1500 lines
40 KiB
C
1500 lines
40 KiB
C
/* $OpenBSD: if_vte.c,v 1.26 2022/04/19 03:25:46 kevlo Exp $ */
|
|
/*-
|
|
* Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
#include <sys/timeout.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_vtereg.h>
|
|
|
|
int vte_match(struct device *, void *, void *);
|
|
void vte_attach(struct device *, struct device *, void *);
|
|
int vte_detach(struct device *, int);
|
|
|
|
int vte_miibus_readreg(struct device *, int, int);
|
|
void vte_miibus_writereg(struct device *, int, int, int);
|
|
void vte_miibus_statchg(struct device *);
|
|
|
|
int vte_init(struct ifnet *);
|
|
void vte_start(struct ifnet *);
|
|
int vte_ioctl(struct ifnet *, u_long, caddr_t);
|
|
void vte_watchdog(struct ifnet *);
|
|
int vte_mediachange(struct ifnet *);
|
|
void vte_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
int vte_intr(void *);
|
|
int vte_dma_alloc(struct vte_softc *);
|
|
void vte_dma_free(struct vte_softc *);
|
|
struct vte_txdesc *
|
|
vte_encap(struct vte_softc *, struct mbuf **);
|
|
void vte_get_macaddr(struct vte_softc *);
|
|
int vte_init_rx_ring(struct vte_softc *);
|
|
int vte_init_tx_ring(struct vte_softc *);
|
|
void vte_mac_config(struct vte_softc *);
|
|
int vte_newbuf(struct vte_softc *, struct vte_rxdesc *, int);
|
|
void vte_reset(struct vte_softc *);
|
|
void vte_rxeof(struct vte_softc *);
|
|
void vte_iff(struct vte_softc *);
|
|
void vte_start_mac(struct vte_softc *);
|
|
void vte_stats_clear(struct vte_softc *);
|
|
void vte_stats_update(struct vte_softc *);
|
|
void vte_stop(struct vte_softc *);
|
|
void vte_stop_mac(struct vte_softc *);
|
|
void vte_tick(void *);
|
|
void vte_txeof(struct vte_softc *);
|
|
|
|
const struct pci_matchid vte_devices[] = {
|
|
{ PCI_VENDOR_RDC, PCI_PRODUCT_RDC_R6040_ETHER }
|
|
};
|
|
|
|
const struct cfattach vte_ca = {
|
|
sizeof(struct vte_softc), vte_match, vte_attach
|
|
};
|
|
|
|
struct cfdriver vte_cd = {
|
|
NULL, "vte", DV_IFNET
|
|
};
|
|
|
|
int vtedebug = 0;
|
|
#define DPRINTF(x) do { if (vtedebug) printf x; } while (0)
|
|
|
|
int
|
|
vte_miibus_readreg(struct device *dev, int phy, int reg)
|
|
{
|
|
struct vte_softc *sc = (struct vte_softc *)dev;
|
|
int i;
|
|
|
|
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
|
|
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
|
|
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0) {
|
|
printf("%s: phy read timeout: phy %d, reg %d\n",
|
|
sc->sc_dev.dv_xname, phy, reg);
|
|
return (0);
|
|
}
|
|
|
|
return (CSR_READ_2(sc, VTE_MMRD));
|
|
}
|
|
|
|
void
|
|
vte_miibus_writereg(struct device *dev, int phy, int reg, int val)
|
|
{
|
|
struct vte_softc *sc = (struct vte_softc *)dev;
|
|
int i;
|
|
|
|
CSR_WRITE_2(sc, VTE_MMWD, val);
|
|
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
|
|
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
|
|
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0)
|
|
printf("%s: phy write timeout: phy %d, reg %d\n",
|
|
sc->sc_dev.dv_xname, phy, reg);
|
|
}
|
|
|
|
void
|
|
vte_miibus_statchg(struct device *dev)
|
|
{
|
|
struct vte_softc *sc = (struct vte_softc *)dev;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct mii_data *mii;
|
|
uint16_t val;
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
|
return;
|
|
|
|
mii = &sc->sc_miibus;
|
|
|
|
sc->vte_flags &= ~VTE_FLAG_LINK;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
sc->vte_flags |= VTE_FLAG_LINK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Stop RX/TX MACs. */
|
|
vte_stop_mac(sc);
|
|
/* Program MACs with resolved duplex and flow control. */
|
|
if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
|
|
/*
|
|
* Timer waiting time : (63 + TIMER * 64) MII clock.
|
|
* MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
|
|
*/
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
|
|
val = 18 << VTE_IM_TIMER_SHIFT;
|
|
else
|
|
val = 1 << VTE_IM_TIMER_SHIFT;
|
|
sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
|
|
val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
|
|
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
|
|
CSR_WRITE_2(sc, VTE_MRICR, val);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
|
|
val = 18 << VTE_IM_TIMER_SHIFT;
|
|
else
|
|
val = 1 << VTE_IM_TIMER_SHIFT;
|
|
sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
|
|
val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
|
|
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
|
|
CSR_WRITE_2(sc, VTE_MTICR, val);
|
|
|
|
vte_mac_config(sc);
|
|
vte_start_mac(sc);
|
|
}
|
|
}
|
|
|
|
void
|
|
vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct vte_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_miibus;
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
}
|
|
|
|
int
|
|
vte_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct vte_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_miibus;
|
|
int error;
|
|
|
|
if (mii->mii_instance != 0) {
|
|
struct mii_softc *miisc;
|
|
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
mii_phy_reset(miisc);
|
|
}
|
|
error = mii_mediachg(mii);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vte_match(struct device *dev, void *match, void *aux)
|
|
{
|
|
return pci_matchbyid((struct pci_attach_args *)aux, vte_devices,
|
|
sizeof(vte_devices) / sizeof(vte_devices[0]));
|
|
}
|
|
|
|
void
|
|
vte_get_macaddr(struct vte_softc *sc)
|
|
{
|
|
uint16_t mid;
|
|
|
|
/*
|
|
* It seems there is no way to reload station address and
|
|
* it is supposed to be set by BIOS.
|
|
*/
|
|
mid = CSR_READ_2(sc, VTE_MID0L);
|
|
sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
|
|
sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
|
|
mid = CSR_READ_2(sc, VTE_MID0M);
|
|
sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
|
|
sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
|
|
mid = CSR_READ_2(sc, VTE_MID0H);
|
|
sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
|
|
sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
|
|
}
|
|
|
|
void
|
|
vte_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct vte_softc *sc = (struct vte_softc *)self;
|
|
struct pci_attach_args *pa = aux;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr;
|
|
struct ifnet *ifp;
|
|
pcireg_t memtype;
|
|
int error = 0;
|
|
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, VTE_PCI_LOMEM);
|
|
if (pci_mapreg_map(pa, VTE_PCI_LOMEM, memtype, 0, &sc->sc_mem_bt,
|
|
&sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
|
|
printf(": can't map mem space\n");
|
|
return;
|
|
}
|
|
|
|
if (pci_intr_map(pa, &ih) != 0) {
|
|
printf(": can't map interrupt\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate IRQ
|
|
*/
|
|
intrstr = pci_intr_string(pc, ih);
|
|
sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, vte_intr, sc,
|
|
sc->sc_dev.dv_xname);
|
|
if (sc->sc_irq_handle == NULL) {
|
|
printf(": could not establish interrupt");
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
goto fail;
|
|
}
|
|
printf(": %s", intrstr);
|
|
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
sc->sc_pct = pa->pa_pc;
|
|
sc->sc_pcitag = pa->pa_tag;
|
|
|
|
/* Reset the ethernet controller. */
|
|
vte_reset(sc);
|
|
|
|
error = vte_dma_alloc(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
/* Load station address. */
|
|
vte_get_macaddr(sc);
|
|
|
|
ifp = &sc->sc_arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = vte_ioctl;
|
|
ifp->if_start = vte_start;
|
|
ifp->if_watchdog = vte_watchdog;
|
|
ifq_set_maxlen(&ifp->if_snd, VTE_TX_RING_CNT - 1);
|
|
bcopy(sc->vte_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
|
|
printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
|
|
|
|
/*
|
|
* Set up MII bus.
|
|
* BIOS would have initialized VTE_MPSCCR to catch PHY
|
|
* status changes so driver may be able to extract
|
|
* configured PHY address. Since it's common to see BIOS
|
|
* fails to initialize the register(including the sample
|
|
* board I have), let mii(4) probe it. This is more
|
|
* reliable than relying on BIOS's initialization.
|
|
*
|
|
* Advertising flow control capability to mii(4) was
|
|
* intentionally disabled due to severe problems in TX
|
|
* pause frame generation. See vte_rxeof() for more
|
|
* details.
|
|
*/
|
|
sc->sc_miibus.mii_ifp = ifp;
|
|
sc->sc_miibus.mii_readreg = vte_miibus_readreg;
|
|
sc->sc_miibus.mii_writereg = vte_miibus_writereg;
|
|
sc->sc_miibus.mii_statchg = vte_miibus_statchg;
|
|
|
|
ifmedia_init(&sc->sc_miibus.mii_media, 0, vte_mediachange,
|
|
vte_mediastatus);
|
|
mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
|
|
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
|
|
printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
|
|
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
|
|
0, NULL);
|
|
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
|
|
} else
|
|
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
timeout_set(&sc->vte_tick_ch, vte_tick, sc);
|
|
return;
|
|
fail:
|
|
vte_detach(&sc->sc_dev, 0);
|
|
}
|
|
|
|
int
|
|
vte_detach(struct device *self, int flags)
|
|
{
|
|
struct vte_softc *sc = (struct vte_softc *)self;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
int s;
|
|
|
|
s = splnet();
|
|
vte_stop(sc);
|
|
splx(s);
|
|
|
|
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
|
|
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
vte_dma_free(sc);
|
|
|
|
if (sc->sc_irq_handle != NULL) {
|
|
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
|
|
sc->sc_irq_handle = NULL;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vte_dma_alloc(struct vte_softc *sc)
|
|
{
|
|
struct vte_txdesc *txd;
|
|
struct vte_rxdesc *rxd;
|
|
int error, i, nsegs;
|
|
|
|
/* Create DMA stuffs for TX ring */
|
|
error = bus_dmamap_create(sc->sc_dmat, VTE_TX_RING_SZ, 1,
|
|
VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->vte_cdata.vte_tx_ring_map);
|
|
if (error)
|
|
return (ENOBUFS);
|
|
|
|
/* Allocate DMA'able memory for TX ring */
|
|
error = bus_dmamem_alloc(sc->sc_dmat, VTE_TX_RING_SZ, ETHER_ALIGN,
|
|
0, &sc->vte_cdata.vte_tx_ring_seg, 1, &nsegs,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO);
|
|
if (error) {
|
|
printf("%s: could not allocate DMA'able memory for Tx ring.\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &sc->vte_cdata.vte_tx_ring_seg,
|
|
nsegs, VTE_TX_RING_SZ, (caddr_t *)&sc->vte_cdata.vte_tx_ring,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
return (ENOBUFS);
|
|
|
|
/* Load the DMA map for Tx ring. */
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map,
|
|
sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not load DMA'able memory for Tx ring.\n",
|
|
sc->sc_dev.dv_xname);
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
(bus_dma_segment_t *)&sc->vte_cdata.vte_tx_ring, 1);
|
|
return (error);
|
|
}
|
|
|
|
sc->vte_cdata.vte_tx_ring_paddr =
|
|
sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
|
|
|
|
/* Create DMA stuffs for RX ring */
|
|
error = bus_dmamap_create(sc->sc_dmat, VTE_RX_RING_SZ, 1,
|
|
VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->vte_cdata.vte_rx_ring_map);
|
|
if (error)
|
|
return (ENOBUFS);
|
|
|
|
/* Allocate DMA'able memory for RX ring */
|
|
error = bus_dmamem_alloc(sc->sc_dmat, VTE_RX_RING_SZ, ETHER_ALIGN,
|
|
0, &sc->vte_cdata.vte_rx_ring_seg, 1, &nsegs,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO);
|
|
if (error) {
|
|
printf("%s: could not allocate DMA'able memory for Rx ring.\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &sc->vte_cdata.vte_rx_ring_seg,
|
|
nsegs, VTE_RX_RING_SZ, (caddr_t *)&sc->vte_cdata.vte_rx_ring,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
return (ENOBUFS);
|
|
|
|
/* Load the DMA map for Rx ring. */
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map,
|
|
sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not load DMA'able memory for Rx ring.\n",
|
|
sc->sc_dev.dv_xname);
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
(bus_dma_segment_t *)sc->vte_cdata.vte_rx_ring, 1);
|
|
return (error);
|
|
}
|
|
|
|
sc->vte_cdata.vte_rx_ring_paddr =
|
|
sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, BUS_DMA_NOWAIT, &txd->tx_dmamap);
|
|
if (error) {
|
|
printf("%s: could not create Tx dmamap.\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* Create DMA maps for Rx buffers. */
|
|
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
|
|
BUS_DMA_NOWAIT, &sc->vte_cdata.vte_rx_sparemap);
|
|
if (error) {
|
|
printf("%s: could not create spare Rx dmamap.\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
|
|
if (error) {
|
|
printf("%s: could not create Rx dmamap.\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vte_dma_free(struct vte_softc *sc)
|
|
{
|
|
struct vte_txdesc *txd;
|
|
struct vte_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* TX buffers. */
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
if (txd->tx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
/* Rx buffers */
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
if (rxd->rx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->vte_cdata.vte_rx_sparemap != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->vte_cdata.vte_rx_sparemap);
|
|
sc->vte_cdata.vte_rx_sparemap = NULL;
|
|
}
|
|
/* TX descriptor ring. */
|
|
if (sc->vte_cdata.vte_tx_ring_map != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map);
|
|
if (sc->vte_cdata.vte_tx_ring_map != NULL &&
|
|
sc->vte_cdata.vte_tx_ring != NULL)
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
(bus_dma_segment_t *)sc->vte_cdata.vte_tx_ring, 1);
|
|
sc->vte_cdata.vte_tx_ring = NULL;
|
|
sc->vte_cdata.vte_tx_ring_map = NULL;
|
|
/* RX ring. */
|
|
if (sc->vte_cdata.vte_rx_ring_map != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map);
|
|
if (sc->vte_cdata.vte_rx_ring_map != NULL &&
|
|
sc->vte_cdata.vte_rx_ring != NULL)
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
(bus_dma_segment_t *)sc->vte_cdata.vte_rx_ring, 1);
|
|
sc->vte_cdata.vte_rx_ring = NULL;
|
|
sc->vte_cdata.vte_rx_ring_map = NULL;
|
|
}
|
|
|
|
struct vte_txdesc *
|
|
vte_encap(struct vte_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct vte_txdesc *txd;
|
|
struct mbuf *m, *n;
|
|
int copy, error, padlen;
|
|
|
|
txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
|
|
m = *m_head;
|
|
/*
|
|
* Controller doesn't auto-pad, so we have to make sure pad
|
|
* short frames out to the minimum frame length.
|
|
*/
|
|
if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
|
|
padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
|
|
else
|
|
padlen = 0;
|
|
|
|
/*
|
|
* Controller does not support multi-fragmented TX buffers.
|
|
* Controller spends most of its TX processing time in
|
|
* de-fragmenting TX buffers. Either faster CPU or more
|
|
* advanced controller DMA engine is required to speed up
|
|
* TX path processing.
|
|
* To mitigate the de-fragmenting issue, perform deep copy
|
|
* from fragmented mbuf chains to a pre-allocated mbuf
|
|
* cluster with extra cost of kernel memory. For frames
|
|
* that is composed of single TX buffer, the deep copy is
|
|
* bypassed.
|
|
*/
|
|
copy = 0;
|
|
if (m->m_next != NULL)
|
|
copy++;
|
|
if (padlen > 0 && (padlen > m_trailingspace(m)))
|
|
copy++;
|
|
if (copy != 0) {
|
|
/* Avoid expensive m_defrag(9) and do deep copy. */
|
|
n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
|
|
m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
|
|
n->m_pkthdr.len = m->m_pkthdr.len;
|
|
n->m_len = m->m_pkthdr.len;
|
|
m = n;
|
|
txd->tx_flags |= VTE_TXMBUF;
|
|
}
|
|
|
|
if (padlen > 0) {
|
|
/* Zero out the bytes in the pad area. */
|
|
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
|
|
m->m_pkthdr.len += padlen;
|
|
m->m_len = m->m_pkthdr.len;
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, txd->tx_dmamap, m,
|
|
BUS_DMA_NOWAIT);
|
|
|
|
if (error != 0) {
|
|
txd->tx_flags &= ~VTE_TXMBUF;
|
|
return (NULL);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
|
|
txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
|
|
txd->tx_desc->dtlen =
|
|
htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
|
|
txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
|
|
sc->vte_cdata.vte_tx_cnt++;
|
|
/* Update producer index. */
|
|
VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
|
|
|
|
/* Finally hand over ownership to controller. */
|
|
txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
|
|
txd->tx_m = m;
|
|
|
|
return (txd);
|
|
}
|
|
|
|
void
|
|
vte_start(struct ifnet *ifp)
|
|
{
|
|
struct vte_softc *sc = ifp->if_softc;
|
|
struct vte_txdesc *txd;
|
|
struct mbuf *m_head;
|
|
int enq = 0;
|
|
|
|
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
|
|
return;
|
|
|
|
for (;;) {
|
|
/* Reserve one free TX descriptor. */
|
|
if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
break;
|
|
}
|
|
m_head = ifq_dequeue(&ifp->if_snd);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if ((txd = vte_encap(sc, &m_head)) == NULL) {
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf != NULL)
|
|
bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
|
|
#endif
|
|
/* Free consumed TX frame. */
|
|
if ((txd->tx_flags & VTE_TXMBUF) != 0)
|
|
m_freem(m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map, 0,
|
|
sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
|
|
ifp->if_timer = VTE_TX_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
void
|
|
vte_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct vte_softc *sc = ifp->if_softc;
|
|
|
|
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
vte_init(ifp);
|
|
|
|
if (!ifq_empty(&ifp->if_snd))
|
|
vte_start(ifp);
|
|
}
|
|
|
|
int
|
|
vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct vte_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_miibus;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
vte_init(ifp);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
error = ENETRESET;
|
|
else
|
|
vte_init(ifp);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
vte_stop(sc);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
|
|
break;
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
vte_iff(sc);
|
|
error = 0;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
vte_mac_config(struct vte_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
uint16_t mcr;
|
|
|
|
mii = &sc->sc_miibus;
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
mcr |= MCR0_FULL_DUPLEX;
|
|
#ifdef notyet
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
|
|
mcr |= MCR0_FC_ENB;
|
|
/*
|
|
* The data sheet is not clear whether the controller
|
|
* honors received pause frames or not. The is no
|
|
* separate control bit for RX pause frame so just
|
|
* enable MCR0_FC_ENB bit.
|
|
*/
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
|
|
mcr |= MCR0_FC_ENB;
|
|
#endif
|
|
}
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
}
|
|
|
|
void
|
|
vte_stats_clear(struct vte_softc *sc)
|
|
{
|
|
|
|
/* Reading counter registers clears its contents. */
|
|
CSR_READ_2(sc, VTE_CNT_RX_DONE);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT0);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT1);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT2);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT3);
|
|
CSR_READ_2(sc, VTE_CNT_TX_DONE);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT4);
|
|
CSR_READ_2(sc, VTE_CNT_PAUSE);
|
|
}
|
|
|
|
void
|
|
vte_stats_update(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct vte_hw_stats *stat;
|
|
uint16_t value;
|
|
|
|
stat = &sc->vte_stats;
|
|
|
|
CSR_READ_2(sc, VTE_MECISR);
|
|
/* RX stats. */
|
|
stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT0);
|
|
stat->rx_bcast_frames += (value >> 8);
|
|
stat->rx_mcast_frames += (value & 0xFF);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT1);
|
|
stat->rx_runts += (value >> 8);
|
|
stat->rx_crcerrs += (value & 0xFF);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT2);
|
|
stat->rx_long_frames += (value & 0xFF);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT3);
|
|
stat->rx_fifo_full += (value >> 8);
|
|
stat->rx_desc_unavail += (value & 0xFF);
|
|
|
|
/* TX stats. */
|
|
stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT4);
|
|
stat->tx_underruns += (value >> 8);
|
|
stat->tx_late_colls += (value & 0xFF);
|
|
|
|
value = CSR_READ_2(sc, VTE_CNT_PAUSE);
|
|
stat->tx_pause_frames += (value >> 8);
|
|
stat->rx_pause_frames += (value & 0xFF);
|
|
|
|
/* Update ifp counters. */
|
|
ifp->if_collisions = stat->tx_late_colls;
|
|
ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
|
|
ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
|
|
stat->rx_long_frames + stat->rx_fifo_full;
|
|
}
|
|
|
|
int
|
|
vte_intr(void *arg)
|
|
{
|
|
struct vte_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
uint16_t status;
|
|
int n;
|
|
int claimed = 0;
|
|
|
|
/* Reading VTE_MISR acknowledges interrupts. */
|
|
status = CSR_READ_2(sc, VTE_MISR);
|
|
if ((status & VTE_INTRS) == 0)
|
|
return (0);
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MIER, 0);
|
|
for (n = 8; (status & VTE_INTRS) != 0;) {
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
|
break;
|
|
claimed = 1;
|
|
if (status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
|
|
MISR_RX_FIFO_FULL))
|
|
vte_rxeof(sc);
|
|
if (status & MISR_TX_DONE)
|
|
vte_txeof(sc);
|
|
if (status & MISR_EVENT_CNT_OFLOW)
|
|
vte_stats_update(sc);
|
|
if (!ifq_empty(&ifp->if_snd))
|
|
vte_start(ifp);
|
|
if (--n > 0)
|
|
status = CSR_READ_2(sc, VTE_MISR);
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
|
|
|
|
return (claimed);
|
|
}
|
|
|
|
void
|
|
vte_txeof(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct vte_txdesc *txd;
|
|
uint16_t status;
|
|
int cons, prog;
|
|
|
|
if (sc->vte_cdata.vte_tx_cnt == 0)
|
|
return;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map, 0,
|
|
sc->vte_cdata.vte_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
cons = sc->vte_cdata.vte_tx_cons;
|
|
/*
|
|
* Go through our TX list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[cons];
|
|
status = letoh16(txd->tx_desc->dtst);
|
|
if (status & VTE_DTST_TX_OWN)
|
|
break;
|
|
sc->vte_cdata.vte_tx_cnt--;
|
|
/* Reclaim transmitted mbufs. */
|
|
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
|
|
if ((txd->tx_flags & VTE_TXMBUF) == 0)
|
|
m_freem(txd->tx_m);
|
|
txd->tx_flags &= ~VTE_TXMBUF;
|
|
txd->tx_m = NULL;
|
|
prog++;
|
|
VTE_DESC_INC(cons, VTE_TX_RING_CNT);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
sc->vte_cdata.vte_tx_cons = cons;
|
|
/*
|
|
* Unarm watchdog timer only when there is no pending
|
|
* frames in TX queue.
|
|
*/
|
|
if (sc->vte_cdata.vte_tx_cnt == 0)
|
|
ifp->if_timer = 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd, int init)
|
|
{
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
int error;
|
|
|
|
MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
|
|
if (!(m->m_flags & M_EXT)) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, sizeof(uint32_t));
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat,
|
|
sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT);
|
|
|
|
if (error != 0) {
|
|
if (!error) {
|
|
bus_dmamap_unload(sc->sc_dmat,
|
|
sc->vte_cdata.vte_rx_sparemap);
|
|
error = EFBIG;
|
|
printf("%s: too many segments?!\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
m_freem(m);
|
|
|
|
if (init)
|
|
printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
|
|
rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
|
|
sc->vte_cdata.vte_rx_sparemap = map;
|
|
|
|
rxd->rx_m = m;
|
|
rxd->rx_desc->drbp = htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
|
|
rxd->rx_desc->drlen =
|
|
htole16(VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
|
|
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vte_rxeof(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct vte_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
uint16_t status, total_len;
|
|
int cons, prog;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map, 0,
|
|
sc->vte_cdata.vte_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
cons = sc->vte_cdata.vte_rx_cons;
|
|
for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
|
|
VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[cons];
|
|
status = letoh16(rxd->rx_desc->drst);
|
|
if (status & VTE_DRST_RX_OWN)
|
|
break;
|
|
total_len = VTE_RX_LEN(letoh16(rxd->rx_desc->drlen));
|
|
m = rxd->rx_m;
|
|
if ((status & VTE_DRST_RX_OK) == 0) {
|
|
/* Discard errored frame. */
|
|
rxd->rx_desc->drlen =
|
|
htole16(MCLBYTES - sizeof(uint32_t));
|
|
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
|
|
continue;
|
|
}
|
|
if (vte_newbuf(sc, rxd, 0) != 0) {
|
|
ifp->if_iqdrops++;
|
|
rxd->rx_desc->drlen =
|
|
htole16(MCLBYTES - sizeof(uint32_t));
|
|
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* It seems there is no way to strip FCS bytes.
|
|
*/
|
|
m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
|
|
ml_enqueue(&ml, m);
|
|
}
|
|
|
|
if_input(ifp, &ml);
|
|
|
|
if (prog > 0) {
|
|
/* Update the consumer index. */
|
|
sc->vte_cdata.vte_rx_cons = cons;
|
|
/*
|
|
* Sync updated RX descriptors such that controller see
|
|
* modified RX buffer addresses.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map, 0,
|
|
sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
#ifdef notyet
|
|
/*
|
|
* Update residue counter. Controller does not
|
|
* keep track of number of available RX descriptors
|
|
* such that driver should have to update VTE_MRDCR
|
|
* to make controller know how many free RX
|
|
* descriptors were added to controller. This is
|
|
* a similar mechanism used in VIA velocity
|
|
* controllers and it indicates controller just
|
|
* polls OWN bit of current RX descriptor pointer.
|
|
* A couple of severe issues were seen on sample
|
|
* board where the controller continuously emits TX
|
|
* pause frames once RX pause threshold crossed.
|
|
* Once triggered it never recovered form that
|
|
* state, I couldn't find a way to make it back to
|
|
* work at least. This issue effectively
|
|
* disconnected the system from network. Also, the
|
|
* controller used 00:00:00:00:00:00 as source
|
|
* station address of TX pause frame. Probably this
|
|
* is one of reason why vendor recommends not to
|
|
* enable flow control on R6040 controller.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MRDCR, prog |
|
|
(((VTE_RX_RING_CNT * 2) / 10) <<
|
|
VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
vte_tick(void *arg)
|
|
{
|
|
struct vte_softc *sc = arg;
|
|
struct mii_data *mii = &sc->sc_miibus;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(mii);
|
|
vte_stats_update(sc);
|
|
timeout_add_sec(&sc->vte_tick_ch, 1);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
vte_reset(struct vte_softc *sc)
|
|
{
|
|
uint16_t mcr, mdcsc;
|
|
int i;
|
|
|
|
mdcsc = CSR_READ_2(sc, VTE_MDCSC);
|
|
mcr = CSR_READ_2(sc, VTE_MCR1);
|
|
CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
|
|
for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
|
|
DELAY(10);
|
|
if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
printf("%s: reset timeout(0x%04x)!\n", sc->sc_dev.dv_xname,
|
|
mcr);
|
|
/*
|
|
* Follow the guide of vendor recommended way to reset MAC.
|
|
* Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
|
|
* not reliable so manually reset internal state machine.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
|
|
CSR_WRITE_2(sc, VTE_MACSM, 0);
|
|
DELAY(5000);
|
|
|
|
/*
|
|
* On some SoCs (like Vortex86DX3) MDC speed control register value
|
|
* needs to be restored to original value instead of default one,
|
|
* otherwise some PHY registers may fail to be read.
|
|
*/
|
|
if (mdcsc != MDCSC_DEFAULT)
|
|
CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
|
|
}
|
|
|
|
int
|
|
vte_init(struct ifnet *ifp)
|
|
{
|
|
struct vte_softc *sc = ifp->if_softc;
|
|
bus_addr_t paddr;
|
|
uint8_t *eaddr;
|
|
int error;
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
vte_stop(sc);
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
vte_reset(sc);
|
|
|
|
/* Initialize RX descriptors. */
|
|
error = vte_init_rx_ring(sc);
|
|
if (error != 0) {
|
|
printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
|
|
vte_stop(sc);
|
|
return (error);
|
|
}
|
|
error = vte_init_tx_ring(sc);
|
|
if (error != 0) {
|
|
printf("%s: no memory for Tx buffers.\n", sc->sc_dev.dv_xname);
|
|
vte_stop(sc);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Reprogram the station address. Controller supports up
|
|
* to 4 different station addresses so driver programs the
|
|
* first station address as its own ethernet address and
|
|
* configure the remaining three addresses as perfect
|
|
* multicast addresses.
|
|
*/
|
|
eaddr = LLADDR(ifp->if_sadl);
|
|
CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
|
|
CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
|
|
CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
|
|
|
|
/* Set TX descriptor base addresses. */
|
|
paddr = sc->vte_cdata.vte_tx_ring_paddr;
|
|
CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
|
|
CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
|
|
/* Set RX descriptor base addresses. */
|
|
paddr = sc->vte_cdata.vte_rx_ring_paddr;
|
|
CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
|
|
CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
|
|
/*
|
|
* Initialize RX descriptor residue counter and set RX
|
|
* pause threshold to 20% of available RX descriptors.
|
|
* See comments on vte_rxeof() for details on flow control
|
|
* issues.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
|
|
(((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
|
|
|
|
/*
|
|
* Always use maximum frame size that controller can
|
|
* support. Otherwise received frames that has longer
|
|
* frame length than vte(4) MTU would be silently dropped
|
|
* in controller. This would break path-MTU discovery as
|
|
* sender wouldn't get any responses from receiver. The
|
|
* RX buffer size should be multiple of 4.
|
|
* Note, jumbo frames are silently ignored by controller
|
|
* and even MAC counters do not detect them.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
|
|
|
|
/* Configure FIFO. */
|
|
CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
|
|
MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
|
|
MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
|
|
|
|
/*
|
|
* Configure TX/RX MACs. Actual resolved duplex and flow
|
|
* control configuration is done after detecting a valid
|
|
* link. Note, we don't generate early interrupt here
|
|
* as well since FreeBSD does not have interrupt latency
|
|
* problems like Windows.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
|
|
/*
|
|
* We manually keep track of PHY status changes to
|
|
* configure resolved duplex and flow control since only
|
|
* duplex configuration can be automatically reflected to
|
|
* MCR0.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
|
|
MCR1_EXCESS_COL_RETRY_16);
|
|
|
|
/* Initialize RX filter. */
|
|
vte_iff(sc);
|
|
|
|
/* Disable TX/RX interrupt moderation control. */
|
|
CSR_WRITE_2(sc, VTE_MRICR, 0);
|
|
CSR_WRITE_2(sc, VTE_MTICR, 0);
|
|
|
|
/* Enable MAC event counter interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
|
|
/* Clear MAC statistics. */
|
|
vte_stats_clear(sc);
|
|
|
|
/* Acknowledge all pending interrupts and clear it. */
|
|
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
|
|
CSR_WRITE_2(sc, VTE_MISR, 0);
|
|
|
|
sc->vte_flags &= ~VTE_FLAG_LINK;
|
|
/* Switch to the current media. */
|
|
vte_mediachange(ifp);
|
|
|
|
timeout_add_sec(&sc->vte_tick_ch, 1);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vte_stop(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct vte_txdesc *txd;
|
|
struct vte_rxdesc *rxd;
|
|
int i;
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
ifp->if_timer = 0;
|
|
sc->vte_flags &= ~VTE_FLAG_LINK;
|
|
timeout_del(&sc->vte_tick_ch);
|
|
vte_stats_update(sc);
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MIER, 0);
|
|
CSR_WRITE_2(sc, VTE_MECIER, 0);
|
|
/* Stop RX/TX MACs. */
|
|
vte_stop_mac(sc);
|
|
/* Clear interrupts. */
|
|
CSR_READ_2(sc, VTE_MISR);
|
|
/*
|
|
* Free TX/RX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
|
|
if ((txd->tx_flags & VTE_TXMBUF) == 0)
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
txd->tx_flags &= ~VTE_TXMBUF;
|
|
}
|
|
}
|
|
/* Free TX mbuf pools used for deep copy. */
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
|
|
m_freem(sc->vte_cdata.vte_txmbufs[i]);
|
|
sc->vte_cdata.vte_txmbufs[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
vte_start_mac(struct vte_softc *sc)
|
|
{
|
|
uint16_t mcr;
|
|
int i;
|
|
|
|
/* Enable RX/TX MACs. */
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
|
|
(MCR0_RX_ENB | MCR0_TX_ENB)) {
|
|
mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
for (i = VTE_TIMEOUT; i > 0; i--) {
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
|
|
(MCR0_RX_ENB | MCR0_TX_ENB))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == 0)
|
|
printf("%s: could not enable RX/TX MAC(0x%04x)!\n",
|
|
sc->sc_dev.dv_xname, mcr);
|
|
}
|
|
}
|
|
|
|
void
|
|
vte_stop_mac(struct vte_softc *sc)
|
|
{
|
|
uint16_t mcr;
|
|
int i;
|
|
|
|
/* Disable RX/TX MACs. */
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
|
|
mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
for (i = VTE_TIMEOUT; i > 0; i--) {
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == 0)
|
|
printf("%s: could not disable RX/TX MAC(0x%04x)!\n",
|
|
sc->sc_dev.dv_xname, mcr);
|
|
}
|
|
}
|
|
|
|
int
|
|
vte_init_tx_ring(struct vte_softc *sc)
|
|
{
|
|
struct vte_tx_desc *desc;
|
|
struct vte_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->vte_cdata.vte_tx_prod = 0;
|
|
sc->vte_cdata.vte_tx_cons = 0;
|
|
sc->vte_cdata.vte_tx_cnt = 0;
|
|
|
|
/* Pre-allocate TX mbufs for deep copy. */
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
MGETHDR(sc->vte_cdata.vte_txmbufs[i],
|
|
M_DONTWAIT, MT_DATA);
|
|
if (sc->vte_cdata.vte_txmbufs[i] == NULL)
|
|
return (ENOBUFS);
|
|
MCLGET(sc->vte_cdata.vte_txmbufs[i], M_DONTWAIT);
|
|
if (!(sc->vte_cdata.vte_txmbufs[i]->m_flags & M_EXT)) {
|
|
m_freem(sc->vte_cdata.vte_txmbufs[i]);
|
|
sc->vte_cdata.vte_txmbufs[i] = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
|
|
sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
|
|
}
|
|
desc = sc->vte_cdata.vte_tx_ring;
|
|
bzero(desc, VTE_TX_RING_SZ);
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
if (i != VTE_TX_RING_CNT - 1)
|
|
addr = sc->vte_cdata.vte_tx_ring_paddr +
|
|
sizeof(struct vte_tx_desc) * (i + 1);
|
|
else
|
|
addr = sc->vte_cdata.vte_tx_ring_paddr +
|
|
sizeof(struct vte_tx_desc) * 0;
|
|
desc = &sc->vte_cdata.vte_tx_ring[i];
|
|
desc->dtnp = htole32(addr);
|
|
txd->tx_desc = desc;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_tx_ring_map, 0,
|
|
sc->vte_cdata.vte_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vte_init_rx_ring(struct vte_softc *sc)
|
|
{
|
|
struct vte_rx_desc *desc;
|
|
struct vte_rxdesc *rxd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->vte_cdata.vte_rx_cons = 0;
|
|
desc = sc->vte_cdata.vte_rx_ring;
|
|
bzero(desc, VTE_RX_RING_SZ);
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
if (i != VTE_RX_RING_CNT - 1)
|
|
addr = sc->vte_cdata.vte_rx_ring_paddr +
|
|
sizeof(struct vte_rx_desc) * (i + 1);
|
|
else
|
|
addr = sc->vte_cdata.vte_rx_ring_paddr +
|
|
sizeof(struct vte_rx_desc) * 0;
|
|
desc = &sc->vte_cdata.vte_rx_ring[i];
|
|
desc->drnp = htole32(addr);
|
|
rxd->rx_desc = desc;
|
|
if (vte_newbuf(sc, rxd, 1) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->vte_cdata.vte_rx_ring_map, 0,
|
|
sc->vte_cdata.vte_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vte_iff(struct vte_softc *sc)
|
|
{
|
|
struct arpcom *ac = &sc->sc_arpcom;
|
|
struct ifnet *ifp = &ac->ac_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
uint8_t *eaddr;
|
|
uint32_t crc;
|
|
uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
|
|
uint16_t mchash[4], mcr;
|
|
int i, nperf;
|
|
|
|
bzero(mchash, sizeof(mchash));
|
|
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
|
|
rxfilt_perf[i][0] = 0xFFFF;
|
|
rxfilt_perf[i][1] = 0xFFFF;
|
|
rxfilt_perf[i][2] = 0xFFFF;
|
|
}
|
|
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
mcr |= MCR0_PROMISC;
|
|
else
|
|
mcr |= MCR0_MULTICAST;
|
|
mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xFFFF;
|
|
} else {
|
|
nperf = 0;
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
/*
|
|
* Program the first 3 multicast groups into
|
|
* the perfect filter. For all others, use the
|
|
* hash table.
|
|
*/
|
|
if (nperf < VTE_RXFILT_PERFECT_CNT) {
|
|
eaddr = enm->enm_addrlo;
|
|
rxfilt_perf[nperf][0] =
|
|
eaddr[1] << 8 | eaddr[0];
|
|
rxfilt_perf[nperf][1] =
|
|
eaddr[3] << 8 | eaddr[2];
|
|
rxfilt_perf[nperf][2] =
|
|
eaddr[5] << 8 | eaddr[4];
|
|
nperf++;
|
|
continue;
|
|
}
|
|
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
|
|
mchash[3] != 0)
|
|
mcr |= MCR0_MULTICAST;
|
|
}
|
|
|
|
/* Program multicast hash table. */
|
|
CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
|
|
CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
|
|
CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
|
|
CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
|
|
/* Program perfect filter table. */
|
|
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
|
|
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
|
|
rxfilt_perf[i][0]);
|
|
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
|
|
rxfilt_perf[i][1]);
|
|
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
|
|
rxfilt_perf[i][2]);
|
|
}
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
CSR_READ_2(sc, VTE_MCR0);
|
|
}
|