src/sys/dev/pci/ahd_pci.c
2023-05-02 22:23:09 +00:00

1161 lines
31 KiB
C

/* $OpenBSD: ahd_pci.c,v 1.29 2022/10/21 17:45:40 kn Exp $ */
/*
* Copyright (c) 2004 Milos Urbanek, Kenneth R. Westerback & Marco Peereboom
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Product specific probe and attach routines for:
* aic7901 and aic7902 SCSI controllers
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2002 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
*/
#include <dev/ic/aic79xx_openbsd.h>
#include <dev/ic/aic79xx_inline.h>
#include <dev/ic/aic79xx.h>
#include <dev/pci/pcivar.h>
static inline uint64_t
ahd_compose_id(u_int device, u_int vendor, u_int subdevice, u_int subvendor)
{
uint64_t id;
id = subvendor
| (subdevice << 16)
| ((uint64_t)vendor << 32)
| ((uint64_t)device << 48);
return (id);
}
#define ID_ALL_MASK 0xFFFFFFFFFFFFFFFFull
#define ID_ALL_IROC_MASK 0xFF7FFFFFFFFFFFFFull
#define ID_DEV_VENDOR_MASK 0xFFFFFFFF00000000ull
#define ID_9005_GENERIC_MASK 0xFFF0FFFF00000000ull
#define ID_9005_GENERIC_IROC_MASK 0xFF70FFFF00000000ull
#define ID_AIC7901 0x800F9005FFFF9005ull
#define ID_AHA_29320A 0x8000900500609005ull
#define ID_AHA_29320ALP 0x8017900500449005ull
#define ID_AHA_29320LPE 0x8017900500459005ull
#define ID_AIC7901A 0x801E9005FFFF9005ull
#define ID_AHA_29320LP 0x8014900500449005ull
#define ID_AIC7902 0x801F9005FFFF9005ull
#define ID_AIC7902_B 0x801D9005FFFF9005ull
#define ID_AHA_39320 0x8010900500409005ull
#define ID_AHA_29320 0x8012900500429005ull
#define ID_AHA_29320B 0x8013900500439005ull
#define ID_AHA_39320_B 0x8015900500409005ull
#define ID_AHA_39320_B_DELL 0x8015900501681028ull
#define ID_AHA_39320A 0x8016900500409005ull
#define ID_AHA_39320D 0x8011900500419005ull
#define ID_AHA_39320D_B 0x801C900500419005ull
#define ID_AHA_39320D_HP 0x8011900500AC0E11ull
#define ID_AHA_39320D_B_HP 0x801C900500AC0E11ull
#define ID_AIC7902_PCI_REV_A4 0x3
#define ID_AIC7902_PCI_REV_B0 0x10
#define SUBID_HP 0x0E11
#define DEVID_9005_HOSTRAID(id) ((id) & 0x80)
#define DEVID_9005_TYPE(id) ((id) & 0xF)
#define DEVID_9005_TYPE_HBA 0x0 /* Standard Card */
#define DEVID_9005_TYPE_HBA_2EXT 0x1 /* 2 External Ports */
#define DEVID_9005_TYPE_MB 0xF /* On Motherboard */
#define DEVID_9005_MFUNC(id) ((id) & 0x10)
#define DEVID_9005_PACKETIZED(id) ((id) & 0x8000)
#define SUBID_9005_TYPE(id) ((id) & 0xF)
#define SUBID_9005_TYPE_HBA 0x0 /* Standard Card */
#define SUBID_9005_TYPE_MB 0xF /* On Motherboard */
#define SUBID_9005_AUTOTERM(id) (((id) & 0x10) == 0)
#define SUBID_9005_LEGACYCONN_FUNC(id) ((id) & 0x20)
#define SUBID_9005_SEEPTYPE(id) ((id) & 0x0C0) >> 6)
#define SUBID_9005_SEEPTYPE_NONE 0x0
#define SUBID_9005_SEEPTYPE_4K 0x1
ahd_device_setup_t ahd_aic7901_setup;
ahd_device_setup_t ahd_aic7901A_setup;
ahd_device_setup_t ahd_aic7902_setup;
ahd_device_setup_t ahd_aic790X_setup;
const struct ahd_pci_identity ahd_pci_ident_table[] =
{
/* aic7901 based controllers */
{
ID_AHA_29320A,
ID_ALL_MASK,
ahd_aic7901_setup
},
{
ID_AHA_29320ALP,
ID_ALL_MASK,
ahd_aic7901_setup
},
{
ID_AHA_29320LPE,
ID_ALL_MASK,
ahd_aic7901_setup
},
/* aic7901A based controllers */
{
ID_AHA_29320LP,
ID_ALL_MASK,
ahd_aic7901A_setup
},
/* aic7902 based controllers */
{
ID_AHA_29320,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_29320B,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320_B,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320_B_DELL,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320A,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320D,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320D_HP,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320D_B,
ID_ALL_MASK,
ahd_aic7902_setup
},
{
ID_AHA_39320D_B_HP,
ID_ALL_MASK,
ahd_aic7902_setup
},
/* Generic chip probes for devices we don't know 'exactly' */
{
ID_AIC7901 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
ahd_aic7901_setup
},
{
ID_AIC7901A & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
ahd_aic7901A_setup
},
{
ID_AIC7902 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
ahd_aic7902_setup
}
};
const u_int ahd_num_pci_devs = NUM_ELEMENTS(ahd_pci_ident_table);
#define DEVCONFIG 0x40
#define PCIXINITPAT 0x0000E000ul
#define PCIXINIT_PCI33_66 0x0000E000ul
#define PCIXINIT_PCIX50_66 0x0000C000ul
#define PCIXINIT_PCIX66_100 0x0000A000ul
#define PCIXINIT_PCIX100_133 0x00008000ul
#define PCI_BUS_MODES_INDEX(devconfig) \
(((devconfig) & PCIXINITPAT) >> 13)
static const char *pci_bus_modes[] =
{
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI-X 101-133MHz",
"PCI-X 67-100MHz",
"PCI-X 50-66MHz",
"PCI 33 or 66MHz"
};
#define TESTMODE 0x00000800ul
#define IRDY_RST 0x00000200ul
#define FRAME_RST 0x00000100ul
#define PCI64BIT 0x00000080ul
#define MRDCEN 0x00000040ul
#define ENDIANSEL 0x00000020ul
#define MIXQWENDIANEN 0x00000008ul
#define DACEN 0x00000004ul
#define STPWLEVEL 0x00000002ul
#define QWENDIANSEL 0x00000001ul
#define DEVCONFIG1 0x44
#define PREQDIS 0x01
#define CSIZE_LATTIME 0x0c
#define CACHESIZE 0x000000fful
#define LATTIME 0x0000ff00ul
int ahd_pci_probe(struct device *, void *, void *);
void ahd_pci_attach(struct device *, struct device *, void *);
int ahd_activate(struct device *, int);
const struct cfattach ahd_pci_ca = {
sizeof(struct ahd_softc), ahd_pci_probe, ahd_pci_attach,
NULL, ahd_activate
};
int ahd_check_extport(struct ahd_softc *ahd);
void ahd_configure_termination(struct ahd_softc *ahd,
u_int adapter_control);
void ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat);
const struct ahd_pci_identity *
ahd_find_pci_device(pcireg_t id, pcireg_t subid)
{
const struct ahd_pci_identity *entry;
u_int64_t full_id;
u_int i;
full_id = ahd_compose_id(PCI_PRODUCT(id), PCI_VENDOR(id),
PCI_PRODUCT(subid), PCI_VENDOR(subid));
/*
* If we are configured to attach to HostRAID
* controllers, mask out the IROC/HostRAID bit
* in the
*/
if (ahd_attach_to_HostRAID_controllers)
full_id &= ID_ALL_IROC_MASK;
for (i = 0; i < ahd_num_pci_devs; i++) {
entry = &ahd_pci_ident_table[i];
if (entry->full_id == (full_id & entry->id_mask)) {
return (entry);
}
}
return (NULL);
}
int
ahd_pci_probe(struct device *parent, void *match, void *aux)
{
const struct ahd_pci_identity *entry;
struct pci_attach_args *pa = aux;
pcireg_t subid;
subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
entry = ahd_find_pci_device(pa->pa_id, subid);
return entry != NULL ? 1 : 0;
}
void
ahd_pci_attach(struct device *parent, struct device *self, void *aux)
{
const struct ahd_pci_identity *entry;
struct pci_attach_args *pa = aux;
struct ahd_softc *ahd = (void *)self;
pci_intr_handle_t ih;
const char *intrstr;
pcireg_t devconfig, memtype, subid;
uint16_t device, subvendor;
int error, ioh_valid, ioh2_valid, l, memh_valid;
ahd->dev_softc = pa;
ahd->parent_dmat = pa->pa_dmat;
if (ahd_alloc(ahd, ahd->sc_dev.dv_xname) == NULL)
return;
subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
entry = ahd_find_pci_device(pa->pa_id, subid);
if (entry == NULL)
return;
/*
* Record if this is a HostRAID board.
*/
device = PCI_PRODUCT(pa->pa_id);
if (DEVID_9005_HOSTRAID(device))
ahd->flags |= AHD_HOSTRAID_BOARD;
/*
* Record if this is an HP board.
*/
subvendor = PCI_VENDOR(subid);
if (subvendor == SUBID_HP)
ahd->flags |= AHD_HP_BOARD;
error = entry->setup(ahd, pa);
if (error != 0)
return;
/* XXX ahc on sparc64 needs this twice */
devconfig = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG);
if ((devconfig & PCIXINITPAT) == PCIXINIT_PCI33_66) {
ahd->chip |= AHD_PCI;
/* Disable PCIX workarounds when running in PCI mode. */
ahd->bugs &= ~AHD_PCIX_BUG_MASK;
} else {
ahd->chip |= AHD_PCIX;
}
ahd->bus_description = pci_bus_modes[PCI_BUS_MODES_INDEX(devconfig)];
memh_valid = ioh_valid = ioh2_valid = 0;
if (!pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
&ahd->pcix_off, NULL)) {
if (ahd->chip & AHD_PCIX)
printf("%s: warning: can't find PCI-X capability\n",
ahd_name(ahd));
ahd->chip &= ~AHD_PCIX;
ahd->chip |= AHD_PCI;
ahd->bugs &= ~AHD_PCIX_BUG_MASK;
}
/*
* Map PCI registers
*/
if ((ahd->bugs & AHD_PCIX_MMAPIO_BUG) == 0) {
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,
AHD_PCI_MEMADDR);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
memh_valid = (pci_mapreg_map(pa, AHD_PCI_MEMADDR,
memtype, 0, &ahd->tags[0], &ahd->bshs[0], NULL,
NULL, 0) == 0);
if (memh_valid) {
ahd->tags[1] = ahd->tags[0];
bus_space_subregion(ahd->tags[0], ahd->bshs[0],
/*offset*/0x100, /*size*/0x100,
&ahd->bshs[1]);
if (ahd_pci_test_register_access(ahd) != 0)
memh_valid = 0;
}
break;
default:
memh_valid = 0;
printf("%s: unknown memory type: 0x%x\n",
ahd_name(ahd), memtype);
break;
}
#ifdef AHD_DEBUG
printf("%s: doing memory mapping tag0 %p, tag1 %p, shs0 "
"0x%lx, shs1 0x%lx\n", ahd_name(ahd), ahd->tags[0],
ahd->tags[1], ahd->bshs[0], ahd->bshs[1]);
#endif
}
if (!memh_valid) {
/* First BAR */
ioh_valid = (pci_mapreg_map(pa, AHD_PCI_IOADDR,
PCI_MAPREG_TYPE_IO, 0, &ahd->tags[0], &ahd->bshs[0], NULL,
NULL, 0) == 0);
/* 2nd BAR */
ioh2_valid = (pci_mapreg_map(pa, AHD_PCI_IOADDR1,
PCI_MAPREG_TYPE_IO, 0, &ahd->tags[1], &ahd->bshs[1], NULL,
NULL, 0) == 0);
#ifdef AHD_DEBUG
printf("%s: doing io mapping tag0 %p, tag1 %p, shs0 0x%lx, "
"shs1 0x%lx\n", ahd_name(ahd), ahd->tags[0], ahd->tags[1],
ahd->bshs[0], ahd->bshs[1]);
#endif
}
if (memh_valid == 0 && (ioh_valid == 0 || ioh2_valid == 0)) {
printf("%s: unable to map registers\n", ahd_name(ahd));
return;
}
/*
* Set Power State D0.
*/
pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
/*
* Should we bother disabling 39Bit addressing
* based on installed memory?
*/
if (sizeof(bus_addr_t) > 4)
ahd->flags |= AHD_39BIT_ADDRESSING;
/*
* If we need to support high memory, enable dual
* address cycles. This bit must be set to enable
* high address bit generation even if we are on a
* 64bit bus (PCI64BIT set in devconfig).
*/
if ((ahd->flags & (AHD_39BIT_ADDRESSING|AHD_64BIT_ADDRESSING)) != 0) {
if (bootverbose)
printf("%s: Enabling 39Bit Addressing\n",
ahd_name(ahd));
devconfig = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG);
devconfig |= DACEN;
pci_conf_write(pa->pa_pc, pa->pa_tag, DEVCONFIG, devconfig);
}
ahd_softc_init(ahd);
/*
* Map the interrupts routines
*/
ahd->bus_intr = ahd_pci_intr;
error = ahd_reset(ahd, /*reinit*/FALSE);
if (error != 0) {
ahd_free(ahd);
return;
}
if (pci_intr_map(pa, &ih)) {
printf("%s: couldn't map interrupt\n", ahd_name(ahd));
ahd_free(ahd);
return;
}
intrstr = pci_intr_string(pa->pa_pc, ih);
ahd->ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO,
ahd_platform_intr, ahd, ahd->sc_dev.dv_xname);
if (ahd->ih == NULL) {
printf("%s: couldn't establish interrupt", ahd_name(ahd));
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
ahd_free(ahd);
return;
}
if (intrstr != NULL)
printf(": %s\n", intrstr);
/* Get the size of the cache */
ahd->pci_cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG);
ahd->pci_cachesize *= 4;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* See if we have a SEEPROM and perform auto-term */
error = ahd_check_extport(ahd);
if (error != 0)
return;
/* Core initialization */
error = ahd_init(ahd);
if (error != 0)
return;
ahd_list_lock(&l);
/*
* Link this softc in with all other ahd instances.
*/
ahd_softc_insert(ahd);
ahd_list_unlock(&l);
/* complete the attach */
ahd_attach(ahd);
}
int
ahd_activate(struct device *self, int act)
{
int ret = 0;
ret = config_activate_children(self, act);
switch (act) {
case DVACT_POWERDOWN:
ahd_shutdown(self);
break;
}
return (ret);
}
/*
* Perform some simple tests that should catch situations where
* our registers are invalidly mapped.
*/
int
ahd_pci_test_register_access(struct ahd_softc *ahd)
{
const pci_chipset_tag_t pc = ahd->dev_softc->pa_pc;
const pcitag_t tag = ahd->dev_softc->pa_tag;
pcireg_t cmd;
u_int targpcistat;
pcireg_t pci_status1;
int error;
uint8_t hcntrl;
error = EIO;
/*
* Enable PCI error interrupt status, but suppress NMIs
* generated by SERR raised due to target aborts.
*/
cmd = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG,
cmd & ~PCI_COMMAND_SERR_ENABLE);
/*
* First a simple test to see if any
* registers can be read. Reading
* HCNTRL has no side effects and has
* at least one bit that is guaranteed to
* be zero so it is a good register to
* use for this test.
*/
hcntrl = ahd_inb(ahd, HCNTRL);
if (hcntrl == 0xFF)
goto fail;
/*
* Next create a situation where write combining
* or read prefetching could be initiated by the
* CPU or host bridge. Our device does not support
* either, so look for data corruption and/or flagged
* PCI errors. First pause without causing another
* chip reset.
*/
hcntrl &= ~CHIPRST;
ahd_outb(ahd, HCNTRL, hcntrl|PAUSE);
while (ahd_is_paused(ahd) == 0)
;
/* Clear any PCI errors that occurred before our driver attached. */
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
ahd_outb(ahd, TARGPCISTAT, targpcistat);
pci_status1 = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, pci_status1);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRINT, CLRPCIINT);
ahd_outb(ahd, SEQCTL0, PERRORDIS);
ahd_outl(ahd, SRAM_BASE, 0x5aa555aa);
if (ahd_inl(ahd, SRAM_BASE) != 0x5aa555aa)
goto fail;
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
if ((targpcistat & STA) != 0)
goto fail;
}
error = 0;
fail:
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
/* Silently clear any latched errors. */
ahd_outb(ahd, TARGPCISTAT, targpcistat);
pci_status1 = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, pci_status1);
ahd_outb(ahd, CLRINT, CLRPCIINT);
}
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, cmd);
return (error);
}
/*
* Check the external port logic for a serial eeprom
* and termination/cable detection contrls.
*/
int
ahd_check_extport(struct ahd_softc *ahd)
{
struct vpd_config vpd;
struct seeprom_config *sc;
u_int adapter_control;
int have_seeprom;
int error;
sc = ahd->seep_config;
have_seeprom = ahd_acquire_seeprom(ahd);
if (have_seeprom) {
u_int start_addr;
/*
* Fetch VPD for this function and parse it.
*/
if (bootverbose)
printf("%s: Reading VPD from SEEPROM...",
ahd_name(ahd));
/* Address is always in units of 16bit words */
start_addr = ((2 * sizeof(*sc))
+ (sizeof(vpd) * (ahd->channel - 'A'))) / 2;
error = ahd_read_seeprom(ahd, (uint16_t *)&vpd,
start_addr, sizeof(vpd)/2,
/*bytestream*/TRUE);
if (error == 0)
error = ahd_parse_vpddata(ahd, &vpd);
if (bootverbose)
printf("%s: VPD parsing %s\n",
ahd_name(ahd),
error == 0 ? "successful" : "failed");
if (bootverbose)
printf("%s: Reading SEEPROM...", ahd_name(ahd));
/* Address is always in units of 16bit words */
start_addr = (sizeof(*sc) / 2) * (ahd->channel - 'A');
error = ahd_read_seeprom(ahd, (uint16_t *)sc,
start_addr, sizeof(*sc)/2,
/*bytestream*/FALSE);
if (error != 0) {
printf("Unable to read SEEPROM\n");
have_seeprom = 0;
} else {
have_seeprom = ahd_verify_cksum(sc);
if (bootverbose) {
if (have_seeprom == 0)
printf ("checksum error\n");
else
printf ("done.\n");
}
}
ahd_release_seeprom(ahd);
}
if (!have_seeprom) {
u_int nvram_scb;
/*
* Pull scratch ram settings and treat them as
* if they are the contents of an seeprom if
* the 'ADPT', 'BIOS', or 'ASPI' signature is found
* in SCB 0xFF. We manually compose the data as 16bit
* values to avoid endian issues.
*/
ahd_set_scbptr(ahd, 0xFF);
nvram_scb = ahd_inb_scbram(ahd, SCB_BASE + NVRAM_SCB_OFFSET);
if (nvram_scb != 0xFF
&& ((ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'D'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'T')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'B'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'I'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'O'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'S')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'S'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'I'))) {
uint16_t *sc_data;
int i;
ahd_set_scbptr(ahd, nvram_scb);
sc_data = (uint16_t *)sc;
for (i = 0; i < 64; i += 2)
*sc_data++ = ahd_inw_scbram(ahd, SCB_BASE+i);
have_seeprom = ahd_verify_cksum(sc);
if (have_seeprom)
ahd->flags |= AHD_SCB_CONFIG_USED;
}
}
#ifdef AHD_DEBUG
if (have_seeprom != 0
&& (ahd_debug & AHD_DUMP_SEEPROM) != 0) {
uint16_t *sc_data;
int i;
printf("%s: Seeprom Contents:", ahd_name(ahd));
sc_data = (uint16_t *)sc;
for (i = 0; i < (sizeof(*sc)); i += 2)
printf("\n\t0x%.4x", sc_data[i]);
printf("\n");
}
#endif
if (!have_seeprom) {
if (bootverbose)
printf("%s: No SEEPROM available.\n", ahd_name(ahd));
ahd->flags |= AHD_USEDEFAULTS;
error = ahd_default_config(ahd);
adapter_control = CFAUTOTERM|CFSEAUTOTERM;
free(ahd->seep_config, M_DEVBUF, 0);
ahd->seep_config = NULL;
} else {
error = ahd_parse_cfgdata(ahd, sc);
adapter_control = sc->adapter_control;
}
if (error != 0)
return (error);
ahd_configure_termination(ahd, adapter_control);
return (0);
}
void
ahd_configure_termination(struct ahd_softc *ahd, u_int adapter_control)
{
const pci_chipset_tag_t pc = ahd->dev_softc->pa_pc;
const pcitag_t tag = ahd->dev_softc->pa_tag;
int error;
u_int sxfrctl1;
uint8_t termctl;
pcireg_t devconfig;
devconfig = pci_conf_read(pc, tag, DEVCONFIG);
devconfig &= ~STPWLEVEL;
if ((ahd->flags & AHD_STPWLEVEL_A) != 0)
devconfig |= STPWLEVEL;
if (bootverbose)
printf("%s: STPWLEVEL is %s\n",
ahd_name(ahd), (devconfig & STPWLEVEL) ? "on" : "off");
pci_conf_write(pc, tag, DEVCONFIG, devconfig);
/* Make sure current sensing is off. */
if ((ahd->flags & AHD_CURRENT_SENSING) != 0) {
(void)ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
}
/*
* Read to sense. Write to set.
*/
error = ahd_read_flexport(ahd, FLXADDR_TERMCTL, &termctl);
if ((adapter_control & CFAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual Primary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH);
if ((adapter_control & CFSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRILOW;
if ((adapter_control & CFWSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRIHIGH;
} else if (error != 0) {
printf("%s: Primary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl = FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH;
}
if ((adapter_control & CFSEAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual Secondary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH);
if ((adapter_control & CFSELOWTERM) != 0)
termctl |= FLX_TERMCTL_ENSECLOW;
if ((adapter_control & CFSEHIGHTERM) != 0)
termctl |= FLX_TERMCTL_ENSECHIGH;
} else if (error != 0) {
printf("%s: Secondary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl |= FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH;
}
/*
* Now set the termination based on what we found.
*/
sxfrctl1 = ahd_inb(ahd, SXFRCTL1) & ~STPWEN;
ahd->flags &= ~AHD_TERM_ENB_A;
if ((termctl & FLX_TERMCTL_ENPRILOW) != 0) {
ahd->flags |= AHD_TERM_ENB_A;
sxfrctl1 |= STPWEN;
}
/* Must set the latch once in order to be effective. */
ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
ahd_outb(ahd, SXFRCTL1, sxfrctl1);
error = ahd_write_flexport(ahd, FLXADDR_TERMCTL, termctl);
if (error != 0) {
printf("%s: Unable to set termination settings!\n",
ahd_name(ahd));
} else if (bootverbose) {
printf("%s: Primary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRIHIGH) ? "En" : "Dis");
printf("%s: Primary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRILOW) ? "En" : "Dis");
printf("%s: Secondary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECHIGH) ? "En" : "Dis");
printf("%s: Secondary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECLOW) ? "En" : "Dis");
}
return;
}
#define DPE 0x80
#define SSE 0x40
#define RMA 0x20
#define RTA 0x10
#define STA 0x08
#define DPR 0x01
static const char *split_status_source[] =
{
"DFF0",
"DFF1",
"OVLY",
"CMC",
};
static const char *pci_status_source[] =
{
"DFF0",
"DFF1",
"SG",
"CMC",
"OVLY",
"NONE",
"MSI",
"TARG"
};
static const char *split_status_strings[] =
{
"Received split response",
"Received split completion error message",
"Receive overrun",
"Count not complete",
"Split completion data bucket",
"Split completion address error",
"Split completion byte count error",
"Signaled Target-abort to early terminate a split"
};
static const char *pci_status_strings[] =
{
"Data Parity Error has been reported via PERR#",
"Target initial wait state error",
"Split completion read data parity error",
"Split completion address attribute parity error",
"Received a Target Abort",
"Received a Master Abort",
"Signal System Error Detected",
"Address or Write Phase Parity Error Detected"
};
void
ahd_pci_intr(struct ahd_softc *ahd)
{
const pci_chipset_tag_t pc = ahd->dev_softc->pa_pc;
const pcitag_t tag = ahd->dev_softc->pa_tag;
uint8_t pci_status[8];
ahd_mode_state saved_modes;
pcireg_t pci_status1;
u_int intstat;
u_int i;
u_int reg;
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & SPLTINT) != 0)
ahd_pci_split_intr(ahd, intstat);
if ((intstat & PCIINT) == 0)
return;
printf("%s: PCI error Interrupt\n", ahd_name(ahd));
saved_modes = ahd_save_modes(ahd);
ahd_dump_card_state(ahd);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
for (i = 0, reg = DF0PCISTAT; i < 8; i++, reg++) {
if (i == 5)
continue;
pci_status[i] = ahd_inb(ahd, reg);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, reg, pci_status[i]);
}
for (i = 0; i < 8; i++) {
u_int bit;
if (i == 5)
continue;
for (bit = 0; bit < 8; bit++) {
if ((pci_status[i] & (0x1 << bit)) != 0) {
if (i == 7/*TARG*/ && bit == 3)
printf("%s: Signaled Target Abort\n",
ahd_name(ahd));
else
printf("%s: %s in %s\n", ahd_name(ahd),
pci_status_strings[bit],
pci_status_source[i]);
}
}
}
pci_status1 = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG , pci_status1);
ahd_restore_modes(ahd, saved_modes);
ahd_outb(ahd, CLRINT, CLRPCIINT);
ahd_unpause(ahd);
return;
}
void
ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat)
{
const pci_chipset_tag_t pc = ahd->dev_softc->pa_pc;
const pcitag_t tag = ahd->dev_softc->pa_tag;
uint8_t split_status[4];
uint8_t split_status1[4];
uint8_t sg_split_status[2];
uint8_t sg_split_status1[2];
ahd_mode_state saved_modes;
u_int i;
pcireg_t pcix_status;
/*
* Check for splits in all modes. Modes 0 and 1
* additionally have SG engine splits to look at.
*/
pcix_status = pci_conf_read(pc, tag, ahd->pcix_off + 0x04);
printf("%s: PCI Split Interrupt - PCI-X status = 0x%x\n",
ahd_name(ahd), pcix_status);
saved_modes = ahd_save_modes(ahd);
for (i = 0; i < 4; i++) {
ahd_set_modes(ahd, i, i);
split_status[i] = ahd_inb(ahd, DCHSPLTSTAT0);
split_status1[i] = ahd_inb(ahd, DCHSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, DCHSPLTSTAT0, split_status[i]);
ahd_outb(ahd, DCHSPLTSTAT1, split_status1[i]);
if (i > 1)
continue;
sg_split_status[i] = ahd_inb(ahd, SGSPLTSTAT0);
sg_split_status1[i] = ahd_inb(ahd, SGSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, SGSPLTSTAT0, sg_split_status[i]);
ahd_outb(ahd, SGSPLTSTAT1, sg_split_status1[i]);
}
for (i = 0; i < 4; i++) {
u_int bit;
for (bit = 0; bit < 8; bit++) {
if ((split_status[i] & (0x1 << bit)) != 0) {
printf("%s: %s in %s\n", ahd_name(ahd),
split_status_strings[bit],
split_status_source[i]);
}
if (i > 1)
continue;
if ((sg_split_status[i] & (0x1 << bit)) != 0) {
printf("%s: %s in %s\n", ahd_name(ahd),
split_status_strings[bit], "SG");
}
}
}
/*
* Clear PCI-X status bits.
*/
pci_conf_write(pc, tag, ahd->pcix_off + 0x04, pcix_status);
ahd_outb(ahd, CLRINT, CLRSPLTINT);
ahd_restore_modes(ahd, saved_modes);
}
int
ahd_aic7901_setup(struct ahd_softc *ahd, struct pci_attach_args *pa)
{
ahd->chip = AHD_AIC7901;
ahd->features = AHD_AIC7901_FE;
return (ahd_aic790X_setup(ahd, pa));
}
int
ahd_aic7901A_setup(struct ahd_softc *ahd, struct pci_attach_args *pa)
{
ahd->chip = AHD_AIC7901A;
ahd->features = AHD_AIC7901A_FE;
return (ahd_aic790X_setup(ahd, pa));
}
int
ahd_aic7902_setup(struct ahd_softc *ahd, struct pci_attach_args *pa)
{
ahd->chip = AHD_AIC7902;
ahd->features = AHD_AIC7902_FE;
return (ahd_aic790X_setup(ahd, pa));
}
int
ahd_aic790X_setup(struct ahd_softc *ahd, struct pci_attach_args *pa)
{
u_int rev;
rev = PCI_REVISION(pa->pa_class);
#ifdef AHD_DEBUG
printf("\n%s: aic7902 chip revision 0x%x\n", ahd_name(ahd), rev);
#endif
if (rev < ID_AIC7902_PCI_REV_A4) {
printf("%s: Unable to attach to unsupported chip revision %d\n",
ahd_name(ahd), rev);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 0);
return (ENXIO);
}
ahd->channel = (pa->pa_function == 1) ? 'B' : 'A';
if (rev < ID_AIC7902_PCI_REV_B0) {
/*
* Enable A series workarounds.
*/
ahd->bugs |= AHD_SENT_SCB_UPDATE_BUG|AHD_ABORT_LQI_BUG
| AHD_PKT_BITBUCKET_BUG|AHD_LONG_SETIMO_BUG
| AHD_NLQICRC_DELAYED_BUG|AHD_SCSIRST_BUG
| AHD_LQO_ATNO_BUG|AHD_AUTOFLUSH_BUG
| AHD_CLRLQO_AUTOCLR_BUG|AHD_PCIX_MMAPIO_BUG
| AHD_PCIX_CHIPRST_BUG|AHD_PCIX_SCBRAM_RD_BUG
| AHD_PKTIZED_STATUS_BUG|AHD_PKT_LUN_BUG
| AHD_MDFF_WSCBPTR_BUG|AHD_REG_SLOW_SETTLE_BUG
| AHD_SET_MODE_BUG|AHD_BUSFREEREV_BUG
| AHD_NONPACKFIFO_BUG|AHD_PACED_NEGTABLE_BUG
| AHD_FAINT_LED_BUG;
/*
* IO Cell parameter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
if ((ahd->flags & AHD_HP_BOARD) == 0)
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVA);
} else {
pcireg_t devconfig1;
ahd->features |= AHD_RTI|AHD_NEW_IOCELL_OPTS
| AHD_NEW_DFCNTRL_OPTS|AHD_FAST_CDB_DELIVERY;
ahd->bugs |= AHD_LQOOVERRUN_BUG|AHD_EARLY_REQ_BUG
| AHD_BUSFREEREV_BUG;
/*
* Some issues have been resolved in the 7901B.
*/
if ((ahd->features & AHD_MULTI_FUNC) != 0)
ahd->bugs |= AHD_INTCOLLISION_BUG|AHD_ABORT_LQI_BUG;
/*
* IO Cell parameter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVB);
AHD_SET_AMPLITUDE(ahd, AHD_AMPLITUDE_DEF);
/*
* Set the PREQDIS bit for H2B which disables some workaround
* that doesn't work on regular PCI busses.
* XXX - Find out exactly what this does from the hardware
* folks!
*/
devconfig1 = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG1);
pci_conf_write(pa->pa_pc, pa->pa_tag, DEVCONFIG1, devconfig1|PREQDIS);
devconfig1 = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG1);
}
return (0);
}