src/sys/dev/pci/if_bge.c

5038 lines
147 KiB
C

/* $OpenBSD: if_bge.c,v 1.402 2023/11/10 15:51:20 bluhm Exp $ */
/*
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2001
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: if_bge.c,v 1.25 2002/11/14 23:54:49 sam Exp $
*/
/*
* Broadcom BCM57xx/BCM590x family ethernet driver for OpenBSD.
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Engineer, Wind River Systems
*/
/*
* The Broadcom BCM5700 is based on technology originally developed by
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
* MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
* frames, highly configurable RX filtering, and 16 RX and TX queues
* (which, along with RX filter rules, can be used for QOS applications).
* Other features, such as TCP segmentation, may be available as part
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
* firmware images can be stored in hardware and need not be compiled
* into the driver.
*
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
* function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
*
* The BCM5701 is a single-chip solution incorporating both the BCM5700
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
* does not support external SSRAM.
*
* Broadcom also produces a variation of the BCM5700 under the "Altima"
* brand name, which is functionally similar but lacks PCI-X support.
*
* Without external SSRAM, you can only have at most 4 TX rings,
* and the use of the mini RX ring is disabled. This seems to imply
* that these features are simply not available on the BCM5701. As a
* result, this driver does not implement any support for the mini RX
* ring.
*/
#include "bpfilter.h"
#include "vlan.h"
#include "kstat.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/timeout.h>
#include <sys/socket.h>
#include <sys/atomic.h>
#include <sys/kstat.h>
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#if defined(__sparc64__) || defined(__HAVE_FDT)
#include <dev/ofw/openfirm.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/miidevs.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/if_bgereg.h>
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
const struct bge_revision * bge_lookup_rev(u_int32_t);
int bge_can_use_msi(struct bge_softc *);
int bge_probe(struct device *, void *, void *);
void bge_attach(struct device *, struct device *, void *);
int bge_detach(struct device *, int);
int bge_activate(struct device *, int);
const struct cfattach bge_ca = {
sizeof(struct bge_softc), bge_probe, bge_attach, bge_detach,
bge_activate
};
struct cfdriver bge_cd = {
NULL, "bge", DV_IFNET
};
void bge_txeof(struct bge_softc *);
void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
void bge_rxeof(struct bge_softc *);
void bge_tick(void *);
void bge_stats_update(struct bge_softc *);
void bge_stats_update_regs(struct bge_softc *);
int bge_cksum_pad(struct mbuf *);
int bge_encap(struct bge_softc *, struct mbuf *, int *);
int bge_compact_dma_runt(struct mbuf *);
int bge_intr(void *);
void bge_start(struct ifqueue *);
int bge_ioctl(struct ifnet *, u_long, caddr_t);
int bge_rxrinfo(struct bge_softc *, struct if_rxrinfo *);
void bge_init(void *);
void bge_stop_block(struct bge_softc *, bus_size_t, u_int32_t);
void bge_stop(struct bge_softc *, int);
void bge_watchdog(struct ifnet *);
int bge_ifmedia_upd(struct ifnet *);
void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
u_int8_t bge_nvram_getbyte(struct bge_softc *, int, u_int8_t *);
int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
void bge_iff(struct bge_softc *);
int bge_newbuf_jumbo(struct bge_softc *, int);
int bge_init_rx_ring_jumbo(struct bge_softc *);
void bge_fill_rx_ring_jumbo(struct bge_softc *);
void bge_free_rx_ring_jumbo(struct bge_softc *);
int bge_newbuf(struct bge_softc *, int);
int bge_init_rx_ring_std(struct bge_softc *);
void bge_rxtick(void *);
void bge_fill_rx_ring_std(struct bge_softc *);
void bge_free_rx_ring_std(struct bge_softc *);
void bge_free_tx_ring(struct bge_softc *);
int bge_init_tx_ring(struct bge_softc *);
void bge_chipinit(struct bge_softc *);
int bge_blockinit(struct bge_softc *);
u_int32_t bge_dma_swap_options(struct bge_softc *);
int bge_phy_addr(struct bge_softc *);
u_int32_t bge_readmem_ind(struct bge_softc *, int);
void bge_writemem_ind(struct bge_softc *, int, int);
void bge_writereg_ind(struct bge_softc *, int, int);
void bge_writembx(struct bge_softc *, int, int);
int bge_miibus_readreg(struct device *, int, int);
void bge_miibus_writereg(struct device *, int, int, int);
void bge_miibus_statchg(struct device *);
#define BGE_RESET_SHUTDOWN 0
#define BGE_RESET_START 1
#define BGE_RESET_SUSPEND 2
void bge_sig_post_reset(struct bge_softc *, int);
void bge_sig_legacy(struct bge_softc *, int);
void bge_sig_pre_reset(struct bge_softc *, int);
void bge_stop_fw(struct bge_softc *, int);
void bge_reset(struct bge_softc *);
void bge_link_upd(struct bge_softc *);
void bge_ape_lock_init(struct bge_softc *);
void bge_ape_read_fw_ver(struct bge_softc *);
int bge_ape_lock(struct bge_softc *, int);
void bge_ape_unlock(struct bge_softc *, int);
void bge_ape_send_event(struct bge_softc *, uint32_t);
void bge_ape_driver_state_change(struct bge_softc *, int);
#if NKSTAT > 0
void bge_kstat_attach(struct bge_softc *);
enum {
bge_stat_out_octets = 0,
bge_stat_collisions,
bge_stat_xon_sent,
bge_stat_xoff_sent,
bge_stat_xmit_errors,
bge_stat_coll_frames,
bge_stat_multicoll_frames,
bge_stat_deferred_xmit,
bge_stat_excess_coll,
bge_stat_late_coll,
bge_stat_out_ucast_pkt,
bge_stat_out_mcast_pkt,
bge_stat_out_bcast_pkt,
bge_stat_in_octets,
bge_stat_fragments,
bge_stat_in_ucast_pkt,
bge_stat_in_mcast_pkt,
bge_stat_in_bcast_pkt,
bge_stat_fcs_errors,
bge_stat_align_errors,
bge_stat_xon_rcvd,
bge_stat_xoff_rcvd,
bge_stat_ctrl_frame_rcvd,
bge_stat_xoff_entered,
bge_stat_too_long_frames,
bge_stat_jabbers,
bge_stat_too_short_pkts,
bge_stat_dma_rq_full,
bge_stat_dma_hprq_full,
bge_stat_sdc_queue_full,
bge_stat_nic_sendprod_set,
bge_stat_status_updated,
bge_stat_irqs,
bge_stat_avoided_irqs,
bge_stat_tx_thresh_hit,
bge_stat_filtdrop,
bge_stat_dma_wrq_full,
bge_stat_dma_hpwrq_full,
bge_stat_out_of_bds,
bge_stat_if_in_drops,
bge_stat_if_in_errors,
bge_stat_rx_thresh_hit,
};
#endif
#ifdef BGE_DEBUG
#define DPRINTF(x) do { if (bgedebug) printf x; } while (0)
#define DPRINTFN(n,x) do { if (bgedebug >= (n)) printf x; } while (0)
int bgedebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/*
* Various supported device vendors/types and their names. Note: the
* spec seems to indicate that the hardware still has Alteon's vendor
* ID burned into it, though it will always be overridden by the vendor
* ID in the EEPROM. Just to be safe, we cover all possibilities.
*/
const struct pci_matchid bge_devices[] = {
{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700 },
{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701 },
{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000 },
{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001 },
{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1003 },
{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100 },
{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703_ALT },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717C },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5725 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5727 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5762 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57764 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57767 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57787 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791 },
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795 },
{ PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PW008GE4 },
{ PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PW008GE5 },
{ PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PP250_450_LAN },
{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9D21 },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996 }
};
#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
#define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
#define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
static const struct bge_revision {
u_int32_t br_chipid;
const char *br_name;
} bge_revisions[] = {
{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
/* the 5702 and 5703 share the same ASIC ID */
{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
{ BGE_CHIPID_BCM5719_A1, "BCM5719 A1" },
{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
/* the 5754 and 5787 share the same ASIC ID */
{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
{ BGE_CHIPID_BCM57766_A1, "BCM57766 A1" },
{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
{ 0, NULL }
};
/*
* Some defaults for major revisions, so that newer steppings
* that we don't know about have a shot at working.
*/
static const struct bge_revision bge_majorrevs[] = {
{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
/* 5702 and 5703 share the same ASIC ID */
{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
/* 5754 and 5787 share the same ASIC ID */
{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
{ 0, NULL }
};
u_int32_t
bge_readmem_ind(struct bge_softc *sc, int off)
{
struct pci_attach_args *pa = &(sc->bge_pa);
u_int32_t val;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
return (0);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, 0);
return (val);
}
void
bge_writemem_ind(struct bge_softc *sc, int off, int val)
{
struct pci_attach_args *pa = &(sc->bge_pa);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
return;
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, 0);
}
void
bge_writereg_ind(struct bge_softc *sc, int off, int val)
{
struct pci_attach_args *pa = &(sc->bge_pa);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
}
void
bge_writembx(struct bge_softc *sc, int off, int val)
{
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
CSR_WRITE_4(sc, off, val);
}
/*
* Clear all stale locks and select the lock for this driver instance.
*/
void
bge_ape_lock_init(struct bge_softc *sc)
{
struct pci_attach_args *pa = &(sc->bge_pa);
uint32_t bit, regbase;
int i;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
regbase = BGE_APE_LOCK_GRANT;
else
regbase = BGE_APE_PER_LOCK_GRANT;
/* Clear any stale locks. */
for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
switch (i) {
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
bit = BGE_APE_LOCK_GRANT_DRIVER0;
break;
default:
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
}
APE_WRITE_4(sc, regbase + 4 * i, bit);
}
/* Select the PHY lock based on the device's function number. */
switch (pa->pa_function) {
case 0:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
break;
case 1:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
break;
case 2:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
break;
case 3:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
break;
default:
printf("%s: PHY lock not supported on function %d\n",
sc->bge_dev.dv_xname, pa->pa_function);
break;
}
}
/*
* Check for APE firmware, set flags, and print version info.
*/
void
bge_ape_read_fw_ver(struct bge_softc *sc)
{
const char *fwtype;
uint32_t apedata, features;
/* Check for a valid APE signature in shared memory. */
apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
if (apedata != BGE_APE_SEG_SIG_MAGIC) {
sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
return;
}
/* Check if APE firmware is running. */
apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
printf("%s: APE signature found but FW status not ready! "
"0x%08x\n", sc->bge_dev.dv_xname, apedata);
return;
}
sc->bge_mfw_flags |= BGE_MFW_ON_APE;
/* Fetch the APE firmware type and version. */
apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
fwtype = "NCSI";
} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
fwtype = "DASH";
} else
fwtype = "UNKN";
/* Print the APE firmware version. */
printf(", APE firmware %s %d.%d.%d.%d", fwtype,
(apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
(apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
(apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
(apedata & BGE_APE_FW_VERSION_BLDMSK));
}
int
bge_ape_lock(struct bge_softc *sc, int locknum)
{
struct pci_attach_args *pa = &(sc->bge_pa);
uint32_t bit, gnt, req, status;
int i, off;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return (0);
/* Lock request/grant registers have different bases. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
req = BGE_APE_LOCK_REQ;
gnt = BGE_APE_LOCK_GRANT;
} else {
req = BGE_APE_PER_LOCK_REQ;
gnt = BGE_APE_PER_LOCK_GRANT;
}
off = 4 * locknum;
switch (locknum) {
case BGE_APE_LOCK_GPIO:
/* Lock required when using GPIO. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
return (0);
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_GRC:
/* Lock required to reset the device. */
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_MEM:
/* Lock required when accessing certain APE memory. */
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
/* Lock required when accessing PHYs. */
bit = BGE_APE_LOCK_REQ_DRIVER0;
break;
default:
return (EINVAL);
}
/* Request a lock. */
APE_WRITE_4(sc, req + off, bit);
/* Wait up to 1 second to acquire lock. */
for (i = 0; i < 20000; i++) {
status = APE_READ_4(sc, gnt + off);
if (status == bit)
break;
DELAY(50);
}
/* Handle any errors. */
if (status != bit) {
printf("%s: APE lock %d request failed! "
"request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
sc->bge_dev.dv_xname,
locknum, req + off, bit & 0xFFFF, gnt + off,
status & 0xFFFF);
/* Revoke the lock request. */
APE_WRITE_4(sc, gnt + off, bit);
return (EBUSY);
}
return (0);
}
void
bge_ape_unlock(struct bge_softc *sc, int locknum)
{
struct pci_attach_args *pa = &(sc->bge_pa);
uint32_t bit, gnt;
int off;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
gnt = BGE_APE_LOCK_GRANT;
else
gnt = BGE_APE_PER_LOCK_GRANT;
off = 4 * locknum;
switch (locknum) {
case BGE_APE_LOCK_GPIO:
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
return;
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_GRC:
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_MEM:
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
bit = BGE_APE_LOCK_GRANT_DRIVER0;
break;
default:
return;
}
APE_WRITE_4(sc, gnt + off, bit);
}
/*
* Send an event to the APE firmware.
*/
void
bge_ape_send_event(struct bge_softc *sc, uint32_t event)
{
uint32_t apedata;
int i;
/* NCSI does not support APE events. */
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
/* Wait up to 1ms for APE to service previous event. */
for (i = 10; i > 0; i--) {
if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
break;
apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
BGE_APE_EVENT_STATUS_EVENT_PENDING);
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
break;
}
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
DELAY(100);
}
if (i == 0) {
printf("%s: APE event 0x%08x send timed out\n",
sc->bge_dev.dv_xname, event);
}
}
void
bge_ape_driver_state_change(struct bge_softc *sc, int kind)
{
uint32_t apedata, event;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
switch (kind) {
case BGE_RESET_START:
/* If this is the first load, clear the load counter. */
apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
else {
apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
}
APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
BGE_APE_HOST_SEG_SIG_MAGIC);
APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
BGE_APE_HOST_SEG_LEN_MAGIC);
/* Add some version info if bge(4) supports it. */
APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
BGE_APE_HOST_BEHAV_NO_PHYLOCK);
APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
BGE_APE_HOST_DRVR_STATE_START);
event = BGE_APE_EVENT_STATUS_STATE_START;
break;
case BGE_RESET_SHUTDOWN:
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
BGE_APE_HOST_DRVR_STATE_UNLOAD);
event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
break;
case BGE_RESET_SUSPEND:
event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
break;
default:
return;
}
bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
BGE_APE_EVENT_STATUS_STATE_CHNGE);
}
u_int8_t
bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
{
u_int32_t access, byte = 0;
int i;
/* Lock. */
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
for (i = 0; i < 8000; i++) {
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
break;
DELAY(20);
}
if (i == 8000)
return (1);
/* Enable access. */
access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
DELAY(10);
break;
}
}
if (i == BGE_TIMEOUT * 10) {
printf("%s: nvram read timed out\n", sc->bge_dev.dv_xname);
return (1);
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
*dest = (swap32(byte) >> ((addr % 4) * 8)) & 0xFF;
/* Disable access. */
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
/* Unlock. */
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
CSR_READ_4(sc, BGE_NVRAM_SWARB);
return (0);
}
/*
* Read a sequence of bytes from NVRAM.
*/
int
bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
{
int err = 0, i;
u_int8_t byte = 0;
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
return (1);
for (i = 0; i < cnt; i++) {
err = bge_nvram_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return (err ? 1 : 0);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.' The
* BCM570x supports both the traditional bitbang interface and an
* auto access interface for reading the EEPROM. We use the auto
* access method.
*/
u_int8_t
bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
{
int i;
u_int32_t byte = 0;
/*
* Enable use of auto EEPROM access so we can avoid
* having to use the bitbang method.
*/
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
/* Reset the EEPROM, load the clock period. */
CSR_WRITE_4(sc, BGE_EE_ADDR,
BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
DELAY(20);
/* Issue the read EEPROM command. */
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
/* Wait for completion */
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
break;
}
if (i == BGE_TIMEOUT * 10) {
printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
return (1);
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_EE_DATA);
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
return (0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
int
bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
{
int i, error = 0;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
error = bge_eeprom_getbyte(sc, off + i, &byte);
if (error)
break;
*(dest + i) = byte;
}
return (error ? 1 : 0);
}
int
bge_miibus_readreg(struct device *dev, int phy, int reg)
{
struct bge_softc *sc = (struct bge_softc *)dev;
u_int32_t val, autopoll;
int i;
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
return (0);
/* Reading with autopolling on may trigger PCI errors */
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(80);
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg));
CSR_READ_4(sc, BGE_MI_COMM); /* force write */
for (i = 0; i < 200; i++) {
delay(1);
val = CSR_READ_4(sc, BGE_MI_COMM);
if (!(val & BGE_MICOMM_BUSY))
break;
delay(10);
}
if (i == 200) {
printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
val = 0;
goto done;
}
val = CSR_READ_4(sc, BGE_MI_COMM);
done:
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(80);
}
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
if (val & BGE_MICOMM_READFAIL)
return (0);
return (val & 0xFFFF);
}
void
bge_miibus_writereg(struct device *dev, int phy, int reg, int val)
{
struct bge_softc *sc = (struct bge_softc *)dev;
u_int32_t autopoll;
int i;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
(reg == MII_100T2CR || reg == BRGPHY_MII_AUXCTL))
return;
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
return;
/* Reading with autopolling on may trigger PCI errors */
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (autopoll & BGE_MIMODE_AUTOPOLL) {
DELAY(40);
BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(40); /* 40 usec is supposed to be adequate */
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
CSR_READ_4(sc, BGE_MI_COMM); /* force write */
for (i = 0; i < 200; i++) {
delay(1);
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
break;
delay(10);
}
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(40);
}
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
if (i == 200) {
printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
}
}
void
bge_miibus_statchg(struct device *dev)
{
struct bge_softc *sc = (struct bge_softc *)dev;
struct mii_data *mii = &sc->bge_mii;
u_int32_t mac_mode, rx_mode, tx_mode;
/*
* Get flow control negotiation result.
*/
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
(mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
BGE_STS_SETBIT(sc, BGE_STS_LINK);
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
if (!BGE_STS_BIT(sc, BGE_STS_LINK))
return;
/* Set the port mode (MII/GMII) to match the link speed. */
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
mac_mode |= BGE_PORTMODE_GMII;
else
mac_mode |= BGE_PORTMODE_MII;
/* Set MAC flow control behavior to match link flow control settings. */
tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
if (mii->mii_media_active & IFM_FDX) {
if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
} else
mac_mode |= BGE_MACMODE_HALF_DUPLEX;
CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
DELAY(40);
CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
}
/*
* Initialize a standard receive ring descriptor.
*/
int
bge_newbuf(struct bge_softc *sc, int i)
{
bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
struct bge_rx_bd *r = &sc->bge_rdata->bge_rx_std_ring[i];
struct mbuf *m;
int error;
m = MCLGETL(NULL, M_DONTWAIT, sc->bge_rx_std_len);
if (!m)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = sc->bge_rx_std_len;
if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmap, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
return (ENOBUFS);
}
bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize,
BUS_DMASYNC_PREREAD);
sc->bge_cdata.bge_rx_std_chain[i] = m;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_std_ring) +
i * sizeof (struct bge_rx_bd),
sizeof (struct bge_rx_bd),
BUS_DMASYNC_POSTWRITE);
BGE_HOSTADDR(r->bge_addr, dmap->dm_segs[0].ds_addr);
r->bge_flags = BGE_RXBDFLAG_END;
r->bge_len = m->m_len;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_std_ring) +
i * sizeof (struct bge_rx_bd),
sizeof (struct bge_rx_bd),
BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize a Jumbo receive ring descriptor.
*/
int
bge_newbuf_jumbo(struct bge_softc *sc, int i)
{
bus_dmamap_t dmap = sc->bge_cdata.bge_rx_jumbo_map[i];
struct bge_ext_rx_bd *r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
struct mbuf *m;
int error;
m = MCLGETL(NULL, M_DONTWAIT, BGE_JLEN);
if (!m)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmap, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
return (ENOBUFS);
}
bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize,
BUS_DMASYNC_PREREAD);
sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
i * sizeof (struct bge_ext_rx_bd),
sizeof (struct bge_ext_rx_bd),
BUS_DMASYNC_POSTWRITE);
/*
* Fill in the extended RX buffer descriptor.
*/
r->bge_bd.bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
r->bge_bd.bge_idx = i;
r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
switch (dmap->dm_nsegs) {
case 4:
BGE_HOSTADDR(r->bge_addr3, dmap->dm_segs[3].ds_addr);
r->bge_len3 = dmap->dm_segs[3].ds_len;
/* FALLTHROUGH */
case 3:
BGE_HOSTADDR(r->bge_addr2, dmap->dm_segs[2].ds_addr);
r->bge_len2 = dmap->dm_segs[2].ds_len;
/* FALLTHROUGH */
case 2:
BGE_HOSTADDR(r->bge_addr1, dmap->dm_segs[1].ds_addr);
r->bge_len1 = dmap->dm_segs[1].ds_len;
/* FALLTHROUGH */
case 1:
BGE_HOSTADDR(r->bge_bd.bge_addr, dmap->dm_segs[0].ds_addr);
r->bge_bd.bge_len = dmap->dm_segs[0].ds_len;
break;
default:
panic("%s: %d segments", __func__, dmap->dm_nsegs);
}
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
i * sizeof (struct bge_ext_rx_bd),
sizeof (struct bge_ext_rx_bd),
BUS_DMASYNC_PREWRITE);
return (0);
}
int
bge_init_rx_ring_std(struct bge_softc *sc)
{
int i;
if (ISSET(sc->bge_flags, BGE_RXRING_VALID))
return (0);
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (bus_dmamap_create(sc->bge_dmatag, sc->bge_rx_std_len, 1,
sc->bge_rx_std_len, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&sc->bge_cdata.bge_rx_std_map[i]) != 0) {
printf("%s: unable to create dmamap for slot %d\n",
sc->bge_dev.dv_xname, i);
goto uncreate;
}
bzero(&sc->bge_rdata->bge_rx_std_ring[i],
sizeof(struct bge_rx_bd));
}
sc->bge_std = BGE_STD_RX_RING_CNT - 1;
/* lwm must be greater than the replenish threshold */
if_rxr_init(&sc->bge_std_ring, 17, BGE_STD_RX_RING_CNT);
bge_fill_rx_ring_std(sc);
SET(sc->bge_flags, BGE_RXRING_VALID);
return (0);
uncreate:
while (--i) {
bus_dmamap_destroy(sc->bge_dmatag,
sc->bge_cdata.bge_rx_std_map[i]);
}
return (1);
}
/*
* When the refill timeout for a ring is active, that ring is so empty
* that no more packets can be received on it, so the interrupt handler
* will not attempt to refill it, meaning we don't need to protect against
* interrupts here.
*/
void
bge_rxtick(void *arg)
{
struct bge_softc *sc = arg;
if (ISSET(sc->bge_flags, BGE_RXRING_VALID) &&
if_rxr_inuse(&sc->bge_std_ring) <= 8)
bge_fill_rx_ring_std(sc);
}
void
bge_rxtick_jumbo(void *arg)
{
struct bge_softc *sc = arg;
if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID) &&
if_rxr_inuse(&sc->bge_jumbo_ring) <= 8)
bge_fill_rx_ring_jumbo(sc);
}
void
bge_fill_rx_ring_std(struct bge_softc *sc)
{
int i;
int post = 0;
u_int slots;
i = sc->bge_std;
for (slots = if_rxr_get(&sc->bge_std_ring, BGE_STD_RX_RING_CNT);
slots > 0; slots--) {
BGE_INC(i, BGE_STD_RX_RING_CNT);
if (bge_newbuf(sc, i) != 0)
break;
sc->bge_std = i;
post = 1;
}
if_rxr_put(&sc->bge_std_ring, slots);
if (post)
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
/*
* bge always needs more than 8 packets on the ring. if we cant do
* that now, then try again later.
*/
if (if_rxr_inuse(&sc->bge_std_ring) <= 8)
timeout_add(&sc->bge_rxtimeout, 1);
}
void
bge_free_rx_ring_std(struct bge_softc *sc)
{
bus_dmamap_t dmap;
struct mbuf *m;
int i;
if (!ISSET(sc->bge_flags, BGE_RXRING_VALID))
return;
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
dmap = sc->bge_cdata.bge_rx_std_map[i];
m = sc->bge_cdata.bge_rx_std_chain[i];
if (m != NULL) {
bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_dmatag, dmap);
m_freem(m);
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
}
bus_dmamap_destroy(sc->bge_dmatag, dmap);
sc->bge_cdata.bge_rx_std_map[i] = NULL;
bzero(&sc->bge_rdata->bge_rx_std_ring[i],
sizeof(struct bge_rx_bd));
}
CLR(sc->bge_flags, BGE_RXRING_VALID);
}
int
bge_init_rx_ring_jumbo(struct bge_softc *sc)
{
volatile struct bge_rcb *rcb;
int i;
if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID))
return (0);
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (bus_dmamap_create(sc->bge_dmatag, BGE_JLEN, 4, BGE_JLEN, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&sc->bge_cdata.bge_rx_jumbo_map[i]) != 0) {
printf("%s: unable to create dmamap for slot %d\n",
sc->bge_dev.dv_xname, i);
goto uncreate;
}
bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
sizeof(struct bge_ext_rx_bd));
}
sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
/* lwm must be greater than the replenish threshold */
if_rxr_init(&sc->bge_jumbo_ring, 17, BGE_JUMBO_RX_RING_CNT);
bge_fill_rx_ring_jumbo(sc);
SET(sc->bge_flags, BGE_JUMBO_RXRING_VALID);
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
return (0);
uncreate:
while (--i) {
bus_dmamap_destroy(sc->bge_dmatag,
sc->bge_cdata.bge_rx_jumbo_map[i]);
}
return (1);
}
void
bge_fill_rx_ring_jumbo(struct bge_softc *sc)
{
int i;
int post = 0;
u_int slots;
i = sc->bge_jumbo;
for (slots = if_rxr_get(&sc->bge_jumbo_ring, BGE_JUMBO_RX_RING_CNT);
slots > 0; slots--) {
BGE_INC(i, BGE_JUMBO_RX_RING_CNT);
if (bge_newbuf_jumbo(sc, i) != 0)
break;
sc->bge_jumbo = i;
post = 1;
}
if_rxr_put(&sc->bge_jumbo_ring, slots);
if (post)
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
/*
* bge always needs more than 8 packets on the ring. if we cant do
* that now, then try again later.
*/
if (if_rxr_inuse(&sc->bge_jumbo_ring) <= 8)
timeout_add(&sc->bge_rxtimeout_jumbo, 1);
}
void
bge_free_rx_ring_jumbo(struct bge_softc *sc)
{
bus_dmamap_t dmap;
struct mbuf *m;
int i;
if (!ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID))
return;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
dmap = sc->bge_cdata.bge_rx_jumbo_map[i];
m = sc->bge_cdata.bge_rx_jumbo_chain[i];
if (m != NULL) {
bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_dmatag, dmap);
m_freem(m);
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
}
bus_dmamap_destroy(sc->bge_dmatag, dmap);
sc->bge_cdata.bge_rx_jumbo_map[i] = NULL;
bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
sizeof(struct bge_ext_rx_bd));
}
CLR(sc->bge_flags, BGE_JUMBO_RXRING_VALID);
}
void
bge_free_tx_ring(struct bge_softc *sc)
{
int i;
if (!(sc->bge_flags & BGE_TXRING_VALID))
return;
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_tx_chain[i]);
sc->bge_cdata.bge_tx_chain[i] = NULL;
sc->bge_cdata.bge_tx_map[i] = NULL;
}
bzero(&sc->bge_rdata->bge_tx_ring[i],
sizeof(struct bge_tx_bd));
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_txdma[i]);
}
sc->bge_flags &= ~BGE_TXRING_VALID;
}
int
bge_init_tx_ring(struct bge_softc *sc)
{
int i;
bus_size_t txsegsz, txmaxsegsz;
if (sc->bge_flags & BGE_TXRING_VALID)
return (0);
sc->bge_txcnt = 0;
sc->bge_tx_saved_considx = 0;
/* Initialize transmit producer index for host-memory send ring. */
sc->bge_tx_prodidx = 0;
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
/* NIC-memory send ring not used; initialize to zero. */
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
if (BGE_IS_JUMBO_CAPABLE(sc)) {
txsegsz = 4096;
txmaxsegsz = BGE_JLEN;
} else {
txsegsz = MCLBYTES;
txmaxsegsz = MCLBYTES;
}
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (bus_dmamap_create(sc->bge_dmatag, txmaxsegsz,
BGE_NTXSEG, txsegsz, 0, BUS_DMA_NOWAIT, &sc->bge_txdma[i]))
return (ENOBUFS);
}
sc->bge_flags |= BGE_TXRING_VALID;
return (0);
}
void
bge_iff(struct bge_softc *sc)
{
struct arpcom *ac = &sc->arpcom;
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
struct ether_multistep step;
u_int8_t hashes[16];
u_int32_t h, rxmode;
/* First, zot all the existing filters. */
rxmode = CSR_READ_4(sc, BGE_RX_MODE) & ~BGE_RXMODE_RX_PROMISC;
ifp->if_flags &= ~IFF_ALLMULTI;
memset(hashes, 0x00, sizeof(hashes));
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
rxmode |= BGE_RXMODE_RX_PROMISC;
} else if (ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
memset(hashes, 0xff, sizeof(hashes));
} else {
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
setbit(hashes, h & 0x7F);
ETHER_NEXT_MULTI(step, enm);
}
}
bus_space_write_raw_region_4(sc->bge_btag, sc->bge_bhandle, BGE_MAR0,
hashes, sizeof(hashes));
CSR_WRITE_4(sc, BGE_RX_MODE, rxmode);
}
void
bge_sig_pre_reset(struct bge_softc *sc, int type)
{
/* no bge_asf_mode. */
if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
bge_ape_driver_state_change(sc, type);
}
void
bge_sig_post_reset(struct bge_softc *sc, int type)
{
/* no bge_asf_mode. */
if (type == BGE_RESET_SHUTDOWN)
bge_ape_driver_state_change(sc, type);
}
void
bge_sig_legacy(struct bge_softc *sc, int type)
{
/* no bge_asf_mode. */
}
void
bge_stop_fw(struct bge_softc *sc, int type)
{
/* no bge_asf_mode. */
}
u_int32_t
bge_dma_swap_options(struct bge_softc *sc)
{
u_int32_t dma_options = BGE_DMA_SWAP_OPTIONS;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
BGE_MODECTL_HTX2B_ENABLE;
}
return (dma_options);
}
int
bge_phy_addr(struct bge_softc *sc)
{
struct pci_attach_args *pa = &(sc->bge_pa);
int phy_addr = 1;
switch (BGE_ASICREV(sc->bge_chipid)) {
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
phy_addr = pa->pa_function;
if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
} else {
phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
}
}
return (phy_addr);
}
/*
* Do endian, PCI and DMA initialization.
*/
void
bge_chipinit(struct bge_softc *sc)
{
struct pci_attach_args *pa = &(sc->bge_pa);
u_int32_t dma_rw_ctl, misc_ctl, mode_ctl;
int i;
/* Set endianness before we access any non-PCI registers. */
misc_ctl = BGE_INIT;
if (sc->bge_flags & BGE_TAGGED_STATUS)
misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
misc_ctl);
/*
* Clear the MAC statistics block in the NIC's
* internal memory.
*/
for (i = BGE_STATS_BLOCK;
i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
for (i = BGE_STATUS_BLOCK;
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
/*
* For the 57766 and non Ax versions of 57765, bootcode
* needs to setup the PCIE Fast Training Sequence (FTS)
* value to prevent transmit hangs.
*/
if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
BGE_CPMU_PADRNG_CTL_RDIV2);
}
}
/*
* Set up the PCI DMA control register.
*/
dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
if (sc->bge_flags & BGE_PCIE) {
if (sc->bge_mps >= 256)
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
else
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
} else if (sc->bge_flags & BGE_PCIX) {
/* PCI-X bus */
if (BGE_IS_5714_FAMILY(sc)) {
/* 256 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
else
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
/* 1536 bytes for read, 384 bytes for write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
} else {
/* 384 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
(0x0F);
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
u_int32_t tmp;
/* Set ONEDMA_ATONCE for hardware workaround. */
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
if (tmp == 6 || tmp == 7)
dma_rw_ctl |=
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
/* Set PCI-X DMA write workaround. */
dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
}
} else {
/* Conventional PCI bus: 256 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
dma_rw_ctl |= 0x0F;
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
BGE_PCIDMARWCTL_ASRT_ALL_BE;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
if (BGE_IS_5717_PLUS(sc)) {
dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
/*
* Enable HW workaround for controllers that misinterpret
* a status tag update and leave interrupts permanently
* disabled.
*/
if (!BGE_IS_57765_PLUS(sc) &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
}
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
/*
* Set up general mode register.
*/
mode_ctl = bge_dma_swap_options(sc);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
/* Retain Host-2-BMC settings written by APE firmware. */
mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
(BGE_MODECTL_BYTESWAP_B2HRX_DATA |
BGE_MODECTL_WORDSWAP_B2HRX_DATA |
BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
}
mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
BGE_MODECTL_TX_NO_PHDR_CSUM;
/*
* BCM5701 B5 have a bug causing data corruption when using
* 64-bit DMA reads, which can be terminated early and then
* completed later as 32-bit accesses, in combination with
* certain bridges.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
mode_ctl |= BGE_MODECTL_FORCE_PCI32;
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
/*
* Disable memory write invalidate. Apparently it is not supported
* properly by these devices.
*/
PCI_CLRBIT(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
PCI_COMMAND_INVALIDATE_ENABLE);
#ifdef __brokenalpha__
/*
* Must ensure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_READ_BNDRY_1024);
#endif
/* Set the timer prescaler (always 66MHz) */
CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
DELAY(40); /* XXX */
/* Put PHY into ready state */
BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
DELAY(40);
}
}
int
bge_blockinit(struct bge_softc *sc)
{
volatile struct bge_rcb *rcb;
vaddr_t rcb_addr;
bge_hostaddr taddr;
u_int32_t dmactl, rdmareg, mimode, val;
int i, limit;
/*
* Initialize the memory window pointer register so that
* we can access the first 32K of internal NIC RAM. This will
* allow us to set up the TX send ring RCBs and the RX return
* ring RCBs, plus other things which live in NIC memory.
*/
CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
/* Configure mbuf memory pool */
if (!BGE_IS_5705_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
BGE_BUFFPOOL_1);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
else
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
/* Configure DMA resource pool */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
BGE_DMA_DESCRIPTORS);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
}
/* Configure mbuf pool watermarks */
/* new Broadcom docs strongly recommend these: */
if (BGE_IS_5717_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
} else if (BGE_IS_5705_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
}
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
}
/* Configure DMA resource watermarks */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
/* Enable buffer manager */
val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
/*
* Change the arbitration algorithm of TXMBUF read request to
* round-robin instead of priority based for BCM5719. When
* TXFIFO is almost empty, RDMA will hold its request until
* TXFIFO is not almost empty.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
val |= BGE_BMANMODE_NO_TX_UNDERRUN;
CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
/* Poll for buffer manager start indication */
for (i = 0; i < 2000; i++) {
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
break;
DELAY(10);
}
if (i == 2000) {
printf("%s: buffer manager failed to start\n",
sc->bge_dev.dv_xname);
return (ENXIO);
}
/* Enable flow-through queues */
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
/* Wait until queue initialization is complete */
for (i = 0; i < 2000; i++) {
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
break;
DELAY(10);
}
if (i == 2000) {
printf("%s: flow-through queue init failed\n",
sc->bge_dev.dv_xname);
return (ENXIO);
}
/*
* Summary of rings supported by the controller:
*
* Standard Receive Producer Ring
* - This ring is used to feed receive buffers for "standard"
* sized frames (typically 1536 bytes) to the controller.
*
* Jumbo Receive Producer Ring
* - This ring is used to feed receive buffers for jumbo sized
* frames (i.e. anything bigger than the "standard" frames)
* to the controller.
*
* Mini Receive Producer Ring
* - This ring is used to feed receive buffers for "mini"
* sized frames to the controller.
* - This feature required external memory for the controller
* but was never used in a production system. Should always
* be disabled.
*
* Receive Return Ring
* - After the controller has placed an incoming frame into a
* receive buffer that buffer is moved into a receive return
* ring. The driver is then responsible to passing the
* buffer up to the stack. Many versions of the controller
* support multiple RR rings.
*
* Send Ring
* - This ring is used for outgoing frames. Many versions of
* the controller support multiple send rings.
*/
/* Initialize the standard RX ring control block */
rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
if (BGE_IS_5717_PLUS(sc)) {
/*
* Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
* Bits 15-2 : Maximum RX frame size
* Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(512, ETHER_MAX_DIX_LEN << 2);
} else if (BGE_IS_5705_PLUS(sc)) {
/*
* Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
* Bits 15-2 : Reserved (should be 0)
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
} else {
/*
* Ring size is always XXX entries
* Bits 31-16: Maximum RX frame size
* Bits 15-2 : Reserved (should be 0)
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(ETHER_MAX_DIX_LEN, 0);
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
else
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
/* Write the standard receive producer ring control block. */
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
/* Reset the standard receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
/*
* Initialize the Jumbo RX ring control block
* We set the 'ring disabled' bit in the flags
* field until we're actually ready to start
* using this ring (i.e. once we set the MTU
* high enough to require it).
*/
if (sc->bge_flags & BGE_JUMBO_RING) {
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
BGE_HOSTADDR(rcb->bge_hostaddr,
BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
else
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
rcb->bge_hostaddr.bge_addr_lo);
/* Program the jumbo receive producer ring RCB parameters. */
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
/* Reset the jumbo receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
}
/* Disable the mini receive producer ring RCB. */
if (BGE_IS_5700_FAMILY(sc)) {
/* Set up dummy disabled mini ring RCB */
rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
/* Reset the mini receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
/* XXX why? */
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_info),
sizeof (struct bge_gib),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
(CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
}
/*
* The BD ring replenish thresholds control how often the
* hardware fetches new BD's from the producer rings in host
* memory. Setting the value too low on a busy system can
* starve the hardware and recue the throughput.
*
* Set the BD ring replenish thresholds. The recommended
* values are 1/8th the number of descriptors allocated to
* each ring, but since we try to avoid filling the entire
* ring we set these to the minimal value of 8. This needs to
* be done on several of the supported chip revisions anyway,
* to work around HW bugs.
*/
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
if (sc->bge_flags & BGE_JUMBO_RING)
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
if (BGE_IS_5717_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
}
/*
* Disable all send rings by setting the 'ring disabled' bit
* in the flags field of all the TX send ring control blocks,
* located in NIC memory.
*/
if (BGE_IS_5700_FAMILY(sc)) {
/* 5700 to 5704 had 16 send rings. */
limit = BGE_TX_RINGS_EXTSSRAM_MAX;
} else if (BGE_IS_57765_PLUS(sc) ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
limit = 2;
else if (BGE_IS_5717_PLUS(sc))
limit = 4;
else
limit = 1;
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
for (i = 0; i < limit; i++) {
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
rcb_addr += sizeof(struct bge_rcb);
}
/* Configure send ring RCB 0 (we use only the first ring) */
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
else
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
/*
* Disable all receive return rings by setting the
* 'ring disabled' bit in the flags field of all the receive
* return ring control blocks, located in NIC memory.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
/* Should be 17, use 16 until we get an SRAM map. */
limit = 16;
} else if (BGE_IS_5700_FAMILY(sc))
limit = BGE_RX_RINGS_MAX;
else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
BGE_IS_57765_PLUS(sc))
limit = 4;
else
limit = 1;
/* Disable all receive return rings */
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
for (i = 0; i < limit; i++) {
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
(i * (sizeof(u_int64_t))), 0);
rcb_addr += sizeof(struct bge_rcb);
}
/*
* Set up receive return ring 0. Note that the NIC address
* for RX return rings is 0x0. The return rings live entirely
* within the host, so the nicaddr field in the RCB isn't used.
*/
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
/* Set random backoff seed for TX */
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
(sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
BGE_TX_BACKOFF_SEED_MASK);
/* Set inter-packet gap */
val = 0x2620;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
(BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
/*
* Specify which ring to use for packets that don't match
* any RX rules.
*/
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
/*
* Configure number of RX lists. One interrupt distribution
* list, sixteen active lists, one bad frames class.
*/
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
/* Initialize RX list placement stats mask. */
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007BFFFF);
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
/* Disable host coalescing until we get it set up */
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
/* Poll to make sure it's shut down. */
for (i = 0; i < 2000; i++) {
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
break;
DELAY(10);
}
if (i == 2000) {
printf("%s: host coalescing engine failed to idle\n",
sc->bge_dev.dv_xname);
return (ENXIO);
}
/* Set up host coalescing defaults */
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
if (!(BGE_IS_5705_PLUS(sc))) {
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
}
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
/* Set up address of statistics block */
if (!(BGE_IS_5705_PLUS(sc))) {
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
}
/* Set up address of status block */
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
/* Set up status block size. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
val = BGE_STATBLKSZ_FULL;
bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
} else {
val = BGE_STATBLKSZ_32BYTE;
bzero(&sc->bge_rdata->bge_status_block, 32);
}
/* Turn on host coalescing state machine */
CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
/* Turn on RX BD completion state machine and enable attentions */
CSR_WRITE_4(sc, BGE_RBDC_MODE,
BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
/* Turn on RX list placement state machine */
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
/* Turn on RX list selector state machine. */
if (!(BGE_IS_5705_PLUS(sc)))
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
BGE_MACMODE_FRMHDR_DMA_ENB;
if (sc->bge_flags & BGE_FIBER_TBI)
val |= BGE_PORTMODE_TBI;
else if (sc->bge_flags & BGE_FIBER_MII)
val |= BGE_PORTMODE_GMII;
else
val |= BGE_PORTMODE_MII;
/* Allow APE to send/receive frames. */
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
/* Turn on DMA, clear stats */
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
DELAY(40);
/* Set misc. local control, enable interrupts on attentions */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
#ifdef notdef
/* Assert GPIO pins for PHY reset */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
#endif
/* Turn on DMA completion state machine */
if (!(BGE_IS_5705_PLUS(sc)))
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
/* Enable host coalescing bug fix. */
if (BGE_IS_5755_PLUS(sc))
val |= BGE_WDMAMODE_STATUS_TAG_FIX;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
val |= BGE_WDMAMODE_BURST_ALL_DATA;
/* Turn on write DMA state machine */
CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
DELAY(40);
val = BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
if (sc->bge_flags & BGE_PCIE)
val |= BGE_RDMAMODE_FIFO_LONG_BURST;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
BGE_RDMAMODE_H2BNC_VLAN_DET;
/*
* Allow multiple outstanding read requests from
* non-LSO read DMA engine.
*/
val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
rdmareg = BGE_RDMA_RSRVCTRL_REG2;
else
rdmareg = BGE_RDMA_RSRVCTRL;
dmactl = CSR_READ_4(sc, rdmareg);
/*
* Adjust tx margin to prevent TX data corruption and
* fix internal FIFO overflow.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
BGE_RDMA_RSRVCTRL_TXMRGN_320B;
}
/*
* Enable fix for read DMA FIFO overruns.
* The fix is to limit the number of RX BDs
* the hardware would fetch at a time.
*/
CSR_WRITE_4(sc, rdmareg, dmactl |
BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
/*
* Allow 4KB burst length reads for non-LSO frames.
* Enable 512B burst length reads for buffer descriptors.
*/
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
}
CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
DELAY(40);
if (sc->bge_flags & BGE_RDMA_BUG) {
for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
if ((val & 0xFFFF) > ETHER_MAX_LEN)
break;
if (((val >> 16) & 0xFFFF) > ETHER_MAX_LEN)
break;
}
if (i != BGE_NUM_RDMA_CHANNELS / 2) {
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
val |= BGE_RDMA_TX_LENGTH_WA_5719;
else
val |= BGE_RDMA_TX_LENGTH_WA_5720;
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
}
}
/* Turn on RX data completion state machine */
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
/* Turn on RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
/* Turn on RX data and RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
/* Turn on Mbuf cluster free state machine */
if (!BGE_IS_5705_PLUS(sc))
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
/* Turn on send BD completion state machine */
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/* Turn on send data completion state machine */
val = BGE_SDCMODE_ENABLE;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
val |= BGE_SDCMODE_CDELAY;
CSR_WRITE_4(sc, BGE_SDC_MODE, val);
/* Turn on send data initiator state machine */
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
/* Turn on send BD initiator state machine */
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
/* Turn on send BD selector state machine */
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007BFFFF);
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
/* ack/clear link change events */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
BGE_MACSTAT_LINK_CHANGED);
/* Enable PHY auto polling (for MII/GMII only) */
if (sc->bge_flags & BGE_FIBER_TBI) {
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
} else {
if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
mimode = BGE_MIMODE_500KHZ_CONST;
else
mimode = BGE_MIMODE_BASE;
if (BGE_IS_5700_FAMILY(sc) ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
mimode |= BGE_MIMODE_AUTOPOLL;
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
}
mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
}
/*
* Clear any pending link state attention.
* Otherwise some link state change events may be lost until attention
* is cleared by bge_intr() -> bge_link_upd() sequence.
* It's not necessary on newer BCM chips - perhaps enabling link
* state change attentions implies clearing pending attention.
*/
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
BGE_MACSTAT_LINK_CHANGED);
/* Enable link state change attentions. */
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
return (0);
}
const struct bge_revision *
bge_lookup_rev(u_int32_t chipid)
{
const struct bge_revision *br;
for (br = bge_revisions; br->br_name != NULL; br++) {
if (br->br_chipid == chipid)
return (br);
}
for (br = bge_majorrevs; br->br_name != NULL; br++) {
if (br->br_chipid == BGE_ASICREV(chipid))
return (br);
}
return (NULL);
}
int
bge_can_use_msi(struct bge_softc *sc)
{
int can_use_msi = 0;
switch (BGE_ASICREV(sc->bge_chipid)) {
case BGE_ASICREV_BCM5714_A0:
case BGE_ASICREV_BCM5714:
/*
* Apparently, MSI doesn't work when these chips are
* configured in single-port mode.
*/
break;
case BGE_ASICREV_BCM5750:
if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
can_use_msi = 1;
break;
default:
if (BGE_IS_575X_PLUS(sc))
can_use_msi = 1;
}
return (can_use_msi);
}
/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match. Note
* that since the Broadcom controller contains VPD support, we
* can get the device name string from the controller itself instead
* of the compiled-in string. This is a little slow, but it guarantees
* we'll always announce the right product name.
*/
int
bge_probe(struct device *parent, void *match, void *aux)
{
return (pci_matchbyid(aux, bge_devices, nitems(bge_devices)));
}
void
bge_attach(struct device *parent, struct device *self, void *aux)
{
struct bge_softc *sc = (struct bge_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
const struct bge_revision *br;
pcireg_t pm_ctl, memtype, subid, reg;
pci_intr_handle_t ih;
const char *intrstr = NULL;
int gotenaddr = 0;
u_int32_t hwcfg = 0;
u_int32_t mac_addr = 0;
u_int32_t misccfg;
struct ifnet *ifp;
caddr_t kva;
#ifdef __sparc64__
char name[32];
#endif
sc->bge_pa = *pa;
subid = pci_conf_read(pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
/*
* Map control/status registers.
*/
DPRINTFN(5, ("Map control/status regs\n"));
DPRINTFN(5, ("pci_mapreg_map\n"));
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
if (pci_mapreg_map(pa, BGE_PCI_BAR0, memtype, 0, &sc->bge_btag,
&sc->bge_bhandle, NULL, &sc->bge_bsize, 0)) {
printf(": can't find mem space\n");
return;
}
/*
* Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
* can clobber the chip's PCI config-space power control registers,
* leaving the card in D3 powersave state.
* We do not have memory-mapped registers in this state,
* so force device into D0 state before starting initialization.
*/
pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
DELAY(1000); /* 27 usec is allegedly sufficient */
/*
* Save ASIC rev.
*/
sc->bge_chipid =
(pci_conf_read(pc, pa->pa_tag, BGE_PCI_MISC_CTL)
>> BGE_PCIMISCCTL_ASICREV_SHIFT);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_BROADCOM_BCM5717:
case PCI_PRODUCT_BROADCOM_BCM5718:
case PCI_PRODUCT_BROADCOM_BCM5719:
case PCI_PRODUCT_BROADCOM_BCM5720:
case PCI_PRODUCT_BROADCOM_BCM5725:
case PCI_PRODUCT_BROADCOM_BCM5727:
case PCI_PRODUCT_BROADCOM_BCM5762:
case PCI_PRODUCT_BROADCOM_BCM57764:
case PCI_PRODUCT_BROADCOM_BCM57767:
case PCI_PRODUCT_BROADCOM_BCM57787:
sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
BGE_PCI_GEN2_PRODID_ASICREV);
break;
case PCI_PRODUCT_BROADCOM_BCM57761:
case PCI_PRODUCT_BROADCOM_BCM57762:
case PCI_PRODUCT_BROADCOM_BCM57765:
case PCI_PRODUCT_BROADCOM_BCM57766:
case PCI_PRODUCT_BROADCOM_BCM57781:
case PCI_PRODUCT_BROADCOM_BCM57782:
case PCI_PRODUCT_BROADCOM_BCM57785:
case PCI_PRODUCT_BROADCOM_BCM57786:
case PCI_PRODUCT_BROADCOM_BCM57791:
case PCI_PRODUCT_BROADCOM_BCM57795:
sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
BGE_PCI_GEN15_PRODID_ASICREV);
break;
default:
sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
BGE_PCI_PRODID_ASICREV);
break;
}
}
sc->bge_phy_addr = bge_phy_addr(sc);
printf(", ");
br = bge_lookup_rev(sc->bge_chipid);
if (br == NULL)
printf("unknown ASIC (0x%x)", sc->bge_chipid);
else
printf("%s (0x%x)", br->br_name, sc->bge_chipid);
/*
* PCI Express or PCI-X controller check.
*/
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
&sc->bge_expcap, NULL) != 0) {
/* Extract supported maximum payload size. */
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_expcap +
PCI_PCIE_DCAP);
sc->bge_mps = 128 << (reg & 0x7);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
sc->bge_expmrq = (fls(2048) - 8) << 12;
else
sc->bge_expmrq = (fls(4096) - 8) << 12;
/* Disable PCIe Active State Power Management (ASPM). */
reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
sc->bge_expcap + PCI_PCIE_LCSR);
reg &= ~(PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1);
pci_conf_write(pa->pa_pc, pa->pa_tag,
sc->bge_expcap + PCI_PCIE_LCSR, reg);
sc->bge_flags |= BGE_PCIE;
} else {
if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
BGE_PCISTATE_PCI_BUSMODE) == 0)
sc->bge_flags |= BGE_PCIX;
}
/*
* SEEPROM check.
*/
#ifdef __sparc64__
/*
* Onboard interfaces on UltraSPARC systems generally don't
* have a SEEPROM fitted. These interfaces, and cards that
* have FCode, are named "network" by the PROM, whereas cards
* without FCode show up as "ethernet". Since we don't really
* need the information from the SEEPROM on cards that have
* FCode it's fine to pretend they don't have one.
*/
if (OF_getprop(PCITAG_NODE(pa->pa_tag), "name", name,
sizeof(name)) > 0 && strcmp(name, "network") == 0)
sc->bge_flags |= BGE_NO_EEPROM;
#endif
/* Save chipset family. */
switch (BGE_ASICREV(sc->bge_chipid)) {
case BGE_ASICREV_BCM5762:
case BGE_ASICREV_BCM57765:
case BGE_ASICREV_BCM57766:
sc->bge_flags |= BGE_57765_PLUS;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
BGE_5705_PLUS | BGE_JUMBO_CAPABLE | BGE_JUMBO_RING |
BGE_JUMBO_FRAME;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
/*
* Enable work around for DMA engine miscalculation
* of TXMBUF available space.
*/
sc->bge_flags |= BGE_RDMA_BUG;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 &&
sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
/* Jumbo frame on BCM5719 A0 does not work. */
sc->bge_flags &= ~(BGE_JUMBO_CAPABLE |
BGE_JUMBO_RING | BGE_JUMBO_FRAME);
}
}
break;
case BGE_ASICREV_BCM5755:
case BGE_ASICREV_BCM5761:
case BGE_ASICREV_BCM5784:
case BGE_ASICREV_BCM5785:
case BGE_ASICREV_BCM5787:
case BGE_ASICREV_BCM57780:
sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
break;
case BGE_ASICREV_BCM5700:
case BGE_ASICREV_BCM5701:
case BGE_ASICREV_BCM5703:
case BGE_ASICREV_BCM5704:
sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE | BGE_JUMBO_RING;
break;
case BGE_ASICREV_BCM5714_A0:
case BGE_ASICREV_BCM5780:
case BGE_ASICREV_BCM5714:
sc->bge_flags |= BGE_5714_FAMILY | BGE_JUMBO_CAPABLE | BGE_JUMBO_STD;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5750:
case BGE_ASICREV_BCM5752:
case BGE_ASICREV_BCM5906:
sc->bge_flags |= BGE_575X_PLUS;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5705:
sc->bge_flags |= BGE_5705_PLUS;
break;
}
if (sc->bge_flags & BGE_JUMBO_STD)
sc->bge_rx_std_len = BGE_JLEN;
else
sc->bge_rx_std_len = MCLBYTES;
/*
* When using the BCM5701 in PCI-X mode, data corruption has
* been observed in the first few bytes of some received packets.
* Aligning the packet buffer in memory eliminates the corruption.
* Unfortunately, this misaligns the packet payloads. On platforms
* which do not support unaligned accesses, we will realign the
* payloads by copying the received packets.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
sc->bge_flags & BGE_PCIX)
sc->bge_flags |= BGE_RX_ALIGNBUG;
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
PCI_VENDOR(subid) == DELL_VENDORID)
sc->bge_phy_flags |= BGE_PHY_NO_3LED;
misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
(misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
misccfg == BGE_MISCCFG_BOARD_ID_5788M))
sc->bge_flags |= BGE_IS_5788;
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
(misccfg == 0x4000 || misccfg == 0x8000)) ||
(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
sc->bge_phy_flags |= BGE_PHY_10_100_ONLY;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
(sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
if ((BGE_IS_5705_PLUS(sc)) &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
!BGE_IS_5717_PLUS(sc)) {
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
} else
sc->bge_phy_flags |= BGE_PHY_BER_BUG;
}
/* Identify chips with APE processor. */
switch (BGE_ASICREV(sc->bge_chipid)) {
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
case BGE_ASICREV_BCM5761:
case BGE_ASICREV_BCM5762:
sc->bge_flags |= BGE_APE;
break;
}
/* Chips with APE need BAR2 access for APE registers/memory. */
if ((sc->bge_flags & BGE_APE) != 0) {
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
&sc->bge_apetag, &sc->bge_apehandle, NULL,
&sc->bge_apesize, 0)) {
printf(": couldn't map BAR2 memory\n");
goto fail_1;
}
/* Enable APE register/memory access by host driver. */
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
bge_ape_lock_init(sc);
bge_ape_read_fw_ver(sc);
}
/* Identify the chips that use an CPMU. */
if (BGE_IS_5717_PLUS(sc) ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
sc->bge_flags |= BGE_CPMU_PRESENT;
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI,
&sc->bge_msicap, NULL)) {
if (bge_can_use_msi(sc) == 0)
pa->pa_flags &= ~PCI_FLAGS_MSI_ENABLED;
}
DPRINTFN(5, ("pci_intr_map\n"));
if (pci_intr_map_msi(pa, &ih) == 0)
sc->bge_flags |= BGE_MSI;
else if (pci_intr_map(pa, &ih)) {
printf(": couldn't map interrupt\n");
goto fail_1;
}
/*
* All controllers except BCM5700 supports tagged status but
* we use tagged status only for MSI case on BCM5717. Otherwise
* MSI on BCM5717 does not work.
*/
if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGE_MSI)
sc->bge_flags |= BGE_TAGGED_STATUS;
DPRINTFN(5, ("pci_intr_string\n"));
intrstr = pci_intr_string(pc, ih);
/* Try to reset the chip. */
DPRINTFN(5, ("bge_reset\n"));
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
bge_reset(sc);
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
bge_chipinit(sc);
#if defined(__sparc64__) || defined(__HAVE_FDT)
if (!gotenaddr && PCITAG_NODE(pa->pa_tag)) {
if (OF_getprop(PCITAG_NODE(pa->pa_tag), "local-mac-address",
sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) == ETHER_ADDR_LEN)
gotenaddr = 1;
}
#endif
/*
* Get station address from the EEPROM.
*/
if (!gotenaddr) {
mac_addr = bge_readmem_ind(sc, 0x0c14);
if ((mac_addr >> 16) == 0x484b) {
sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8);
sc->arpcom.ac_enaddr[1] = (u_char)mac_addr;
mac_addr = bge_readmem_ind(sc, 0x0c18);
sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24);
sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16);
sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8);
sc->arpcom.ac_enaddr[5] = (u_char)mac_addr;
gotenaddr = 1;
}
}
if (!gotenaddr) {
int mac_offset = BGE_EE_MAC_OFFSET;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
mac_offset = BGE_EE_MAC_OFFSET_5906;
if (bge_read_nvram(sc, (caddr_t)&sc->arpcom.ac_enaddr,
mac_offset + 2, ETHER_ADDR_LEN) == 0)
gotenaddr = 1;
}
if (!gotenaddr && (!(sc->bge_flags & BGE_NO_EEPROM))) {
if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN) == 0)
gotenaddr = 1;
}
#ifdef __sparc64__
if (!gotenaddr) {
extern void myetheraddr(u_char *);
myetheraddr(sc->arpcom.ac_enaddr);
gotenaddr = 1;
}
#endif
if (!gotenaddr) {
printf(": failed to read station address\n");
goto fail_2;
}
/* Allocate the general information block and ring buffers. */
sc->bge_dmatag = pa->pa_dmat;
DPRINTFN(5, ("bus_dmamem_alloc\n"));
if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
PAGE_SIZE, 0, &sc->bge_ring_seg, 1, &sc->bge_ring_nseg,
BUS_DMA_NOWAIT)) {
printf(": can't alloc rx buffers\n");
goto fail_2;
}
DPRINTFN(5, ("bus_dmamem_map\n"));
if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
sc->bge_ring_nseg, sizeof(struct bge_ring_data), &kva,
BUS_DMA_NOWAIT)) {
printf(": can't map dma buffers (%lu bytes)\n",
sizeof(struct bge_ring_data));
goto fail_3;
}
DPRINTFN(5, ("bus_dmamap_create\n"));
if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
sizeof(struct bge_ring_data), 0,
BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
printf(": can't create dma map\n");
goto fail_4;
}
DPRINTFN(5, ("bus_dmamap_load\n"));
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
sizeof(struct bge_ring_data), NULL,
BUS_DMA_NOWAIT)) {
goto fail_5;
}
DPRINTFN(5, ("bzero\n"));
sc->bge_rdata = (struct bge_ring_data *)kva;
bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
/* Set default tuneable values. */
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
sc->bge_rx_coal_ticks = 150;
sc->bge_rx_max_coal_bds = 64;
sc->bge_tx_coal_ticks = 300;
sc->bge_tx_max_coal_bds = 400;
/* 5705 limits RX return ring to 512 entries. */
if (BGE_IS_5700_FAMILY(sc) || BGE_IS_5717_PLUS(sc))
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
else
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
mtx_init(&sc->bge_kstat_mtx, IPL_SOFTCLOCK);
#if NKSTAT > 0
if (BGE_IS_5705_PLUS(sc))
bge_kstat_attach(sc);
#endif
/* Set up ifnet structure */
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_xflags = IFXF_MPSAFE;
ifp->if_ioctl = bge_ioctl;
ifp->if_qstart = bge_start;
ifp->if_watchdog = bge_watchdog;
ifq_init_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
DPRINTFN(5, ("bcopy\n"));
bcopy(sc->bge_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
#if NVLAN > 0
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif
/*
* 5700 B0 chips do not support checksumming correctly due
* to hardware bugs.
*
* It seems all controllers have a bug that can generate UDP
* datagrams with a checksum value 0 when TX UDP checksum
* offloading is enabled. Generating UDP checksum value 0 is
* a violation of RFC 768.
*/
if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4;
if (BGE_IS_JUMBO_CAPABLE(sc))
ifp->if_hardmtu = BGE_JUMBO_MTU;
/*
* Do MII setup.
*/
DPRINTFN(5, ("mii setup\n"));
sc->bge_mii.mii_ifp = ifp;
sc->bge_mii.mii_readreg = bge_miibus_readreg;
sc->bge_mii.mii_writereg = bge_miibus_writereg;
sc->bge_mii.mii_statchg = bge_miibus_statchg;
/*
* Figure out what sort of media we have by checking the hardware
* config word in the first 32K of internal NIC memory, or fall back to
* examining the EEPROM if necessary. Note: on some BCM5700 cards,
* this value seems to be unset. If that's the case, we have to rely on
* identifying the NIC by its PCI subsystem ID, as we do below for the
* SysKonnect SK-9D41.
*/
if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
sizeof(hwcfg))) {
printf(": failed to read media type\n");
goto fail_6;
}
hwcfg = ntohl(hwcfg);
}
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
(hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
if (BGE_IS_5700_FAMILY(sc))
sc->bge_flags |= BGE_FIBER_TBI;
else
sc->bge_flags |= BGE_FIBER_MII;
}
/* Take advantage of single-shot MSI. */
if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_MSI)
CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
~BGE_MSIMODE_ONE_SHOT_DISABLE);
/* Hookup IRQ last. */
DPRINTFN(5, ("pci_intr_establish\n"));
sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET | IPL_MPSAFE,
bge_intr, sc, sc->bge_dev.dv_xname);
if (sc->bge_intrhand == NULL) {
printf(": couldn't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail_6;
}
/*
* A Broadcom chip was detected. Inform the world.
*/
printf(": %s, address %s\n", intrstr,
ether_sprintf(sc->arpcom.ac_enaddr));
if (sc->bge_flags & BGE_FIBER_TBI) {
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
bge_ifmedia_sts);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
} else {
int mii_flags;
/*
* Do transceiver setup.
*/
ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
bge_ifmedia_sts);
mii_flags = MIIF_DOPAUSE;
if (sc->bge_flags & BGE_FIBER_MII)
mii_flags |= MIIF_HAVEFIBER;
mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
sc->bge_phy_addr, MII_OFFSET_ANY, mii_flags);
if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
ifmedia_add(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_MANUAL);
} else
ifmedia_set(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_AUTO);
}
/*
* Call MI attach routine.
*/
if_attach(ifp);
ether_ifattach(ifp);
timeout_set(&sc->bge_timeout, bge_tick, sc);
timeout_set(&sc->bge_rxtimeout, bge_rxtick, sc);
timeout_set(&sc->bge_rxtimeout_jumbo, bge_rxtick_jumbo, sc);
return;
fail_6:
bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
fail_5:
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
fail_4:
bus_dmamem_unmap(sc->bge_dmatag, (caddr_t)sc->bge_rdata,
sizeof(struct bge_ring_data));
fail_3:
bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_nseg);
fail_2:
if ((sc->bge_flags & BGE_APE) != 0)
bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
sc->bge_apesize);
fail_1:
bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
}
int
bge_detach(struct device *self, int flags)
{
struct bge_softc *sc = (struct bge_softc *)self;
struct ifnet *ifp = &sc->arpcom.ac_if;
bge_stop(sc, 1);
if (sc->bge_intrhand)
pci_intr_disestablish(sc->bge_pa.pa_pc, sc->bge_intrhand);
/* Detach any PHYs we might have. */
if (LIST_FIRST(&sc->bge_mii.mii_phys) != NULL)
mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete any remaining media. */
ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
bus_dmamem_unmap(sc->bge_dmatag, (caddr_t)sc->bge_rdata,
sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_nseg);
if ((sc->bge_flags & BGE_APE) != 0)
bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
sc->bge_apesize);
bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
return (0);
}
int
bge_activate(struct device *self, int act)
{
struct bge_softc *sc = (struct bge_softc *)self;
struct ifnet *ifp = &sc->arpcom.ac_if;
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
rv = config_activate_children(self, act);
if (ifp->if_flags & IFF_RUNNING)
bge_stop(sc, 0);
break;
case DVACT_RESUME:
if (ifp->if_flags & IFF_UP)
bge_init(sc);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
void
bge_reset(struct bge_softc *sc)
{
struct pci_attach_args *pa = &sc->bge_pa;
pcireg_t cachesize, command, devctl;
u_int32_t reset, mac_mode, mac_mode_mask, val;
void (*write_op)(struct bge_softc *, int, int);
int i;
mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) {
if (sc->bge_flags & BGE_PCIE)
write_op = bge_writembx;
else
write_op = bge_writemem_ind;
} else
write_op = bge_writereg_ind;
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701 &&
!(sc->bge_flags & BGE_NO_EEPROM)) {
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
for (i = 0; i < 8000; i++) {
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
BGE_NVRAMSWARB_GNT1)
break;
DELAY(20);
}
if (i == 8000)
printf("%s: nvram lock timed out\n",
sc->bge_dev.dv_xname);
}
/* Take APE lock when performing reset. */
bge_ape_lock(sc, BGE_APE_LOCK_GRC);
/* Save some important PCI state. */
cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
BGE_PCIMISCCTL_ENDIAN_WORDSWAP | BGE_PCIMISCCTL_PCISTATE_RW);
/* Disable fastboot on controllers that support it. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
BGE_IS_5755_PLUS(sc))
CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
/*
* Write the magic number to SRAM at offset 0xB50.
* When firmware finishes its initialization it will
* write ~BGE_SRAM_FW_MB_MAGIC to the same location.
*/
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
if (sc->bge_flags & BGE_PCIE) {
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
!BGE_IS_5717_PLUS(sc)) {
if (CSR_READ_4(sc, 0x7e2c) == 0x60) {
/* PCI Express 1.0 system */
CSR_WRITE_4(sc, 0x7e2c, 0x20);
}
}
if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
/*
* Prevent PCI Express link training
* during global reset.
*/
CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
reset |= (1<<29);
}
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
CSR_WRITE_4(sc, BGE_VCPU_STATUS,
val | BGE_VCPU_STATUS_DRV_RESET);
val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
sc->bge_flags |= BGE_NO_EEPROM;
}
/*
* Set GPHY Power Down Override to leave GPHY
* powered up in D0 uninitialized.
*/
if (BGE_IS_5705_PLUS(sc) &&
(sc->bge_flags & BGE_CPMU_PRESENT) == 0)
reset |= BGE_MISCCFG_KEEP_GPHY_POWER;
/* Issue global reset */
write_op(sc, BGE_MISC_CFG, reset);
if (sc->bge_flags & BGE_PCIE)
DELAY(100 * 1000);
else
DELAY(1000);
if (sc->bge_flags & BGE_PCIE) {
if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
pcireg_t v;
DELAY(500000); /* wait for link training to complete */
v = pci_conf_read(pa->pa_pc, pa->pa_tag, 0xc4);
pci_conf_write(pa->pa_pc, pa->pa_tag, 0xc4, v | (1<<15));
}
devctl = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_expcap +
PCI_PCIE_DCSR);
/* Clear enable no snoop and disable relaxed ordering. */
devctl &= ~(PCI_PCIE_DCSR_ERO | PCI_PCIE_DCSR_ENS);
/* Set PCI Express max payload size. */
devctl = (devctl & ~PCI_PCIE_DCSR_MPS) | sc->bge_expmrq;
/* Clear error status. */
devctl |= PCI_PCIE_DCSR_CEE | PCI_PCIE_DCSR_NFE |
PCI_PCIE_DCSR_FEE | PCI_PCIE_DCSR_URE;
pci_conf_write(pa->pa_pc, pa->pa_tag, sc->bge_expcap +
PCI_PCIE_DCSR, devctl);
}
/* Reset some of the PCI state that got zapped by reset */
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
BGE_PCIMISCCTL_ENDIAN_WORDSWAP | BGE_PCIMISCCTL_PCISTATE_RW);
val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
(sc->bge_flags & BGE_PCIX) != 0)
val |= BGE_PCISTATE_RETRY_SAME_DMA;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, val);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
/* Re-enable MSI, if necessary, and enable memory arbiter. */
if (BGE_IS_5714_FAMILY(sc)) {
/* This chip disables MSI on reset. */
if (sc->bge_flags & BGE_MSI) {
val = pci_conf_read(pa->pa_pc, pa->pa_tag,
sc->bge_msicap + PCI_MSI_MC);
pci_conf_write(pa->pa_pc, pa->pa_tag,
sc->bge_msicap + PCI_MSI_MC,
val | PCI_MSI_MC_MSIE);
val = CSR_READ_4(sc, BGE_MSI_MODE);
CSR_WRITE_4(sc, BGE_MSI_MODE,
val | BGE_MSIMODE_ENABLE);
}
val = CSR_READ_4(sc, BGE_MARB_MODE);
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
} else
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
/* Fix up byte swapping */
CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
val = CSR_READ_4(sc, BGE_MAC_MODE);
val = (val & ~mac_mode_mask) | mac_mode;
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
DELAY(40);
bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
for (i = 0; i < BGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
if (val & BGE_VCPU_STATUS_INIT_DONE)
break;
DELAY(100);
}
if (i >= BGE_TIMEOUT)
printf("%s: reset timed out\n", sc->bge_dev.dv_xname);
} else {
/*
* Poll until we see 1's complement of the magic number.
* This indicates that the firmware initialization
* is complete. We expect this to fail if no SEEPROM
* is fitted.
*/
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
if (val == ~BGE_MAGIC_NUMBER)
break;
DELAY(10);
}
if ((i >= BGE_TIMEOUT * 10) &&
(!(sc->bge_flags & BGE_NO_EEPROM)))
printf("%s: firmware handshake timed out\n",
sc->bge_dev.dv_xname);
/* BCM57765 A0 needs additional time before accessing. */
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
DELAY(10 * 1000); /* XXX */
}
/*
* The 5704 in TBI mode apparently needs some special
* adjustment to ensure the SERDES drive level is set
* to 1.2V.
*/
if (sc->bge_flags & BGE_FIBER_TBI &&
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
val = CSR_READ_4(sc, BGE_SERDES_CFG);
val = (val & ~0xFFF) | 0x880;
CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
}
if (sc->bge_flags & BGE_PCIE &&
!BGE_IS_5717_PLUS(sc) &&
sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
/* Enable Data FIFO protection. */
val = CSR_READ_4(sc, 0x7c00);
CSR_WRITE_4(sc, 0x7c00, val | (1<<25));
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle two possibilities here:
* 1) the frame is from the jumbo receive ring
* 2) the frame is from the standard receive ring
*/
void
bge_rxeof(struct bge_softc *sc)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct ifnet *ifp;
uint16_t rx_prod, rx_cons;
int stdcnt = 0, jumbocnt = 0;
bus_dmamap_t dmamap;
bus_addr_t offset, toff;
bus_size_t tlen;
int tosync;
int livelocked;
rx_cons = sc->bge_rx_saved_considx;
rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
/* Nothing to do */
if (rx_cons == rx_prod)
return;
ifp = &sc->arpcom.ac_if;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD);
offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
tosync = rx_prod - rx_cons;
toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
if (tosync < 0) {
tlen = (sc->bge_return_ring_cnt - rx_cons) *
sizeof (struct bge_rx_bd);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
toff, tlen, BUS_DMASYNC_POSTREAD);
tosync = -tosync;
}
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offset, tosync * sizeof (struct bge_rx_bd),
BUS_DMASYNC_POSTREAD);
while (rx_cons != rx_prod) {
struct bge_rx_bd *cur_rx;
u_int32_t rxidx;
struct mbuf *m = NULL;
cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
rxidx = cur_rx->bge_idx;
BGE_INC(rx_cons, sc->bge_return_ring_cnt);
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
jumbocnt++;
dmamap = sc->bge_cdata.bge_rx_jumbo_map[rxidx];
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_dmatag, dmamap);
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
m_freem(m);
continue;
}
} else {
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
stdcnt++;
dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_dmatag, dmamap);
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
m_freem(m);
continue;
}
}
#ifdef __STRICT_ALIGNMENT
/*
* The i386 allows unaligned accesses, but for other
* platforms we must make sure the payload is aligned.
*/
if (sc->bge_flags & BGE_RX_ALIGNBUG) {
bcopy(m->m_data, m->m_data + ETHER_ALIGN,
cur_rx->bge_len);
m->m_data += ETHER_ALIGN;
}
#endif
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
bge_rxcsum(sc, cur_rx, m);
#if NVLAN > 0
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING &&
cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
m->m_pkthdr.ether_vtag = cur_rx->bge_vlan_tag;
m->m_flags |= M_VLANTAG;
}
#endif
ml_enqueue(&ml, m);
}
sc->bge_rx_saved_considx = rx_cons;
bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
livelocked = ifiq_input(&ifp->if_rcv, &ml);
if (stdcnt) {
if_rxr_put(&sc->bge_std_ring, stdcnt);
if (livelocked)
if_rxr_livelocked(&sc->bge_std_ring);
bge_fill_rx_ring_std(sc);
}
if (jumbocnt) {
if_rxr_put(&sc->bge_jumbo_ring, jumbocnt);
if (livelocked)
if_rxr_livelocked(&sc->bge_jumbo_ring);
bge_fill_rx_ring_jumbo(sc);
}
}
void
bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
{
if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
/*
* 5700 B0 chips do not support checksumming correctly due
* to hardware bugs.
*/
return;
} else if (BGE_IS_5717_PLUS(sc)) {
if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM &&
(cur_rx->bge_error_flag &
BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
m->m_pkthdr.csum_flags |=
M_TCP_CSUM_IN_OK|M_UDP_CSUM_IN_OK;
}
}
} else {
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM &&
cur_rx->bge_ip_csum == 0xFFFF)
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
m->m_pkthdr.len >= ETHER_MIN_NOPAD &&
cur_rx->bge_tcp_udp_csum == 0xFFFF) {
m->m_pkthdr.csum_flags |=
M_TCP_CSUM_IN_OK|M_UDP_CSUM_IN_OK;
}
}
}
void
bge_txeof(struct bge_softc *sc)
{
struct bge_tx_bd *cur_tx = NULL;
struct ifnet *ifp;
bus_dmamap_t dmamap;
bus_addr_t offset, toff;
bus_size_t tlen;
int tosync, freed, txcnt;
u_int32_t cons, newcons;
struct mbuf *m;
/* Nothing to do */
cons = sc->bge_tx_saved_considx;
newcons = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
if (cons == newcons)
return;
ifp = &sc->arpcom.ac_if;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD);
offset = offsetof(struct bge_ring_data, bge_tx_ring);
tosync = newcons - cons;
toff = offset + (cons * sizeof (struct bge_tx_bd));
if (tosync < 0) {
tlen = (BGE_TX_RING_CNT - cons) * sizeof (struct bge_tx_bd);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
tosync = -tosync;
}
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offset, tosync * sizeof (struct bge_tx_bd),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
freed = 0;
while (cons != newcons) {
cur_tx = &sc->bge_rdata->bge_tx_ring[cons];
m = sc->bge_cdata.bge_tx_chain[cons];
if (m != NULL) {
dmamap = sc->bge_cdata.bge_tx_map[cons];
sc->bge_cdata.bge_tx_chain[cons] = NULL;
sc->bge_cdata.bge_tx_map[cons] = NULL;
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_dmatag, dmamap);
m_freem(m);
}
freed++;
BGE_INC(cons, BGE_TX_RING_CNT);
}
txcnt = atomic_sub_int_nv(&sc->bge_txcnt, freed);
sc->bge_tx_saved_considx = cons;
if (ifq_is_oactive(&ifp->if_snd))
ifq_restart(&ifp->if_snd);
else if (txcnt == 0)
ifp->if_timer = 0;
}
int
bge_intr(void *xsc)
{
struct bge_softc *sc;
struct ifnet *ifp;
u_int32_t statusword, statustag;
sc = xsc;
ifp = &sc->arpcom.ac_if;
/* read status word from status block */
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
statusword = sc->bge_rdata->bge_status_block.bge_status;
statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
if (sc->bge_flags & BGE_TAGGED_STATUS) {
if (sc->bge_lasttag == statustag &&
(CSR_READ_4(sc, BGE_PCI_PCISTATE) &
BGE_PCISTATE_INTR_NOT_ACTIVE))
return (0);
sc->bge_lasttag = statustag;
} else {
if (!(statusword & BGE_STATFLAG_UPDATED) &&
(CSR_READ_4(sc, BGE_PCI_PCISTATE) &
BGE_PCISTATE_INTR_NOT_ACTIVE))
return (0);
/* Ack interrupt and stop others from occurring. */
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
statustag = 0;
}
/* clear status word */
sc->bge_rdata->bge_status_block.bge_status = 0;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
BGE_STS_BIT(sc, BGE_STS_LINK_EVT)) {
KERNEL_LOCK();
bge_link_upd(sc);
KERNEL_UNLOCK();
}
/* Re-enable interrupts. */
bge_writembx(sc, BGE_MBX_IRQ0_LO, statustag);
if (ifp->if_flags & IFF_RUNNING) {
/* Check RX return ring producer/consumer */
bge_rxeof(sc);
/* Check TX ring producer/consumer */
bge_txeof(sc);
}
return (1);
}
void
bge_tick(void *xsc)
{
struct bge_softc *sc = xsc;
struct mii_data *mii = &sc->bge_mii;
int s;
s = splnet();
if (BGE_IS_5705_PLUS(sc)) {
mtx_enter(&sc->bge_kstat_mtx);
bge_stats_update_regs(sc);
mtx_leave(&sc->bge_kstat_mtx);
} else
bge_stats_update(sc);
if (sc->bge_flags & BGE_FIBER_TBI) {
/*
* Since in TBI mode auto-polling can't be used we should poll
* link status manually. Here we register pending link event
* and trigger interrupt.
*/
BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
} else {
/*
* Do not touch PHY if we have link up. This could break
* IPMI/ASF mode or produce extra input errors.
* (extra input errors was reported for bcm5701 & bcm5704).
*/
if (!BGE_STS_BIT(sc, BGE_STS_LINK))
mii_tick(mii);
}
timeout_add_sec(&sc->bge_timeout, 1);
splx(s);
}
void
bge_stats_update_regs(struct bge_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
uint32_t collisions, discards, inerrors;
uint32_t ucast, mcast, bcast;
u_int32_t val;
#if NKSTAT > 0
struct kstat_kv *kvs = sc->bge_kstat->ks_data;
#endif
collisions = CSR_READ_4(sc, BGE_MAC_STATS +
offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
/*
* XXX
* Unlike other controllers, the BGE_RXLP_LOCSTAT_IFIN_DROPS counter
* of the BCM5717, BCM5718, BCM5762, BCM5719 A0 and BCM5720 A0
* controllers includes the number of unwanted multicast frames.
* This comes from a silicon bug and known workaround to get rough
* (not exact) counter is to enable interrupt on MBUF low watermark
* attention. This can be accomplished by setting BGE_HCCMODE_ATTN
* bit of BGE_HDD_MODE, BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE
* and BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. However
* that change would generate more interrupts and there are still
* possibilities of losing multiple frames during
* BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. Given that
* the workaround still would not get correct counter I don't think
* it's worth to implement it. So ignore reading the counter on
* controllers that have the silicon bug.
*/
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762 &&
sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
discards = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
else
discards = 0;
inerrors = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
ifp->if_collisions += collisions;
ifp->if_ierrors += discards + inerrors;
ucast = CSR_READ_4(sc, BGE_MAC_STATS +
offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
mcast = CSR_READ_4(sc, BGE_MAC_STATS +
offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
bcast = CSR_READ_4(sc, BGE_MAC_STATS +
offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
if (sc->bge_flags & BGE_RDMA_BUG) {
/*
* If controller transmitted more than BGE_NUM_RDMA_CHANNELS
* frames, it's safe to disable workaround for DMA engine's
* miscalculation of TXMBUF space.
*/
if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
else
val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
sc->bge_flags &= ~BGE_RDMA_BUG;
}
}
#if NKSTAT > 0
kstat_kv_u32(&kvs[bge_stat_out_ucast_pkt]) += ucast;
kstat_kv_u32(&kvs[bge_stat_out_mcast_pkt]) += mcast;
kstat_kv_u32(&kvs[bge_stat_out_bcast_pkt]) += bcast;
kstat_kv_u32(&kvs[bge_stat_collisions]) += collisions;
kstat_kv_u32(&kvs[bge_stat_if_in_drops]) += discards;
kstat_kv_u32(&kvs[bge_stat_if_in_errors]) += inerrors;
#endif
}
void
bge_stats_update(struct bge_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
u_int32_t cnt;
#define READ_STAT(sc, stats, stat) \
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
ifp->if_collisions += (u_int32_t)(cnt - sc->bge_tx_collisions);
sc->bge_tx_collisions = cnt;
cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
sc->bge_rx_overruns = cnt;
cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrors);
sc->bge_rx_inerrors = cnt;
cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
ifp->if_ierrors += (u_int32_t)(cnt - sc->bge_rx_discards);
sc->bge_rx_discards = cnt;
cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
ifp->if_oerrors += (u_int32_t)(cnt - sc->bge_tx_discards);
sc->bge_tx_discards = cnt;
#undef READ_STAT
}
/*
* Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
*/
int
bge_compact_dma_runt(struct mbuf *pkt)
{
struct mbuf *m, *prev, *n = NULL;
int totlen, newprevlen;
prev = NULL;
totlen = 0;
for (m = pkt; m != NULL; prev = m,m = m->m_next) {
int mlen = m->m_len;
int shortfall = 8 - mlen ;
totlen += mlen;
if (mlen == 0)
continue;
if (mlen >= 8)
continue;
/* If we get here, mbuf data is too small for DMA engine.
* Try to fix by shuffling data to prev or next in chain.
* If that fails, do a compacting deep-copy of the whole chain.
*/
/* Internal frag. If fits in prev, copy it there. */
if (prev && m_trailingspace(prev) >= m->m_len) {
bcopy(m->m_data, prev->m_data+prev->m_len, mlen);
prev->m_len += mlen;
m->m_len = 0;
/* XXX stitch chain */
prev->m_next = m_free(m);
m = prev;
continue;
} else if (m->m_next != NULL &&
m_trailingspace(m) >= shortfall &&
m->m_next->m_len >= (8 + shortfall)) {
/* m is writable and have enough data in next, pull up. */
bcopy(m->m_next->m_data, m->m_data+m->m_len, shortfall);
m->m_len += shortfall;
m->m_next->m_len -= shortfall;
m->m_next->m_data += shortfall;
} else if (m->m_next == NULL || 1) {
/* Got a runt at the very end of the packet.
* borrow data from the tail of the preceding mbuf and
* update its length in-place. (The original data is still
* valid, so we can do this even if prev is not writable.)
*/
/* if we'd make prev a runt, just move all of its data. */
#ifdef DEBUG
KASSERT(prev != NULL /*, ("runt but null PREV")*/);
KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
#endif
if ((prev->m_len - shortfall) < 8)
shortfall = prev->m_len;
newprevlen = prev->m_len - shortfall;
MGET(n, M_NOWAIT, MT_DATA);
if (n == NULL)
return (ENOBUFS);
KASSERT(m->m_len + shortfall < MLEN
/*,
("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
/* first copy the data we're stealing from prev */
bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
/* update prev->m_len accordingly */
prev->m_len -= shortfall;
/* copy data from runt m */
bcopy(m->m_data, n->m_data + shortfall, m->m_len);
/* n holds what we stole from prev, plus m */
n->m_len = shortfall + m->m_len;
/* stitch n into chain and free m */
n->m_next = m->m_next;
prev->m_next = n;
/* KASSERT(m->m_next == NULL); */
m->m_next = NULL;
m_free(m);
m = n; /* for continuing loop */
}
}
return (0);
}
/*
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
* but when such padded frames employ the bge IP/TCP checksum offload,
* the hardware checksum assist gives incorrect results (possibly
* from incorporating its own padding into the UDP/TCP checksum; who knows).
* If we pad such runts with zeros, the onboard checksum comes out correct.
*/
int
bge_cksum_pad(struct mbuf *m)
{
int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
struct mbuf *last;
/* If there's only the packet-header and we can pad there, use it. */
if (m->m_pkthdr.len == m->m_len && m_trailingspace(m) >= padlen) {
last = m;
} else {
/*
* Walk packet chain to find last mbuf. We will either
* pad there, or append a new mbuf and pad it.
*/
for (last = m; last->m_next != NULL; last = last->m_next);
if (m_trailingspace(last) < padlen) {
/* Allocate new empty mbuf, pad it. Compact later. */
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
if (n == NULL)
return (ENOBUFS);
n->m_len = 0;
last->m_next = n;
last = n;
}
}
/* Now zero the pad area, to avoid the bge cksum-assist bug. */
memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
last->m_len += padlen;
m->m_pkthdr.len += padlen;
return (0);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
int
bge_encap(struct bge_softc *sc, struct mbuf *m, int *txinc)
{
struct bge_tx_bd *f = NULL;
u_int32_t frag, cur;
u_int16_t csum_flags = 0;
bus_dmamap_t dmamap;
int i = 0;
cur = frag = (sc->bge_tx_prodidx + *txinc) % BGE_TX_RING_CNT;
if (m->m_pkthdr.csum_flags) {
if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
if (m->m_pkthdr.csum_flags &
(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)) {
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
bge_cksum_pad(m) != 0)
return (ENOBUFS);
}
}
if (sc->bge_flags & BGE_JUMBO_FRAME &&
m->m_pkthdr.len > ETHER_MAX_LEN)
csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
goto doit;
/*
* bcm5700 Revision B silicon cannot handle DMA descriptors with
* less than eight bytes. If we encounter a teeny mbuf
* at the end of a chain, we can pad. Otherwise, copy.
*/
if (bge_compact_dma_runt(m) != 0)
return (ENOBUFS);
doit:
dmamap = sc->bge_txdma[cur];
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
switch (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
BUS_DMA_NOWAIT)) {
case 0:
break;
case EFBIG:
if (m_defrag(m, M_DONTWAIT) == 0 &&
bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
BUS_DMA_NOWAIT) == 0)
break;
/* FALLTHROUGH */
default:
return (ENOBUFS);
}
for (i = 0; i < dmamap->dm_nsegs; i++) {
f = &sc->bge_rdata->bge_tx_ring[frag];
if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
break;
BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
f->bge_len = dmamap->dm_segs[i].ds_len;
f->bge_flags = csum_flags;
f->bge_vlan_tag = 0;
#if NVLAN > 0
if (m->m_flags & M_VLANTAG) {
f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
f->bge_vlan_tag = m->m_pkthdr.ether_vtag;
}
#endif
cur = frag;
BGE_INC(frag, BGE_TX_RING_CNT);
}
if (i < dmamap->dm_nsegs)
goto fail_unload;
if (frag == sc->bge_tx_saved_considx)
goto fail_unload;
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
sc->bge_cdata.bge_tx_chain[cur] = m;
sc->bge_cdata.bge_tx_map[cur] = dmamap;
*txinc += dmamap->dm_nsegs;
return (0);
fail_unload:
bus_dmamap_unload(sc->bge_dmatag, dmamap);
return (ENOBUFS);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
void
bge_start(struct ifqueue *ifq)
{
struct ifnet *ifp = ifq->ifq_if;
struct bge_softc *sc = ifp->if_softc;
struct mbuf *m;
int txinc;
if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
ifq_purge(ifq);
return;
}
txinc = 0;
while (1) {
/* Check if we have enough free send BDs. */
if (sc->bge_txcnt + txinc + BGE_NTXSEG + 16 >=
BGE_TX_RING_CNT) {
ifq_set_oactive(ifq);
break;
}
m = ifq_dequeue(ifq);
if (m == NULL)
break;
if (bge_encap(sc, m, &txinc) != 0) {
m_freem(m);
continue;
}
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
}
if (txinc != 0) {
/* Transmit */
sc->bge_tx_prodidx = (sc->bge_tx_prodidx + txinc) %
BGE_TX_RING_CNT;
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO,
sc->bge_tx_prodidx);
atomic_add_int(&sc->bge_txcnt, txinc);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
}
void
bge_init(void *xsc)
{
struct bge_softc *sc = xsc;
struct ifnet *ifp;
u_int16_t *m;
u_int32_t mode;
int s;
s = splnet();
ifp = &sc->arpcom.ac_if;
/* Cancel pending I/O and flush buffers. */
bge_stop(sc, 0);
bge_sig_pre_reset(sc, BGE_RESET_START);
bge_reset(sc);
bge_sig_legacy(sc, BGE_RESET_START);
bge_sig_post_reset(sc, BGE_RESET_START);
bge_chipinit(sc);
/*
* Init the various state machines, ring
* control blocks and firmware.
*/
if (bge_blockinit(sc)) {
printf("%s: initialization failure\n", sc->bge_dev.dv_xname);
splx(s);
return;
}
/* Specify MRU. */
if (BGE_IS_JUMBO_CAPABLE(sc))
CSR_WRITE_4(sc, BGE_RX_MTU,
BGE_JUMBO_FRAMELEN + ETHER_VLAN_ENCAP_LEN);
else
CSR_WRITE_4(sc, BGE_RX_MTU,
ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
/* Load our MAC address. */
m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
if (!(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
/* Disable hardware decapsulation of VLAN frames. */
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
}
/* Program promiscuous mode and multicast filters. */
bge_iff(sc);
/* Init RX ring. */
bge_init_rx_ring_std(sc);
/*
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
* memory to ensure that the chip has in fact read the first
* entry of the ring.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
u_int32_t v, i;
for (i = 0; i < 10; i++) {
DELAY(20);
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
if (v == (MCLBYTES - ETHER_ALIGN))
break;
}
if (i == 10)
printf("%s: 5705 A0 chip failed to load RX ring\n",
sc->bge_dev.dv_xname);
}
/* Init Jumbo RX ring. */
if (sc->bge_flags & BGE_JUMBO_RING)
bge_init_rx_ring_jumbo(sc);
/* Init our RX return ring index */
sc->bge_rx_saved_considx = 0;
/* Init our RX/TX stat counters. */
sc->bge_tx_collisions = 0;
sc->bge_rx_discards = 0;
sc->bge_rx_inerrors = 0;
sc->bge_rx_overruns = 0;
sc->bge_tx_discards = 0;
/* Init TX ring. */
bge_init_tx_ring(sc);
/* Enable TX MAC state machine lockup fix. */
mode = CSR_READ_4(sc, BGE_TX_MODE);
if (BGE_IS_5755_PLUS(sc) ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
mode |= CSR_READ_4(sc, BGE_TX_MODE) &
(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
}
/* Turn on transmitter */
CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
DELAY(100);
mode = CSR_READ_4(sc, BGE_RX_MODE);
if (BGE_IS_5755_PLUS(sc))
mode |= BGE_RXMODE_IPV6_ENABLE;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
mode |= BGE_RXMODE_IPV4_FRAG_FIX;
/* Turn on receiver */
CSR_WRITE_4(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
DELAY(10);
/*
* Set the number of good frames to receive after RX MBUF
* Low Watermark has been reached. After the RX MAC receives
* this number of frames, it will drop subsequent incoming
* frames until the MBUF High Watermark is reached.
*/
if (BGE_IS_57765_PLUS(sc))
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
else
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
/* Tell firmware we're alive. */
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Enable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
bge_ifmedia_upd(ifp);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
splx(s);
timeout_add_sec(&sc->bge_timeout, 1);
}
/*
* Set media options.
*/
int
bge_ifmedia_upd(struct ifnet *ifp)
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bge_mii;
struct ifmedia *ifm = &sc->bge_ifmedia;
/* If this is a 1000baseX NIC, enable the TBI port. */
if (sc->bge_flags & BGE_FIBER_TBI) {
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
/*
* The BCM5704 ASIC appears to have a special
* mechanism for programming the autoneg
* advertisement registers in TBI mode.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
u_int32_t sgdig;
sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
if (sgdig & BGE_SGDIGSTS_DONE) {
CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
sgdig |= BGE_SGDIGCFG_AUTO |
BGE_SGDIGCFG_PAUSE_CAP |
BGE_SGDIGCFG_ASYM_PAUSE;
CSR_WRITE_4(sc, BGE_SGDIG_CFG,
sgdig | BGE_SGDIGCFG_SEND);
DELAY(5);
CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
}
}
break;
case IFM_1000_SX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
}
DELAY(40);
break;
default:
return (EINVAL);
}
/* XXX 802.3x flow control for 1000BASE-SX */
return (0);
}
BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
/*
* Force an interrupt so that we will call bge_link_upd
* if needed and clear any pending link state attention.
* Without this we are not getting any further interrupts
* for link state changes and thus will not UP the link and
* not be able to send in bge_start. The only way to get
* things working was to receive a packet and get a RX intr.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
sc->bge_flags & BGE_IS_5788)
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
else
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
return (0);
}
/*
* Report current media status.
*/
void
bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bge_mii;
if (sc->bge_flags & BGE_FIBER_TBI) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED) {
ifmr->ifm_status |= IFM_ACTIVE;
} else {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_active |= IFM_1000_SX;
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
return;
}
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
sc->bge_flowflags;
}
int
bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct bge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
struct mii_data *mii;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
bge_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
bge_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
bge_stop(sc, 0);
}
break;
case SIOCSIFMEDIA:
/* XXX Flow control is not supported for 1000BASE-SX */
if (sc->bge_flags & BGE_FIBER_TBI) {
ifr->ifr_media &= ~IFM_ETH_FMASK;
sc->bge_flowflags = 0;
}
/* Flow control requires full-duplex mode. */
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
(ifr->ifr_media & IFM_FDX) == 0) {
ifr->ifr_media &= ~IFM_ETH_FMASK;
}
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
/* We can do both TXPAUSE and RXPAUSE. */
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
}
sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
}
/* FALLTHROUGH */
case SIOCGIFMEDIA:
if (sc->bge_flags & BGE_FIBER_TBI) {
error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
command);
} else {
mii = &sc->bge_mii;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
}
break;
case SIOCGIFRXR:
error = bge_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
break;
default:
error = ether_ioctl(ifp, &sc->arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
bge_iff(sc);
error = 0;
}
splx(s);
return (error);
}
int
bge_rxrinfo(struct bge_softc *sc, struct if_rxrinfo *ifri)
{
struct if_rxring_info ifr[2];
u_int n = 0;
memset(ifr, 0, sizeof(ifr));
if (ISSET(sc->bge_flags, BGE_RXRING_VALID)) {
ifr[n].ifr_size = sc->bge_rx_std_len;
strlcpy(ifr[n].ifr_name, "std", sizeof(ifr[n].ifr_name));
ifr[n].ifr_info = sc->bge_std_ring;
n++;
}
if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)) {
ifr[n].ifr_size = BGE_JLEN;
strlcpy(ifr[n].ifr_name, "jumbo", sizeof(ifr[n].ifr_name));
ifr[n].ifr_info = sc->bge_jumbo_ring;
n++;
}
return (if_rxr_info_ioctl(ifri, n, ifr));
}
void
bge_watchdog(struct ifnet *ifp)
{
struct bge_softc *sc;
sc = ifp->if_softc;
printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
bge_init(sc);
ifp->if_oerrors++;
}
void
bge_stop_block(struct bge_softc *sc, bus_size_t reg, u_int32_t bit)
{
int i;
BGE_CLRBIT(sc, reg, bit);
for (i = 0; i < BGE_TIMEOUT; i++) {
if ((CSR_READ_4(sc, reg) & bit) == 0)
return;
delay(100);
}
DPRINTFN(5, ("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
sc->bge_dev.dv_xname, (u_long) reg, bit));
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
bge_stop(struct bge_softc *sc, int softonly)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct ifmedia_entry *ifm;
struct mii_data *mii;
int mtmp, itmp;
timeout_del(&sc->bge_timeout);
timeout_del(&sc->bge_rxtimeout);
timeout_del(&sc->bge_rxtimeout_jumbo);
ifp->if_flags &= ~IFF_RUNNING;
ifp->if_timer = 0;
if (!softonly) {
/*
* Tell firmware we're shutting down.
*/
/* bge_stop_fw(sc); */
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
/*
* Disable all of the receiver blocks
*/
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
/*
* Disable all of the transmit blocks
*/
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/*
* Shut down all of the memory managers and related
* state machines.
*/
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
if (!BGE_IS_5705_PLUS(sc)) {
bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
}
bge_reset(sc);
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
/*
* Tell firmware we're shutting down.
*/
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
}
intr_barrier(sc->bge_intrhand);
ifq_barrier(&ifp->if_snd);
ifq_clr_oactive(&ifp->if_snd);
/* Free the RX lists. */
bge_free_rx_ring_std(sc);
/* Free jumbo RX list. */
if (sc->bge_flags & BGE_JUMBO_RING)
bge_free_rx_ring_jumbo(sc);
/* Free TX buffers. */
bge_free_tx_ring(sc);
/*
* Isolate/power down the PHY, but leave the media selection
* unchanged so that things will be put back to normal when
* we bring the interface back up.
*/
if (!(sc->bge_flags & BGE_FIBER_TBI)) {
mii = &sc->bge_mii;
itmp = ifp->if_flags;
ifp->if_flags |= IFF_UP;
ifm = mii->mii_media.ifm_cur;
mtmp = ifm->ifm_media;
ifm->ifm_media = IFM_ETHER|IFM_NONE;
mii_mediachg(mii);
ifm->ifm_media = mtmp;
ifp->if_flags = itmp;
}
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
if (!softonly) {
/* Clear MAC's link state (PHY may still have link UP). */
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
}
}
void
bge_link_upd(struct bge_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii = &sc->bge_mii;
u_int32_t status;
int link;
/* Clear 'pending link event' flag */
BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
/*
* Process link state changes.
* Grrr. The link status word in the status block does
* not work correctly on the BCM5700 rev AX and BX chips,
* according to all available information. Hence, we have
* to enable MII interrupts in order to properly obtain
* async link changes. Unfortunately, this also means that
* we have to read the MAC status register to detect link
* changes, thereby adding an additional register access to
* the interrupt handler.
*
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_MI_INTERRUPT) {
mii_pollstat(mii);
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
BGE_STS_SETBIT(sc, BGE_STS_LINK);
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
bge_miibus_readreg(&sc->bge_dev, sc->bge_phy_addr,
BRGPHY_MII_ISR);
bge_miibus_writereg(&sc->bge_dev, sc->bge_phy_addr,
BRGPHY_MII_IMR, BRGPHY_INTRS);
}
return;
}
if (sc->bge_flags & BGE_FIBER_TBI) {
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
BGE_STS_SETBIT(sc, BGE_STS_LINK);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_TBI_SEND_CFGS);
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
status = CSR_READ_4(sc, BGE_MAC_MODE);
link = (status & BGE_MACMODE_HALF_DUPLEX) ?
LINK_STATE_HALF_DUPLEX :
LINK_STATE_FULL_DUPLEX;
ifp->if_baudrate = IF_Gbps(1);
if (ifp->if_link_state != link) {
ifp->if_link_state = link;
if_link_state_change(ifp);
}
}
} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
link = LINK_STATE_DOWN;
ifp->if_baudrate = 0;
if (ifp->if_link_state != link) {
ifp->if_link_state = link;
if_link_state_change(ifp);
}
}
} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
/*
* Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
* in status word always set. Workaround this bug by reading
* PHY link status directly.
*/
link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
BGE_STS_LINK : 0;
if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
mii_pollstat(mii);
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
BGE_STS_SETBIT(sc, BGE_STS_LINK);
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
}
} else {
/*
* For controllers that call mii_tick, we have to poll
* link status.
*/
mii_pollstat(mii);
}
/* Clear the attention */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
BGE_MACSTAT_LINK_CHANGED);
}
#if NKSTAT > 0
struct bge_stat {
char name[KSTAT_KV_NAMELEN];
enum kstat_kv_unit unit;
bus_size_t reg;
};
#define MACREG(_f) \
BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, _f)
static const struct bge_stat bge_kstat_tpl[] = {
/* MAC stats */
[bge_stat_out_octets] = { "out octets", KSTAT_KV_U_BYTES,
MACREG(ifHCOutOctets) },
[bge_stat_collisions] = { "collisions", KSTAT_KV_U_NONE, 0 },
[bge_stat_xon_sent] = { "xon sent", KSTAT_KV_U_NONE,
MACREG(outXonSent) },
[bge_stat_xoff_sent] = { "xoff sent", KSTAT_KV_U_NONE,
MACREG(outXonSent) },
[bge_stat_xmit_errors] = { "xmit errors", KSTAT_KV_U_NONE,
MACREG(dot3StatsInternalMacTransmitErrors) },
[bge_stat_coll_frames] = { "coll frames", KSTAT_KV_U_PACKETS,
MACREG(dot3StatsSingleCollisionFrames) },
[bge_stat_multicoll_frames] = { "multicoll frames", KSTAT_KV_U_PACKETS,
MACREG(dot3StatsMultipleCollisionFrames) },
[bge_stat_deferred_xmit] = { "deferred xmit", KSTAT_KV_U_NONE,
MACREG(dot3StatsDeferredTransmissions) },
[bge_stat_excess_coll] = { "excess coll", KSTAT_KV_U_NONE,
MACREG(dot3StatsExcessiveCollisions) },
[bge_stat_late_coll] = { "late coll", KSTAT_KV_U_NONE,
MACREG(dot3StatsLateCollisions) },
[bge_stat_out_ucast_pkt] = { "out ucast pkts", KSTAT_KV_U_PACKETS, 0 },
[bge_stat_out_mcast_pkt] = { "out mcast pkts", KSTAT_KV_U_PACKETS, 0 },
[bge_stat_out_bcast_pkt] = { "out bcast pkts", KSTAT_KV_U_PACKETS, 0 },
[bge_stat_in_octets] = { "in octets", KSTAT_KV_U_BYTES,
MACREG(ifHCInOctets) },
[bge_stat_fragments] = { "fragments", KSTAT_KV_U_NONE,
MACREG(etherStatsFragments) },
[bge_stat_in_ucast_pkt] = { "in ucast pkts", KSTAT_KV_U_PACKETS,
MACREG(ifHCInUcastPkts) },
[bge_stat_in_mcast_pkt] = { "in mcast pkts", KSTAT_KV_U_PACKETS,
MACREG(ifHCInMulticastPkts) },
[bge_stat_in_bcast_pkt] = { "in bcast pkts", KSTAT_KV_U_PACKETS,
MACREG(ifHCInBroadcastPkts) },
[bge_stat_fcs_errors] = { "FCS errors", KSTAT_KV_U_NONE,
MACREG(dot3StatsFCSErrors) },
[bge_stat_align_errors] = { "align errors", KSTAT_KV_U_NONE,
MACREG(dot3StatsAlignmentErrors) },
[bge_stat_xon_rcvd] = { "xon rcvd", KSTAT_KV_U_NONE,
MACREG(xonPauseFramesReceived) },
[bge_stat_xoff_rcvd] = { "xoff rcvd", KSTAT_KV_U_NONE,
MACREG(xoffPauseFramesReceived) },
[bge_stat_ctrl_frame_rcvd] = { "ctrlframes rcvd", KSTAT_KV_U_NONE,
MACREG(macControlFramesReceived) },
[bge_stat_xoff_entered] = { "xoff entered", KSTAT_KV_U_NONE,
MACREG(xoffStateEntered) },
[bge_stat_too_long_frames] = { "too long frames", KSTAT_KV_U_NONE,
MACREG(dot3StatsFramesTooLong) },
[bge_stat_jabbers] = { "jabbers", KSTAT_KV_U_NONE,
MACREG(etherStatsJabbers) },
[bge_stat_too_short_pkts] = { "too short pkts", KSTAT_KV_U_NONE,
MACREG(etherStatsUndersizePkts) },
/* Send Data Initiator stats */
[bge_stat_dma_rq_full] = { "DMA RQ full", KSTAT_KV_U_NONE,
BGE_LOCSTATS_DMA_RQ_FULL },
[bge_stat_dma_hprq_full] = { "DMA HPRQ full", KSTAT_KV_U_NONE,
BGE_LOCSTATS_DMA_HIPRIO_RQ_FULL },
[bge_stat_sdc_queue_full] = { "SDC queue full", KSTAT_KV_U_NONE,
BGE_LOCSTATS_SDC_QUEUE_FULL },
[bge_stat_nic_sendprod_set] = { "sendprod set", KSTAT_KV_U_NONE,
BGE_LOCSTATS_NIC_SENDPROD_SET },
[bge_stat_status_updated] = { "stats updated", KSTAT_KV_U_NONE,
BGE_LOCSTATS_STATS_UPDATED },
[bge_stat_irqs] = { "irqs", KSTAT_KV_U_NONE, BGE_LOCSTATS_IRQS },
[bge_stat_avoided_irqs] = { "avoided irqs", KSTAT_KV_U_NONE,
BGE_LOCSTATS_AVOIDED_IRQS },
[bge_stat_tx_thresh_hit] = { "tx thresh hit", KSTAT_KV_U_NONE,
BGE_LOCSTATS_TX_THRESH_HIT },
/* Receive List Placement stats */
[bge_stat_filtdrop] = { "filtdrop", KSTAT_KV_U_NONE,
BGE_RXLP_LOCSTAT_FILTDROP },
[bge_stat_dma_wrq_full] = { "DMA WRQ full", KSTAT_KV_U_NONE,
BGE_RXLP_LOCSTAT_DMA_WRQ_FULL },
[bge_stat_dma_hpwrq_full] = { "DMA HPWRQ full", KSTAT_KV_U_NONE,
BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL },
[bge_stat_out_of_bds] = { "out of BDs", KSTAT_KV_U_NONE,
BGE_RXLP_LOCSTAT_OUT_OF_BDS },
[bge_stat_if_in_drops] = { "if in drops", KSTAT_KV_U_NONE, 0 },
[bge_stat_if_in_errors] = { "if in errors", KSTAT_KV_U_NONE, 0 },
[bge_stat_rx_thresh_hit] = { "rx thresh hit", KSTAT_KV_U_NONE,
BGE_RXLP_LOCSTAT_RXTHRESH_HIT },
};
int
bge_kstat_read(struct kstat *ks)
{
struct bge_softc *sc = ks->ks_softc;
struct kstat_kv *kvs = ks->ks_data;
int i;
bge_stats_update_regs(sc);
for (i = 0; i < nitems(bge_kstat_tpl); i++) {
if (bge_kstat_tpl[i].reg != 0)
kstat_kv_u32(kvs) += CSR_READ_4(sc,
bge_kstat_tpl[i].reg);
kvs++;
}
getnanouptime(&ks->ks_updated);
return 0;
}
void
bge_kstat_attach(struct bge_softc *sc)
{
struct kstat *ks;
struct kstat_kv *kvs;
int i;
ks = kstat_create(sc->bge_dev.dv_xname, 0, "bge-stats", 0,
KSTAT_T_KV, 0);
if (ks == NULL)
return;
kvs = mallocarray(nitems(bge_kstat_tpl), sizeof(*kvs), M_DEVBUF,
M_ZERO | M_WAITOK);
for (i = 0; i < nitems(bge_kstat_tpl); i++) {
const struct bge_stat *tpl = &bge_kstat_tpl[i];
kstat_kv_unit_init(&kvs[i], tpl->name, KSTAT_KV_T_UINT32,
tpl->unit);
}
kstat_set_mutex(ks, &sc->bge_kstat_mtx);
ks->ks_softc = sc;
ks->ks_data = kvs;
ks->ks_datalen = nitems(bge_kstat_tpl) * sizeof(*kvs);
ks->ks_read = bge_kstat_read;
sc->bge_kstat = ks;
kstat_install(ks);
}
#endif /* NKSTAT > 0 */