVClockFreqKHz))
{
for (M = lowM; M <= highM; M++)
{
N = (VClk << P) * M / chip->CrystalFreqKHz;
if(N <= 255) {
Freq = (chip->CrystalFreqKHz * N / M) >> P;
if (Freq > VClk)
DeltaNew = Freq - VClk;
else
DeltaNew = VClk - Freq;
if (DeltaNew < DeltaOld)
{
*mOut = M;
*nOut = N;
*pOut = P;
*clockOut = Freq;
DeltaOld = DeltaNew;
}
}
}
}
}
return (DeltaOld != 0xFFFFFFFF);
}
/*
* Calculate extended mode parameters (SVGA) and save in a
* mode state structure.
*/
static void CalcStateExt
(
RIVA_HW_INST *chip,
RIVA_HW_STATE *state,
int bpp,
int width,
int hDisplaySize,
int height,
int dotClock,
int flags
)
{
int pixelDepth, VClk = 0, m = 0, n = 0, p = 0;
/*
* Save mode parameters.
*/
state->bpp = bpp; /* this is not bitsPerPixel, it's 8,15,16,32 */
state->width = width;
state->height = height;
/*
* Extended RIVA registers.
*/
pixelDepth = (bpp + 1)/8;
CalcVClock(dotClock, &VClk, &m, &n, &p, chip);
nv3UpdateArbitrationSettings(VClk,
pixelDepth * 8,
&(state->arbitration0),
&(state->arbitration1),
chip);
state->cursor0 = 0x00;
state->cursor1 = 0x78;
if (flags & V_DBLSCAN)
state->cursor1 |= 2;
state->cursor2 = 0x00000000;
state->pllsel = 0x10010100;
state->config = ((width + 31)/32)
| (((pixelDepth > 2) ? 3 : pixelDepth) << 8)
| 0x1000;
state->general = 0x00100100;
state->repaint1 = hDisplaySize < 1280 ? 0x06 : 0x02;
state->vpll = (p << 16) | (n << 8) | m;
state->repaint0 = (((width/8)*pixelDepth) & 0x700) >> 3;
state->pixel = pixelDepth > 2 ? 3 : pixelDepth;
state->offset = 0;
state->pitch = pixelDepth * width;
}
/*
* Load fixed function state and pre-calculated/stored state.
*/
#define LOAD_FIXED_STATE(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev)/8; i++) \
chip->dev[tbl##Table##dev[i][0]] = tbl##Table##dev[i][1]
#define LOAD_FIXED_STATE_8BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_8BPP)/8; i++) \
chip->dev[tbl##Table##dev##_8BPP[i][0]] = tbl##Table##dev##_8BPP[i][1]
#define LOAD_FIXED_STATE_15BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_15BPP)/8; i++) \
chip->dev[tbl##Table##dev##_15BPP[i][0]] = tbl##Table##dev##_15BPP[i][1]
#define LOAD_FIXED_STATE_16BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_16BPP)/8; i++) \
chip->dev[tbl##Table##dev##_16BPP[i][0]] = tbl##Table##dev##_16BPP[i][1]
#define LOAD_FIXED_STATE_32BPP(tbl,dev) \
for (i = 0; i < sizeof(tbl##Table##dev##_32BPP)/8; i++) \
chip->dev[tbl##Table##dev##_32BPP[i][0]] = tbl##Table##dev##_32BPP[i][1]
static void UpdateFifoState
(
RIVA_HW_INST *chip
)
{
}
static void LoadStateExt
(
RIVA_HW_INST *chip,
RIVA_HW_STATE *state
)
{
int i;
/*
* Load HW fixed function state.
*/
LOAD_FIXED_STATE(Riva,PMC);
LOAD_FIXED_STATE(Riva,PTIMER);
/*
* Make sure frame buffer config gets set before loading PRAMIN.
*/
chip->PFB[0x00000200/4] = state->config;
LOAD_FIXED_STATE(nv3,PFIFO);
LOAD_FIXED_STATE(nv3,PRAMIN);
LOAD_FIXED_STATE(nv3,PGRAPH);
switch (state->bpp)
{
case 15:
case 16:
LOAD_FIXED_STATE_15BPP(nv3,PRAMIN);
LOAD_FIXED_STATE_15BPP(nv3,PGRAPH);
break;
case 24:
case 32:
LOAD_FIXED_STATE_32BPP(nv3,PRAMIN);
LOAD_FIXED_STATE_32BPP(nv3,PGRAPH);
break;
case 8:
default:
LOAD_FIXED_STATE_8BPP(nv3,PRAMIN);
LOAD_FIXED_STATE_8BPP(nv3,PGRAPH);
break;
}
for (i = 0x00000; i < 0x00800; i++)
chip->PRAMIN[0x00000502 + i] = (i << 12) | 0x03;
chip->PGRAPH[0x00000630/4] = state->offset;
chip->PGRAPH[0x00000634/4] = state->offset;
chip->PGRAPH[0x00000638/4] = state->offset;
chip->PGRAPH[0x0000063C/4] = state->offset;
chip->PGRAPH[0x00000650/4] = state->pitch;
chip->PGRAPH[0x00000654/4] = state->pitch;
chip->PGRAPH[0x00000658/4] = state->pitch;
chip->PGRAPH[0x0000065C/4] = state->pitch;
LOAD_FIXED_STATE(Riva,FIFO);
UpdateFifoState(chip);
/*
* Load HW mode state.
*/
VGA_WR08(chip->PCIO, 0x03D4, 0x19);
VGA_WR08(chip->PCIO, 0x03D5, state->repaint0);
VGA_WR08(chip->PCIO, 0x03D4, 0x1A);
VGA_WR08(chip->PCIO, 0x03D5, state->repaint1);
VGA_WR08(chip->PCIO, 0x03D4, 0x25);
VGA_WR08(chip->PCIO, 0x03D5, state->screen);
VGA_WR08(chip->PCIO, 0x03D4, 0x28);
VGA_WR08(chip->PCIO, 0x03D5, state->pixel);
VGA_WR08(chip->PCIO, 0x03D4, 0x2D);
VGA_WR08(chip->PCIO, 0x03D5, state->horiz);
VGA_WR08(chip->PCIO, 0x03D4, 0x1B);
VGA_WR08(chip->PCIO, 0x03D5, state->arbitration0);
VGA_WR08(chip->PCIO, 0x03D4, 0x20);
VGA_WR08(chip->PCIO, 0x03D5, state->arbitration1);
VGA_WR08(chip->PCIO, 0x03D4, 0x30);
VGA_WR08(chip->PCIO, 0x03D5, state->cursor0);
VGA_WR08(chip->PCIO, 0x03D4, 0x31);
VGA_WR08(chip->PCIO, 0x03D5, state->cursor1);
VGA_WR08(chip->PCIO, 0x03D4, 0x2F);
VGA_WR08(chip->PCIO, 0x03D5, state->cursor2);
VGA_WR08(chip->PCIO, 0x03D4, 0x39);
VGA_WR08(chip->PCIO, 0x03D5, state->interlace);
chip->PRAMDAC[0x00000508/4] = state->vpll;
chip->PRAMDAC[0x0000050C/4] = state->pllsel;
chip->PRAMDAC[0x00000600/4] = state->general;
/*
* Turn off VBlank enable and reset.
*/
chip->PCRTC[0x00000140/4] = 0;
chip->PCRTC[0x00000100/4] = chip->VBlankBit;
/*
* Set interrupt enable.
*/
chip->PMC[0x00000140/4] = chip->EnableIRQ & 0x01;
/*
* Set current state pointer.
*/
chip->CurrentState = state;
/*
* Reset FIFO free and empty counts.
*/
chip->FifoFreeCount = 0;
/* Free count from first subchannel */
chip->FifoEmptyCount = chip->Rop->FifoFree;
}
static void UnloadStateExt
(
RIVA_HW_INST *chip,
RIVA_HW_STATE *state
)
{
/*
* Save current HW state.
*/
VGA_WR08(chip->PCIO, 0x03D4, 0x19);
state->repaint0 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x1A);
state->repaint1 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x25);
state->screen = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x28);
state->pixel = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x2D);
state->horiz = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x1B);
state->arbitration0 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x20);
state->arbitration1 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x30);
state->cursor0 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x31);
state->cursor1 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x2F);
state->cursor2 = VGA_RD08(chip->PCIO, 0x03D5);
VGA_WR08(chip->PCIO, 0x03D4, 0x39);
state->interlace = VGA_RD08(chip->PCIO, 0x03D5);
state->vpll = chip->PRAMDAC[0x00000508/4];
state->pllsel = chip->PRAMDAC[0x0000050C/4];
state->general = chip->PRAMDAC[0x00000600/4];
state->config = chip->PFB[0x00000200/4];
state->offset = chip->PGRAPH[0x00000630/4];
state->pitch = chip->PGRAPH[0x00000650/4];
}
static void SetStartAddress
(
RIVA_HW_INST *chip,
unsigned start
)
{
int offset = start >> 2;
int pan = (start & 3) << 1;
unsigned char tmp;
/*
* Unlock extended registers.
*/
chip->LockUnlock(chip, 0);
/*
* Set start address.
*/
VGA_WR08(chip->PCIO, 0x3D4, 0x0D); VGA_WR08(chip->PCIO, 0x3D5, offset);
offset >>= 8;
VGA_WR08(chip->PCIO, 0x3D4, 0x0C); VGA_WR08(chip->PCIO, 0x3D5, offset);
offset >>= 8;
VGA_WR08(chip->PCIO, 0x3D4, 0x19); tmp = VGA_RD08(chip->PCIO, 0x3D5);
VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x01F) | (tmp & ~0x1F));
VGA_WR08(chip->PCIO, 0x3D4, 0x2D); tmp = VGA_RD08(chip->PCIO, 0x3D5);
VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x60) | (tmp & ~0x60));
/*
* 4 pixel pan register.
*/
offset = VGA_RD08(chip->PCIO, chip->IO + 0x0A);
VGA_WR08(chip->PCIO, 0x3C0, 0x13);
VGA_WR08(chip->PCIO, 0x3C0, pan);
}
/****************************************************************************\
* *
* Probe RIVA Chip Configuration *
* *
\****************************************************************************/
static void nv3GetConfig
(
RIVA_HW_INST *chip
)
{
/*
* Fill in chip configuration.
*/
if (chip->PFB[0x00000000/4] & 0x00000020)
{
if (((chip->PMC[0x00000000/4] & 0xF0) == 0x20)
&& ((chip->PMC[0x00000000/4] & 0x0F) >= 0x02))
{
/*
* SDRAM 128 ZX.
*/
chip->RamBandwidthKBytesPerSec = 800000;
switch (chip->PFB[0x00000000/4] & 0x03)
{
case 2:
chip->RamAmountKBytes = 1024 * 4;
break;
case 1:
chip->RamAmountKBytes = 1024 * 2;
break;
default:
chip->RamAmountKBytes = 1024 * 8;
break;
}
}
else
{
chip->RamBandwidthKBytesPerSec = 1000000;
chip->RamAmountKBytes = 1024 * 8;
}
}
else
{
/*
* SGRAM 128.
*/
chip->RamBandwidthKBytesPerSec = 1000000;
switch (chip->PFB[0x00000000/4] & 0x00000003)
{
case 0:
chip->RamAmountKBytes = 1024 * 8;
break;
case 2:
chip->RamAmountKBytes = 1024 * 4;
break;
default:
chip->RamAmountKBytes = 1024 * 2;
break;
}
}
chip->CrystalFreqKHz = (chip->PEXTDEV[0x00000000/4] & 0x00000040) ? 14318 : 13500;
chip->CURSOR = &(chip->PRAMIN[0x00008000/4 - 0x0800/4]);
chip->VBlankBit = 0x00000100;
chip->MaxVClockFreqKHz = 256000;
/*
* Set chip functions.
*/
chip->Busy = nv3Busy;
chip->ShowHideCursor = ShowHideCursor;
chip->CalcStateExt = CalcStateExt;
chip->LoadStateExt = LoadStateExt;
chip->UnloadStateExt = UnloadStateExt;
chip->SetStartAddress = SetStartAddress;
chip->LockUnlock = nv3LockUnlock;
}
int RivaGetConfig
(
RivaPtr pRiva
)
{
RIVA_HW_INST *chip = &pRiva->riva;
nv3GetConfig(chip);
/*
* Fill in FIFO pointers.
*/
chip->Rop = (RivaRop *)&(chip->FIFO[0x00000000/4]);
chip->Clip = (RivaClip *)&(chip->FIFO[0x00002000/4]);
chip->Patt = (RivaPattern *)&(chip->FIFO[0x00004000/4]);
chip->Pixmap = (RivaPixmap *)&(chip->FIFO[0x00006000/4]);
chip->Blt = (RivaScreenBlt *)&(chip->FIFO[0x00008000/4]);
chip->Bitmap = (RivaBitmap *)&(chip->FIFO[0x0000A000/4]);
chip->Line = (RivaLine *)&(chip->FIFO[0x0000C000/4]);
return (0);
}