src/sys/dev/pci/if_vte.c

1500 lines
40 KiB
C

/* $OpenBSD: if_vte.c,v 1.26 2022/04/19 03:25:46 kevlo Exp $ */
/*-
* Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/timeout.h>
#include <sys/socket.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_vtereg.h>
int vte_match(struct device *, void *, void *);
void vte_attach(struct device *, struct device *, void *);
int vte_detach(struct device *, int);
int vte_miibus_readreg(struct device *, int, int);
void vte_miibus_writereg(struct device *, int, int, int);
void vte_miibus_statchg(struct device *);
int vte_init(struct ifnet *);
void vte_start(struct ifnet *);
int vte_ioctl(struct ifnet *, u_long, caddr_t);
void vte_watchdog(struct ifnet *);
int vte_mediachange(struct ifnet *);
void vte_mediastatus(struct ifnet *, struct ifmediareq *);
int vte_intr(void *);
int vte_dma_alloc(struct vte_softc *);
void vte_dma_free(struct vte_softc *);
struct vte_txdesc *
vte_encap(struct vte_softc *, struct mbuf **);
void vte_get_macaddr(struct vte_softc *);
int vte_init_rx_ring(struct vte_softc *);
int vte_init_tx_ring(struct vte_softc *);
void vte_mac_config(struct vte_softc *);
int vte_newbuf(struct vte_softc *, struct vte_rxdesc *, int);
void vte_reset(struct vte_softc *);
void vte_rxeof(struct vte_softc *);
void vte_iff(struct vte_softc *);
void vte_start_mac(struct vte_softc *);
void vte_stats_clear(struct vte_softc *);
void vte_stats_update(struct vte_softc *);
void vte_stop(struct vte_softc *);
void vte_stop_mac(struct vte_softc *);
void vte_tick(void *);
void vte_txeof(struct vte_softc *);
const struct pci_matchid vte_devices[] = {
{ PCI_VENDOR_RDC, PCI_PRODUCT_RDC_R6040_ETHER }
};
const struct cfattach vte_ca = {
sizeof(struct vte_softc), vte_match, vte_attach
};
struct cfdriver vte_cd = {
NULL, "vte", DV_IFNET
};
int vtedebug = 0;
#define DPRINTF(x) do { if (vtedebug) printf x; } while (0)
int
vte_miibus_readreg(struct device *dev, int phy, int reg)
{
struct vte_softc *sc = (struct vte_softc *)dev;
int i;
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
break;
}
if (i == 0) {
printf("%s: phy read timeout: phy %d, reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
return (0);
}
return (CSR_READ_2(sc, VTE_MMRD));
}
void
vte_miibus_writereg(struct device *dev, int phy, int reg, int val)
{
struct vte_softc *sc = (struct vte_softc *)dev;
int i;
CSR_WRITE_2(sc, VTE_MMWD, val);
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
break;
}
if (i == 0)
printf("%s: phy write timeout: phy %d, reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
}
void
vte_miibus_statchg(struct device *dev)
{
struct vte_softc *sc = (struct vte_softc *)dev;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mii_data *mii;
uint16_t val;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
mii = &sc->sc_miibus;
sc->vte_flags &= ~VTE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->vte_flags |= VTE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop RX/TX MACs. */
vte_stop_mac(sc);
/* Program MACs with resolved duplex and flow control. */
if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
/*
* Timer waiting time : (63 + TIMER * 64) MII clock.
* MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
*/
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
val = 18 << VTE_IM_TIMER_SHIFT;
else
val = 1 << VTE_IM_TIMER_SHIFT;
sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
CSR_WRITE_2(sc, VTE_MRICR, val);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
val = 18 << VTE_IM_TIMER_SHIFT;
else
val = 1 << VTE_IM_TIMER_SHIFT;
sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
CSR_WRITE_2(sc, VTE_MTICR, val);
vte_mac_config(sc);
vte_start_mac(sc);
}
}
void
vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vte_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
int
vte_mediachange(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
int error;
if (mii->mii_instance != 0) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
return (error);
}
int
vte_match(struct device *dev, void *match, void *aux)
{
return pci_matchbyid((struct pci_attach_args *)aux, vte_devices,
sizeof(vte_devices) / sizeof(vte_devices[0]));
}
void
vte_get_macaddr(struct vte_softc *sc)
{
uint16_t mid;
/*
* It seems there is no way to reload station address and
* it is supposed to be set by BIOS.
*/
mid = CSR_READ_2(sc, VTE_MID0L);
sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
mid = CSR_READ_2(sc, VTE_MID0M);
sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
mid = CSR_READ_2(sc, VTE_MID0H);
sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
}
void
vte_attach(struct device *parent, struct device *self, void *aux)
{
struct vte_softc *sc = (struct vte_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp;
pcireg_t memtype;
int error = 0;
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, VTE_PCI_LOMEM);
if (pci_mapreg_map(pa, VTE_PCI_LOMEM, memtype, 0, &sc->sc_mem_bt,
&sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
printf(": can't map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
printf(": can't map interrupt\n");
goto fail;
}
/*
* Allocate IRQ
*/
intrstr = pci_intr_string(pc, ih);
sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, vte_intr, sc,
sc->sc_dev.dv_xname);
if (sc->sc_irq_handle == NULL) {
printf(": could not establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail;
}
printf(": %s", intrstr);
sc->sc_dmat = pa->pa_dmat;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
/* Reset the ethernet controller. */
vte_reset(sc);
error = vte_dma_alloc(sc);
if (error)
goto fail;
/* Load station address. */
vte_get_macaddr(sc);
ifp = &sc->sc_arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vte_ioctl;
ifp->if_start = vte_start;
ifp->if_watchdog = vte_watchdog;
ifq_set_maxlen(&ifp->if_snd, VTE_TX_RING_CNT - 1);
bcopy(sc->vte_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
/*
* Set up MII bus.
* BIOS would have initialized VTE_MPSCCR to catch PHY
* status changes so driver may be able to extract
* configured PHY address. Since it's common to see BIOS
* fails to initialize the register(including the sample
* board I have), let mii(4) probe it. This is more
* reliable than relying on BIOS's initialization.
*
* Advertising flow control capability to mii(4) was
* intentionally disabled due to severe problems in TX
* pause frame generation. See vte_rxeof() for more
* details.
*/
sc->sc_miibus.mii_ifp = ifp;
sc->sc_miibus.mii_readreg = vte_miibus_readreg;
sc->sc_miibus.mii_writereg = vte_miibus_writereg;
sc->sc_miibus.mii_statchg = vte_miibus_statchg;
ifmedia_init(&sc->sc_miibus.mii_media, 0, vte_mediachange,
vte_mediastatus);
mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp);
timeout_set(&sc->vte_tick_ch, vte_tick, sc);
return;
fail:
vte_detach(&sc->sc_dev, 0);
}
int
vte_detach(struct device *self, int flags)
{
struct vte_softc *sc = (struct vte_softc *)self;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int s;
s = splnet();
vte_stop(sc);
splx(s);
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
vte_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
return (0);
}
int
vte_dma_alloc(struct vte_softc *sc)
{
struct vte_txdesc *txd;
struct vte_rxdesc *rxd;
int error, i, nsegs;
/* Create DMA stuffs for TX ring */
error = bus_dmamap_create(sc->sc_dmat, VTE_TX_RING_SZ, 1,
VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->vte_cdata.vte_tx_ring_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for TX ring */
error = bus_dmamem_alloc(sc->sc_dmat, VTE_TX_RING_SZ, ETHER_ALIGN,
0, &sc->vte_cdata.vte_tx_ring_seg, 1, &nsegs,
BUS_DMA_WAITOK | BUS_DMA_ZERO);
if (error) {
printf("%s: could not allocate DMA'able memory for Tx ring.\n",
sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamem_map(sc->sc_dmat, &sc->vte_cdata.vte_tx_ring_seg,
nsegs, VTE_TX_RING_SZ, (caddr_t *)&sc->vte_cdata.vte_tx_ring,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for Tx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map,
sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Tx ring.\n",
sc->sc_dev.dv_xname);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)&sc->vte_cdata.vte_tx_ring, 1);
return (error);
}
sc->vte_cdata.vte_tx_ring_paddr =
sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
/* Create DMA stuffs for RX ring */
error = bus_dmamap_create(sc->sc_dmat, VTE_RX_RING_SZ, 1,
VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->vte_cdata.vte_rx_ring_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for RX ring */
error = bus_dmamem_alloc(sc->sc_dmat, VTE_RX_RING_SZ, ETHER_ALIGN,
0, &sc->vte_cdata.vte_rx_ring_seg, 1, &nsegs,
BUS_DMA_WAITOK | BUS_DMA_ZERO);
if (error) {
printf("%s: could not allocate DMA'able memory for Rx ring.\n",
sc->sc_dev.dv_xname);
return (error);
}
error = bus_dmamem_map(sc->sc_dmat, &sc->vte_cdata.vte_rx_ring_seg,
nsegs, VTE_RX_RING_SZ, (caddr_t *)&sc->vte_cdata.vte_rx_ring,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for Rx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map,
sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Rx ring.\n",
sc->sc_dev.dv_xname);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->vte_cdata.vte_rx_ring, 1);
return (error);
}
sc->vte_cdata.vte_rx_ring_paddr =
sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &txd->tx_dmamap);
if (error) {
printf("%s: could not create Tx dmamap.\n",
sc->sc_dev.dv_xname);
return (error);
}
}
/* Create DMA maps for Rx buffers. */
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &sc->vte_cdata.vte_rx_sparemap);
if (error) {
printf("%s: could not create spare Rx dmamap.\n",
sc->sc_dev.dv_xname);
return (error);
}
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
if (error) {
printf("%s: could not create Rx dmamap.\n",
sc->sc_dev.dv_xname);
return (error);
}
}
return (0);
}
void
vte_dma_free(struct vte_softc *sc)
{
struct vte_txdesc *txd;
struct vte_rxdesc *rxd;
int i;
/* TX buffers. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
/* Rx buffers */
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->vte_cdata.vte_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, sc->vte_cdata.vte_rx_sparemap);
sc->vte_cdata.vte_rx_sparemap = NULL;
}
/* TX descriptor ring. */
if (sc->vte_cdata.vte_tx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map);
if (sc->vte_cdata.vte_tx_ring_map != NULL &&
sc->vte_cdata.vte_tx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->vte_cdata.vte_tx_ring, 1);
sc->vte_cdata.vte_tx_ring = NULL;
sc->vte_cdata.vte_tx_ring_map = NULL;
/* RX ring. */
if (sc->vte_cdata.vte_rx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map);
if (sc->vte_cdata.vte_rx_ring_map != NULL &&
sc->vte_cdata.vte_rx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->vte_cdata.vte_rx_ring, 1);
sc->vte_cdata.vte_rx_ring = NULL;
sc->vte_cdata.vte_rx_ring_map = NULL;
}
struct vte_txdesc *
vte_encap(struct vte_softc *sc, struct mbuf **m_head)
{
struct vte_txdesc *txd;
struct mbuf *m, *n;
int copy, error, padlen;
txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
m = *m_head;
/*
* Controller doesn't auto-pad, so we have to make sure pad
* short frames out to the minimum frame length.
*/
if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
else
padlen = 0;
/*
* Controller does not support multi-fragmented TX buffers.
* Controller spends most of its TX processing time in
* de-fragmenting TX buffers. Either faster CPU or more
* advanced controller DMA engine is required to speed up
* TX path processing.
* To mitigate the de-fragmenting issue, perform deep copy
* from fragmented mbuf chains to a pre-allocated mbuf
* cluster with extra cost of kernel memory. For frames
* that is composed of single TX buffer, the deep copy is
* bypassed.
*/
copy = 0;
if (m->m_next != NULL)
copy++;
if (padlen > 0 && (padlen > m_trailingspace(m)))
copy++;
if (copy != 0) {
/* Avoid expensive m_defrag(9) and do deep copy. */
n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
n->m_pkthdr.len = m->m_pkthdr.len;
n->m_len = m->m_pkthdr.len;
m = n;
txd->tx_flags |= VTE_TXMBUF;
}
if (padlen > 0) {
/* Zero out the bytes in the pad area. */
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, txd->tx_dmamap, m,
BUS_DMA_NOWAIT);
if (error != 0) {
txd->tx_flags &= ~VTE_TXMBUF;
return (NULL);
}
bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
txd->tx_desc->dtlen =
htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
sc->vte_cdata.vte_tx_cnt++;
/* Update producer index. */
VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
/* Finally hand over ownership to controller. */
txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
txd->tx_m = m;
return (txd);
}
void
vte_start(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
struct vte_txdesc *txd;
struct mbuf *m_head;
int enq = 0;
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
for (;;) {
/* Reserve one free TX descriptor. */
if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
ifq_set_oactive(&ifp->if_snd);
break;
}
m_head = ifq_dequeue(&ifp->if_snd);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if ((txd = vte_encap(sc, &m_head)) == NULL) {
break;
}
enq++;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf != NULL)
bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
#endif
/* Free consumed TX frame. */
if ((txd->tx_flags & VTE_TXMBUF) != 0)
m_freem(m_head);
}
if (enq > 0) {
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map, 0,
sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
ifp->if_timer = VTE_TX_TIMEOUT;
}
}
void
vte_watchdog(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
vte_init(ifp);
if (!ifq_empty(&ifp->if_snd))
vte_start(ifp);
}
int
vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct vte_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
vte_init(ifp);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
vte_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
vte_stop(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
break;
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
vte_iff(sc);
error = 0;
}
splx(s);
return (error);
}
void
vte_mac_config(struct vte_softc *sc)
{
struct mii_data *mii;
uint16_t mcr;
mii = &sc->sc_miibus;
mcr = CSR_READ_2(sc, VTE_MCR0);
mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
mcr |= MCR0_FULL_DUPLEX;
#ifdef notyet
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
mcr |= MCR0_FC_ENB;
/*
* The data sheet is not clear whether the controller
* honors received pause frames or not. The is no
* separate control bit for RX pause frame so just
* enable MCR0_FC_ENB bit.
*/
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
mcr |= MCR0_FC_ENB;
#endif
}
CSR_WRITE_2(sc, VTE_MCR0, mcr);
}
void
vte_stats_clear(struct vte_softc *sc)
{
/* Reading counter registers clears its contents. */
CSR_READ_2(sc, VTE_CNT_RX_DONE);
CSR_READ_2(sc, VTE_CNT_MECNT0);
CSR_READ_2(sc, VTE_CNT_MECNT1);
CSR_READ_2(sc, VTE_CNT_MECNT2);
CSR_READ_2(sc, VTE_CNT_MECNT3);
CSR_READ_2(sc, VTE_CNT_TX_DONE);
CSR_READ_2(sc, VTE_CNT_MECNT4);
CSR_READ_2(sc, VTE_CNT_PAUSE);
}
void
vte_stats_update(struct vte_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct vte_hw_stats *stat;
uint16_t value;
stat = &sc->vte_stats;
CSR_READ_2(sc, VTE_MECISR);
/* RX stats. */
stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
value = CSR_READ_2(sc, VTE_CNT_MECNT0);
stat->rx_bcast_frames += (value >> 8);
stat->rx_mcast_frames += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_MECNT1);
stat->rx_runts += (value >> 8);
stat->rx_crcerrs += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_MECNT2);
stat->rx_long_frames += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_MECNT3);
stat->rx_fifo_full += (value >> 8);
stat->rx_desc_unavail += (value & 0xFF);
/* TX stats. */
stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
value = CSR_READ_2(sc, VTE_CNT_MECNT4);
stat->tx_underruns += (value >> 8);
stat->tx_late_colls += (value & 0xFF);
value = CSR_READ_2(sc, VTE_CNT_PAUSE);
stat->tx_pause_frames += (value >> 8);
stat->rx_pause_frames += (value & 0xFF);
/* Update ifp counters. */
ifp->if_collisions = stat->tx_late_colls;
ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
stat->rx_long_frames + stat->rx_fifo_full;
}
int
vte_intr(void *arg)
{
struct vte_softc *sc = arg;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
uint16_t status;
int n;
int claimed = 0;
/* Reading VTE_MISR acknowledges interrupts. */
status = CSR_READ_2(sc, VTE_MISR);
if ((status & VTE_INTRS) == 0)
return (0);
/* Disable interrupts. */
CSR_WRITE_2(sc, VTE_MIER, 0);
for (n = 8; (status & VTE_INTRS) != 0;) {
if ((ifp->if_flags & IFF_RUNNING) == 0)
break;
claimed = 1;
if (status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
MISR_RX_FIFO_FULL))
vte_rxeof(sc);
if (status & MISR_TX_DONE)
vte_txeof(sc);
if (status & MISR_EVENT_CNT_OFLOW)
vte_stats_update(sc);
if (!ifq_empty(&ifp->if_snd))
vte_start(ifp);
if (--n > 0)
status = CSR_READ_2(sc, VTE_MISR);
else
break;
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
return (claimed);
}
void
vte_txeof(struct vte_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct vte_txdesc *txd;
uint16_t status;
int cons, prog;
if (sc->vte_cdata.vte_tx_cnt == 0)
return;
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map, 0,
sc->vte_cdata.vte_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
cons = sc->vte_cdata.vte_tx_cons;
/*
* Go through our TX list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
txd = &sc->vte_cdata.vte_txdesc[cons];
status = letoh16(txd->tx_desc->dtst);
if (status & VTE_DTST_TX_OWN)
break;
sc->vte_cdata.vte_tx_cnt--;
/* Reclaim transmitted mbufs. */
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
if ((txd->tx_flags & VTE_TXMBUF) == 0)
m_freem(txd->tx_m);
txd->tx_flags &= ~VTE_TXMBUF;
txd->tx_m = NULL;
prog++;
VTE_DESC_INC(cons, VTE_TX_RING_CNT);
}
if (prog > 0) {
ifq_clr_oactive(&ifp->if_snd);
sc->vte_cdata.vte_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* frames in TX queue.
*/
if (sc->vte_cdata.vte_tx_cnt == 0)
ifp->if_timer = 0;
}
}
int
vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd, int init)
{
struct mbuf *m;
bus_dmamap_t map;
int error;
MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return (ENOBUFS);
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(uint32_t));
error = bus_dmamap_load_mbuf(sc->sc_dmat,
sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT);
if (error != 0) {
if (!error) {
bus_dmamap_unload(sc->sc_dmat,
sc->vte_cdata.vte_rx_sparemap);
error = EFBIG;
printf("%s: too many segments?!\n",
sc->sc_dev.dv_xname);
}
m_freem(m);
if (init)
printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
return (error);
}
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
sc->vte_cdata.vte_rx_sparemap = map;
rxd->rx_m = m;
rxd->rx_desc->drbp = htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
rxd->rx_desc->drlen =
htole16(VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
return (0);
}
void
vte_rxeof(struct vte_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct vte_rxdesc *rxd;
struct mbuf *m;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
uint16_t status, total_len;
int cons, prog;
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map, 0,
sc->vte_cdata.vte_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
cons = sc->vte_cdata.vte_rx_cons;
for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
rxd = &sc->vte_cdata.vte_rxdesc[cons];
status = letoh16(rxd->rx_desc->drst);
if (status & VTE_DRST_RX_OWN)
break;
total_len = VTE_RX_LEN(letoh16(rxd->rx_desc->drlen));
m = rxd->rx_m;
if ((status & VTE_DRST_RX_OK) == 0) {
/* Discard errored frame. */
rxd->rx_desc->drlen =
htole16(MCLBYTES - sizeof(uint32_t));
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
continue;
}
if (vte_newbuf(sc, rxd, 0) != 0) {
ifp->if_iqdrops++;
rxd->rx_desc->drlen =
htole16(MCLBYTES - sizeof(uint32_t));
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
continue;
}
/*
* It seems there is no way to strip FCS bytes.
*/
m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
ml_enqueue(&ml, m);
}
if_input(ifp, &ml);
if (prog > 0) {
/* Update the consumer index. */
sc->vte_cdata.vte_rx_cons = cons;
/*
* Sync updated RX descriptors such that controller see
* modified RX buffer addresses.
*/
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map, 0,
sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
#ifdef notyet
/*
* Update residue counter. Controller does not
* keep track of number of available RX descriptors
* such that driver should have to update VTE_MRDCR
* to make controller know how many free RX
* descriptors were added to controller. This is
* a similar mechanism used in VIA velocity
* controllers and it indicates controller just
* polls OWN bit of current RX descriptor pointer.
* A couple of severe issues were seen on sample
* board where the controller continuously emits TX
* pause frames once RX pause threshold crossed.
* Once triggered it never recovered form that
* state, I couldn't find a way to make it back to
* work at least. This issue effectively
* disconnected the system from network. Also, the
* controller used 00:00:00:00:00:00 as source
* station address of TX pause frame. Probably this
* is one of reason why vendor recommends not to
* enable flow control on R6040 controller.
*/
CSR_WRITE_2(sc, VTE_MRDCR, prog |
(((VTE_RX_RING_CNT * 2) / 10) <<
VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
#endif
}
}
void
vte_tick(void *arg)
{
struct vte_softc *sc = arg;
struct mii_data *mii = &sc->sc_miibus;
int s;
s = splnet();
mii_tick(mii);
vte_stats_update(sc);
timeout_add_sec(&sc->vte_tick_ch, 1);
splx(s);
}
void
vte_reset(struct vte_softc *sc)
{
uint16_t mcr, mdcsc;
int i;
mdcsc = CSR_READ_2(sc, VTE_MDCSC);
mcr = CSR_READ_2(sc, VTE_MCR1);
CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
break;
}
if (i == 0)
printf("%s: reset timeout(0x%04x)!\n", sc->sc_dev.dv_xname,
mcr);
/*
* Follow the guide of vendor recommended way to reset MAC.
* Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
* not reliable so manually reset internal state machine.
*/
CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
CSR_WRITE_2(sc, VTE_MACSM, 0);
DELAY(5000);
/*
* On some SoCs (like Vortex86DX3) MDC speed control register value
* needs to be restored to original value instead of default one,
* otherwise some PHY registers may fail to be read.
*/
if (mdcsc != MDCSC_DEFAULT)
CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
}
int
vte_init(struct ifnet *ifp)
{
struct vte_softc *sc = ifp->if_softc;
bus_addr_t paddr;
uint8_t *eaddr;
int error;
/*
* Cancel any pending I/O.
*/
vte_stop(sc);
/*
* Reset the chip to a known state.
*/
vte_reset(sc);
/* Initialize RX descriptors. */
error = vte_init_rx_ring(sc);
if (error != 0) {
printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
vte_stop(sc);
return (error);
}
error = vte_init_tx_ring(sc);
if (error != 0) {
printf("%s: no memory for Tx buffers.\n", sc->sc_dev.dv_xname);
vte_stop(sc);
return (error);
}
/*
* Reprogram the station address. Controller supports up
* to 4 different station addresses so driver programs the
* first station address as its own ethernet address and
* configure the remaining three addresses as perfect
* multicast addresses.
*/
eaddr = LLADDR(ifp->if_sadl);
CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
/* Set TX descriptor base addresses. */
paddr = sc->vte_cdata.vte_tx_ring_paddr;
CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
/* Set RX descriptor base addresses. */
paddr = sc->vte_cdata.vte_rx_ring_paddr;
CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
/*
* Initialize RX descriptor residue counter and set RX
* pause threshold to 20% of available RX descriptors.
* See comments on vte_rxeof() for details on flow control
* issues.
*/
CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
(((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
/*
* Always use maximum frame size that controller can
* support. Otherwise received frames that has longer
* frame length than vte(4) MTU would be silently dropped
* in controller. This would break path-MTU discovery as
* sender wouldn't get any responses from receiver. The
* RX buffer size should be multiple of 4.
* Note, jumbo frames are silently ignored by controller
* and even MAC counters do not detect them.
*/
CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
/* Configure FIFO. */
CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
/*
* Configure TX/RX MACs. Actual resolved duplex and flow
* control configuration is done after detecting a valid
* link. Note, we don't generate early interrupt here
* as well since FreeBSD does not have interrupt latency
* problems like Windows.
*/
CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
/*
* We manually keep track of PHY status changes to
* configure resolved duplex and flow control since only
* duplex configuration can be automatically reflected to
* MCR0.
*/
CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
MCR1_EXCESS_COL_RETRY_16);
/* Initialize RX filter. */
vte_iff(sc);
/* Disable TX/RX interrupt moderation control. */
CSR_WRITE_2(sc, VTE_MRICR, 0);
CSR_WRITE_2(sc, VTE_MTICR, 0);
/* Enable MAC event counter interrupts. */
CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
/* Clear MAC statistics. */
vte_stats_clear(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
CSR_WRITE_2(sc, VTE_MISR, 0);
sc->vte_flags &= ~VTE_FLAG_LINK;
/* Switch to the current media. */
vte_mediachange(ifp);
timeout_add_sec(&sc->vte_tick_ch, 1);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
return (0);
}
void
vte_stop(struct vte_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct vte_txdesc *txd;
struct vte_rxdesc *rxd;
int i;
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ifp->if_timer = 0;
sc->vte_flags &= ~VTE_FLAG_LINK;
timeout_del(&sc->vte_tick_ch);
vte_stats_update(sc);
/* Disable interrupts. */
CSR_WRITE_2(sc, VTE_MIER, 0);
CSR_WRITE_2(sc, VTE_MECIER, 0);
/* Stop RX/TX MACs. */
vte_stop_mac(sc);
/* Clear interrupts. */
CSR_READ_2(sc, VTE_MISR);
/*
* Free TX/RX mbufs still in the queues.
*/
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
if ((txd->tx_flags & VTE_TXMBUF) == 0)
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_flags &= ~VTE_TXMBUF;
}
}
/* Free TX mbuf pools used for deep copy. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
m_freem(sc->vte_cdata.vte_txmbufs[i]);
sc->vte_cdata.vte_txmbufs[i] = NULL;
}
}
}
void
vte_start_mac(struct vte_softc *sc)
{
uint16_t mcr;
int i;
/* Enable RX/TX MACs. */
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
(MCR0_RX_ENB | MCR0_TX_ENB)) {
mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
CSR_WRITE_2(sc, VTE_MCR0, mcr);
for (i = VTE_TIMEOUT; i > 0; i--) {
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
(MCR0_RX_ENB | MCR0_TX_ENB))
break;
DELAY(10);
}
if (i == 0)
printf("%s: could not enable RX/TX MAC(0x%04x)!\n",
sc->sc_dev.dv_xname, mcr);
}
}
void
vte_stop_mac(struct vte_softc *sc)
{
uint16_t mcr;
int i;
/* Disable RX/TX MACs. */
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
CSR_WRITE_2(sc, VTE_MCR0, mcr);
for (i = VTE_TIMEOUT; i > 0; i--) {
mcr = CSR_READ_2(sc, VTE_MCR0);
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: could not disable RX/TX MAC(0x%04x)!\n",
sc->sc_dev.dv_xname, mcr);
}
}
int
vte_init_tx_ring(struct vte_softc *sc)
{
struct vte_tx_desc *desc;
struct vte_txdesc *txd;
bus_addr_t addr;
int i;
sc->vte_cdata.vte_tx_prod = 0;
sc->vte_cdata.vte_tx_cons = 0;
sc->vte_cdata.vte_tx_cnt = 0;
/* Pre-allocate TX mbufs for deep copy. */
for (i = 0; i < VTE_TX_RING_CNT; i++) {
MGETHDR(sc->vte_cdata.vte_txmbufs[i],
M_DONTWAIT, MT_DATA);
if (sc->vte_cdata.vte_txmbufs[i] == NULL)
return (ENOBUFS);
MCLGET(sc->vte_cdata.vte_txmbufs[i], M_DONTWAIT);
if (!(sc->vte_cdata.vte_txmbufs[i]->m_flags & M_EXT)) {
m_freem(sc->vte_cdata.vte_txmbufs[i]);
sc->vte_cdata.vte_txmbufs[i] = NULL;
return (ENOBUFS);
}
sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
}
desc = sc->vte_cdata.vte_tx_ring;
bzero(desc, VTE_TX_RING_SZ);
for (i = 0; i < VTE_TX_RING_CNT; i++) {
txd = &sc->vte_cdata.vte_txdesc[i];
txd->tx_m = NULL;
if (i != VTE_TX_RING_CNT - 1)
addr = sc->vte_cdata.vte_tx_ring_paddr +
sizeof(struct vte_tx_desc) * (i + 1);
else
addr = sc->vte_cdata.vte_tx_ring_paddr +
sizeof(struct vte_tx_desc) * 0;
desc = &sc->vte_cdata.vte_tx_ring[i];
desc->dtnp = htole32(addr);
txd->tx_desc = desc;
}
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map, 0,
sc->vte_cdata.vte_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return (0);
}
int
vte_init_rx_ring(struct vte_softc *sc)
{
struct vte_rx_desc *desc;
struct vte_rxdesc *rxd;
bus_addr_t addr;
int i;
sc->vte_cdata.vte_rx_cons = 0;
desc = sc->vte_cdata.vte_rx_ring;
bzero(desc, VTE_RX_RING_SZ);
for (i = 0; i < VTE_RX_RING_CNT; i++) {
rxd = &sc->vte_cdata.vte_rxdesc[i];
rxd->rx_m = NULL;
if (i != VTE_RX_RING_CNT - 1)
addr = sc->vte_cdata.vte_rx_ring_paddr +
sizeof(struct vte_rx_desc) * (i + 1);
else
addr = sc->vte_cdata.vte_rx_ring_paddr +
sizeof(struct vte_rx_desc) * 0;
desc = &sc->vte_cdata.vte_rx_ring[i];
desc->drnp = htole32(addr);
rxd->rx_desc = desc;
if (vte_newbuf(sc, rxd, 1) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map, 0,
sc->vte_cdata.vte_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return (0);
}
void
vte_iff(struct vte_softc *sc)
{
struct arpcom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
struct ether_multistep step;
uint8_t *eaddr;
uint32_t crc;
uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
uint16_t mchash[4], mcr;
int i, nperf;
bzero(mchash, sizeof(mchash));
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
rxfilt_perf[i][0] = 0xFFFF;
rxfilt_perf[i][1] = 0xFFFF;
rxfilt_perf[i][2] = 0xFFFF;
}
mcr = CSR_READ_2(sc, VTE_MCR0);
mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
mcr |= MCR0_PROMISC;
else
mcr |= MCR0_MULTICAST;
mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xFFFF;
} else {
nperf = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
/*
* Program the first 3 multicast groups into
* the perfect filter. For all others, use the
* hash table.
*/
if (nperf < VTE_RXFILT_PERFECT_CNT) {
eaddr = enm->enm_addrlo;
rxfilt_perf[nperf][0] =
eaddr[1] << 8 | eaddr[0];
rxfilt_perf[nperf][1] =
eaddr[3] << 8 | eaddr[2];
rxfilt_perf[nperf][2] =
eaddr[5] << 8 | eaddr[4];
nperf++;
continue;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
ETHER_NEXT_MULTI(step, enm);
}
if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
mchash[3] != 0)
mcr |= MCR0_MULTICAST;
}
/* Program multicast hash table. */
CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
/* Program perfect filter table. */
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
rxfilt_perf[i][0]);
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
rxfilt_perf[i][1]);
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
rxfilt_perf[i][2]);
}
CSR_WRITE_2(sc, VTE_MCR0, mcr);
CSR_READ_2(sc, VTE_MCR0);
}