1474 lines
38 KiB
C
1474 lines
38 KiB
C
/* $OpenBSD: rtsx.c,v 1.22 2020/02/18 00:06:56 cheloha Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
|
|
* Copyright (c) 2012 Stefan Sperling <stsp@openbsd.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Realtek RTS52xx/RTL84xx Card Reader driver.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <dev/ic/rtsxreg.h>
|
|
#include <dev/ic/rtsxvar.h>
|
|
#include <dev/sdmmc/sdmmcvar.h>
|
|
#include <dev/sdmmc/sdmmc_ioreg.h>
|
|
|
|
/*
|
|
* We use three DMA buffers: a command buffer, a data buffer, and a buffer for
|
|
* ADMA transfer descriptors which describe scatter-gather (SG) I/O operations.
|
|
*
|
|
* The command buffer contains a command queue for the host controller,
|
|
* which describes SD/MMC commands to run, and other parameters. The chip
|
|
* runs the command queue when a special bit in the RTSX_HCBAR register is
|
|
* set and signals completion with the TRANS_OK interrupt.
|
|
* Each command is encoded as a 4 byte sequence containing command number
|
|
* (read, write, or check a host controller register), a register address,
|
|
* and a data bit-mask and value.
|
|
* SD/MMC commands which do not transfer any data from/to the card only use
|
|
* the command buffer.
|
|
*
|
|
* The smmmc stack provides DMA-safe buffers with data transfer commands.
|
|
* In this case we write a list of descriptors to the ADMA descriptor buffer,
|
|
* instructing the chip to transfer data directly from/to sdmmc DMA buffers.
|
|
*
|
|
* However, some sdmmc commands used during card initialization also carry
|
|
* data, and these don't come with DMA-safe buffers. In this case, we transfer
|
|
* data from/to the SD card via a DMA data bounce buffer.
|
|
*
|
|
* In both cases, data transfer is controlled via the RTSX_HDBAR register
|
|
* and completion is signalled by the TRANS_OK interrupt.
|
|
*
|
|
* The chip is unable to perform DMA above 4GB.
|
|
*/
|
|
|
|
#define RTSX_DMA_MAX_SEGSIZE 0x80000
|
|
#define RTSX_HOSTCMD_MAX 256
|
|
#define RTSX_HOSTCMD_BUFSIZE (sizeof(u_int32_t) * RTSX_HOSTCMD_MAX)
|
|
#define RTSX_DMA_DATA_BUFSIZE MAXPHYS
|
|
#define RTSX_ADMA_DESC_SIZE (sizeof(uint64_t) * SDMMC_MAXNSEGS)
|
|
|
|
#define READ4(sc, reg) \
|
|
(bus_space_read_4((sc)->iot, (sc)->ioh, (reg)))
|
|
#define WRITE4(sc, reg, val) \
|
|
bus_space_write_4((sc)->iot, (sc)->ioh, (reg), (val))
|
|
|
|
#define RTSX_READ(sc, reg, val) \
|
|
do { \
|
|
int err = rtsx_read((sc), (reg), (val)); \
|
|
if (err) \
|
|
return (err); \
|
|
} while (0)
|
|
|
|
#define RTSX_WRITE(sc, reg, val) \
|
|
do { \
|
|
int err = rtsx_write((sc), (reg), 0xff, (val)); \
|
|
if (err) \
|
|
return (err); \
|
|
} while (0)
|
|
|
|
#define RTSX_CLR(sc, reg, bits) \
|
|
do { \
|
|
int err = rtsx_write((sc), (reg), (bits), 0); \
|
|
if (err) \
|
|
return (err); \
|
|
} while (0)
|
|
|
|
#define RTSX_SET(sc, reg, bits) \
|
|
do { \
|
|
int err = rtsx_write((sc), (reg), (bits), 0xff);\
|
|
if (err) \
|
|
return (err); \
|
|
} while (0)
|
|
|
|
int rtsx_host_reset(sdmmc_chipset_handle_t);
|
|
u_int32_t rtsx_host_ocr(sdmmc_chipset_handle_t);
|
|
int rtsx_host_maxblklen(sdmmc_chipset_handle_t);
|
|
int rtsx_card_detect(sdmmc_chipset_handle_t);
|
|
int rtsx_bus_power(sdmmc_chipset_handle_t, u_int32_t);
|
|
int rtsx_bus_clock(sdmmc_chipset_handle_t, int, int);
|
|
int rtsx_bus_width(sdmmc_chipset_handle_t, int);
|
|
void rtsx_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
|
|
int rtsx_init(struct rtsx_softc *, int);
|
|
void rtsx_soft_reset(struct rtsx_softc *);
|
|
int rtsx_bus_power_off(struct rtsx_softc *);
|
|
int rtsx_bus_power_on(struct rtsx_softc *);
|
|
int rtsx_set_bus_width(struct rtsx_softc *, int);
|
|
int rtsx_stop_sd_clock(struct rtsx_softc *);
|
|
int rtsx_switch_sd_clock(struct rtsx_softc *, u_int8_t, int, int);
|
|
int rtsx_wait_intr(struct rtsx_softc *, int, int);
|
|
int rtsx_read(struct rtsx_softc *, u_int16_t, u_int8_t *);
|
|
int rtsx_write(struct rtsx_softc *, u_int16_t, u_int8_t, u_int8_t);
|
|
#ifdef notyet
|
|
int rtsx_read_phy(struct rtsx_softc *, u_int8_t, u_int16_t *);
|
|
#endif
|
|
int rtsx_write_phy(struct rtsx_softc *, u_int8_t, u_int16_t);
|
|
int rtsx_read_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t *);
|
|
#ifdef notyet
|
|
int rtsx_write_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t,
|
|
u_int32_t);
|
|
#endif
|
|
void rtsx_hostcmd(u_int32_t *, int *, u_int8_t, u_int16_t, u_int8_t,
|
|
u_int8_t);
|
|
int rtsx_hostcmd_send(struct rtsx_softc *, int);
|
|
u_int8_t rtsx_response_type(u_int16_t);
|
|
int rtsx_xfer_exec(struct rtsx_softc *, bus_dmamap_t, int);
|
|
int rtsx_xfer(struct rtsx_softc *, struct sdmmc_command *, u_int32_t *);
|
|
int rtsx_xfer_bounce(struct rtsx_softc *, struct sdmmc_command *);
|
|
int rtsx_xfer_adma(struct rtsx_softc *, struct sdmmc_command *);
|
|
void rtsx_card_insert(struct rtsx_softc *);
|
|
void rtsx_card_eject(struct rtsx_softc *);
|
|
int rtsx_led_enable(struct rtsx_softc *);
|
|
int rtsx_led_disable(struct rtsx_softc *);
|
|
void rtsx_save_regs(struct rtsx_softc *);
|
|
void rtsx_restore_regs(struct rtsx_softc *);
|
|
|
|
#ifdef RTSX_DEBUG
|
|
int rtsxdebug = 0;
|
|
#define DPRINTF(n,s) do { if ((n) <= rtsxdebug) printf s; } while (0)
|
|
#else
|
|
#define DPRINTF(n,s) do {} while(0)
|
|
#endif
|
|
|
|
struct sdmmc_chip_functions rtsx_functions = {
|
|
/* host controller reset */
|
|
rtsx_host_reset,
|
|
/* host controller capabilities */
|
|
rtsx_host_ocr,
|
|
rtsx_host_maxblklen,
|
|
/* card detection */
|
|
rtsx_card_detect,
|
|
/* bus power and clock frequency */
|
|
rtsx_bus_power,
|
|
rtsx_bus_clock,
|
|
rtsx_bus_width,
|
|
/* command execution */
|
|
rtsx_exec_command,
|
|
/* card interrupt */
|
|
NULL, NULL
|
|
};
|
|
|
|
struct cfdriver rtsx_cd = {
|
|
NULL, "rtsx", DV_DULL
|
|
};
|
|
|
|
/*
|
|
* Called by attachment driver.
|
|
*/
|
|
int
|
|
rtsx_attach(struct rtsx_softc *sc, bus_space_tag_t iot,
|
|
bus_space_handle_t ioh, bus_size_t iosize, bus_dma_tag_t dmat, int flags)
|
|
{
|
|
struct sdmmcbus_attach_args saa;
|
|
u_int32_t sdio_cfg;
|
|
int rsegs;
|
|
|
|
sc->iot = iot;
|
|
sc->ioh = ioh;
|
|
sc->dmat = dmat;
|
|
sc->flags = flags;
|
|
|
|
if (rtsx_init(sc, 1))
|
|
return 1;
|
|
|
|
if (rtsx_read_cfg(sc, 0, RTSX_SDIOCFG_REG, &sdio_cfg) == 0) {
|
|
if ((sdio_cfg & RTSX_SDIOCFG_SDIO_ONLY) ||
|
|
(sdio_cfg & RTSX_SDIOCFG_HAVE_SDIO))
|
|
sc->flags |= RTSX_F_SDIO_SUPPORT;
|
|
}
|
|
|
|
if (bus_dmamap_create(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 1,
|
|
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
|
|
&sc->dmap_cmd) != 0)
|
|
return 1;
|
|
if (bus_dmamap_create(sc->dmat, RTSX_DMA_DATA_BUFSIZE, 1,
|
|
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
|
|
&sc->dmap_data) != 0)
|
|
goto destroy_cmd;
|
|
if (bus_dmamap_create(sc->dmat, RTSX_ADMA_DESC_SIZE, 1,
|
|
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
|
|
&sc->dmap_adma) != 0)
|
|
goto destroy_data;
|
|
if (bus_dmamem_alloc(sc->dmat, RTSX_ADMA_DESC_SIZE, 0, 0,
|
|
sc->adma_segs, 1, &rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO))
|
|
goto destroy_adma;
|
|
if (bus_dmamem_map(sc->dmat, sc->adma_segs, rsegs, RTSX_ADMA_DESC_SIZE,
|
|
&sc->admabuf, BUS_DMA_WAITOK|BUS_DMA_COHERENT))
|
|
goto free_adma;
|
|
|
|
/*
|
|
* Attach the generic SD/MMC bus driver. (The bus driver must
|
|
* not invoke any chipset functions before it is attached.)
|
|
*/
|
|
bzero(&saa, sizeof(saa));
|
|
saa.saa_busname = "sdmmc";
|
|
saa.sct = &rtsx_functions;
|
|
saa.sch = sc;
|
|
saa.flags = SMF_STOP_AFTER_MULTIPLE;
|
|
saa.caps = SMC_CAPS_4BIT_MODE | SMC_CAPS_DMA;
|
|
saa.dmat = sc->dmat;
|
|
|
|
sc->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
|
|
if (sc->sdmmc == NULL)
|
|
goto unmap_adma;
|
|
|
|
/* Now handle cards discovered during attachment. */
|
|
if (ISSET(sc->flags, RTSX_F_CARD_PRESENT))
|
|
rtsx_card_insert(sc);
|
|
|
|
return 0;
|
|
|
|
unmap_adma:
|
|
bus_dmamem_unmap(sc->dmat, sc->admabuf, RTSX_ADMA_DESC_SIZE);
|
|
free_adma:
|
|
bus_dmamem_free(sc->dmat, sc->adma_segs, rsegs);
|
|
destroy_adma:
|
|
bus_dmamap_destroy(sc->dmat, sc->dmap_adma);
|
|
destroy_data:
|
|
bus_dmamap_destroy(sc->dmat, sc->dmap_data);
|
|
destroy_cmd:
|
|
bus_dmamap_destroy(sc->dmat, sc->dmap_cmd);
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
rtsx_init(struct rtsx_softc *sc, int attaching)
|
|
{
|
|
u_int32_t status;
|
|
u_int8_t version;
|
|
int error;
|
|
|
|
/* Read IC version from dummy register. */
|
|
if (sc->flags & RTSX_F_5229) {
|
|
RTSX_READ(sc, RTSX_DUMMY_REG, &version);
|
|
switch (version & 0x0F) {
|
|
case RTSX_IC_VERSION_A:
|
|
case RTSX_IC_VERSION_B:
|
|
case RTSX_IC_VERSION_D:
|
|
break;
|
|
case RTSX_IC_VERSION_C:
|
|
sc->flags |= RTSX_F_5229_TYPE_C;
|
|
break;
|
|
default:
|
|
printf("rtsx_init: unknown ic %02x\n", version);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/* Enable interrupt write-clear (default is read-clear). */
|
|
RTSX_CLR(sc, RTSX_NFTS_TX_CTRL, RTSX_INT_READ_CLR);
|
|
|
|
/* Clear any pending interrupts. */
|
|
status = READ4(sc, RTSX_BIPR);
|
|
WRITE4(sc, RTSX_BIPR, status);
|
|
|
|
/* Check for cards already inserted at attach time. */
|
|
if (attaching && (status & RTSX_SD_EXIST))
|
|
sc->flags |= RTSX_F_CARD_PRESENT;
|
|
|
|
/* Enable interrupts. */
|
|
WRITE4(sc, RTSX_BIER,
|
|
RTSX_TRANS_OK_INT_EN | RTSX_TRANS_FAIL_INT_EN | RTSX_SD_INT_EN);
|
|
|
|
/* Power on SSC clock. */
|
|
RTSX_CLR(sc, RTSX_FPDCTL, RTSX_SSC_POWER_DOWN);
|
|
delay(200);
|
|
|
|
/* XXX magic numbers from linux driver */
|
|
if (sc->flags & RTSX_F_5209)
|
|
error = rtsx_write_phy(sc, 0x00, 0xB966);
|
|
else
|
|
error = rtsx_write_phy(sc, 0x00, 0xBA42);
|
|
if (error) {
|
|
printf("%s: cannot write phy register\n", DEVNAME(sc));
|
|
return (1);
|
|
}
|
|
|
|
RTSX_SET(sc, RTSX_CLK_DIV, 0x07);
|
|
|
|
/* Disable sleep mode. */
|
|
RTSX_CLR(sc, RTSX_HOST_SLEEP_STATE,
|
|
RTSX_HOST_ENTER_S1 | RTSX_HOST_ENTER_S3);
|
|
|
|
/* Disable card clock. */
|
|
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
|
|
|
|
RTSX_CLR(sc, RTSX_CHANGE_LINK_STATE,
|
|
RTSX_FORCE_RST_CORE_EN | RTSX_NON_STICKY_RST_N_DBG | 0x04);
|
|
RTSX_WRITE(sc, RTSX_SD30_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_3V3);
|
|
|
|
/* Enable SSC clock. */
|
|
RTSX_WRITE(sc, RTSX_SSC_CTL1, RTSX_SSC_8X_EN | RTSX_SSC_SEL_4M);
|
|
RTSX_WRITE(sc, RTSX_SSC_CTL2, 0x12);
|
|
|
|
RTSX_SET(sc, RTSX_CHANGE_LINK_STATE, RTSX_MAC_PHY_RST_N_DBG);
|
|
RTSX_SET(sc, RTSX_IRQSTAT0, RTSX_LINK_READY_INT);
|
|
|
|
RTSX_WRITE(sc, RTSX_PERST_GLITCH_WIDTH, 0x80);
|
|
|
|
/* Set RC oscillator to 400K. */
|
|
RTSX_CLR(sc, RTSX_RCCTL, RTSX_RCCTL_F_2M);
|
|
|
|
/* Request clock by driving CLKREQ pin to zero. */
|
|
RTSX_SET(sc, RTSX_PETXCFG, RTSX_PETXCFG_CLKREQ_PIN);
|
|
|
|
/* Set up LED GPIO. */
|
|
if (sc->flags & RTSX_F_5209) {
|
|
RTSX_WRITE(sc, RTSX_CARD_GPIO, 0x03);
|
|
RTSX_WRITE(sc, RTSX_CARD_GPIO_DIR, 0x03);
|
|
} else {
|
|
RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
|
|
/* Switch LDO3318 source from DV33 to 3V3. */
|
|
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
|
|
RTSX_SET(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_3V3);
|
|
/* Set default OLT blink period. */
|
|
RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_PERIOD);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rtsx_activate(struct device *self, int act)
|
|
{
|
|
struct rtsx_softc *sc = (struct rtsx_softc *)self;
|
|
int rv = 0;
|
|
|
|
switch (act) {
|
|
case DVACT_SUSPEND:
|
|
rv = config_activate_children(self, act);
|
|
rtsx_save_regs(sc);
|
|
break;
|
|
case DVACT_RESUME:
|
|
rtsx_restore_regs(sc);
|
|
|
|
/* Handle cards ejected/inserted during suspend. */
|
|
if (READ4(sc, RTSX_BIPR) & RTSX_SD_EXIST)
|
|
rtsx_card_insert(sc);
|
|
else
|
|
rtsx_card_eject(sc);
|
|
|
|
rv = config_activate_children(self, act);
|
|
break;
|
|
default:
|
|
rv = config_activate_children(self, act);
|
|
break;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
int
|
|
rtsx_led_enable(struct rtsx_softc *sc)
|
|
{
|
|
if (sc->flags & RTSX_F_5209) {
|
|
RTSX_CLR(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
|
|
RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
|
|
RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
|
|
} else {
|
|
RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
|
|
RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rtsx_led_disable(struct rtsx_softc *sc)
|
|
{
|
|
if (sc->flags & RTSX_F_5209) {
|
|
RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
|
|
RTSX_WRITE(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
|
|
} else {
|
|
RTSX_CLR(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
|
|
RTSX_CLR(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset the host controller. Called during initialization, when
|
|
* cards are removed, upon resume, and during error recovery.
|
|
*/
|
|
int
|
|
rtsx_host_reset(sdmmc_chipset_handle_t sch)
|
|
{
|
|
struct rtsx_softc *sc = sch;
|
|
int s;
|
|
|
|
DPRINTF(1,("%s: host reset\n", DEVNAME(sc)));
|
|
|
|
s = splsdmmc();
|
|
|
|
if (ISSET(sc->flags, RTSX_F_CARD_PRESENT))
|
|
rtsx_soft_reset(sc);
|
|
|
|
if (rtsx_init(sc, 0)) {
|
|
splx(s);
|
|
return 1;
|
|
}
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
u_int32_t
|
|
rtsx_host_ocr(sdmmc_chipset_handle_t sch)
|
|
{
|
|
return RTSX_SUPPORT_VOLTAGE;
|
|
}
|
|
|
|
int
|
|
rtsx_host_maxblklen(sdmmc_chipset_handle_t sch)
|
|
{
|
|
return 512;
|
|
}
|
|
|
|
/*
|
|
* Return non-zero if the card is currently inserted.
|
|
*/
|
|
int
|
|
rtsx_card_detect(sdmmc_chipset_handle_t sch)
|
|
{
|
|
struct rtsx_softc *sc = sch;
|
|
|
|
return ISSET(sc->flags, RTSX_F_CARD_PRESENT);
|
|
}
|
|
|
|
/*
|
|
* Notice that the meaning of RTSX_PWR_GATE_CTRL changes between RTS5209 and
|
|
* RTS5229. In RTS5209 it is a mask of disabled power gates, while in RTS5229
|
|
* it is a mask of *enabled* gates.
|
|
*/
|
|
|
|
int
|
|
rtsx_bus_power_off(struct rtsx_softc *sc)
|
|
{
|
|
int error;
|
|
u_int8_t disable3;
|
|
|
|
error = rtsx_stop_sd_clock(sc);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Disable SD output. */
|
|
RTSX_CLR(sc, RTSX_CARD_OE, RTSX_CARD_OUTPUT_EN);
|
|
|
|
/* Turn off power. */
|
|
disable3 = RTSX_PULL_CTL_DISABLE3;
|
|
if (sc->flags & RTSX_F_5209)
|
|
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
|
|
else {
|
|
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1 |
|
|
RTSX_LDO3318_VCC2);
|
|
if (sc->flags & RTSX_F_5229_TYPE_C)
|
|
disable3 = RTSX_PULL_CTL_DISABLE3_TYPE_C;
|
|
}
|
|
|
|
RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
|
|
RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_PMOS_STRG_800mA);
|
|
|
|
/* Disable pull control. */
|
|
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_DISABLE12);
|
|
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
|
|
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, disable3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rtsx_bus_power_on(struct rtsx_softc *sc)
|
|
{
|
|
u_int8_t enable3;
|
|
int err;
|
|
|
|
if (sc->flags & RTSX_F_525A) {
|
|
err = rtsx_write(sc, RTSX_LDO_VCC_CFG1, RTSX_LDO_VCC_TUNE_MASK,
|
|
RTSX_LDO_VCC_3V3);
|
|
if (err)
|
|
return (err);
|
|
}
|
|
|
|
/* Select SD card. */
|
|
RTSX_WRITE(sc, RTSX_CARD_SELECT, RTSX_SD_MOD_SEL);
|
|
RTSX_WRITE(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_48_SD);
|
|
RTSX_SET(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN);
|
|
|
|
/* Enable pull control. */
|
|
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_ENABLE12);
|
|
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
|
|
if (sc->flags & RTSX_F_5229_TYPE_C)
|
|
enable3 = RTSX_PULL_CTL_ENABLE3_TYPE_C;
|
|
else
|
|
enable3 = RTSX_PULL_CTL_ENABLE3;
|
|
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, enable3);
|
|
|
|
/*
|
|
* To avoid a current peak, enable card power in two phases with a
|
|
* delay in between.
|
|
*/
|
|
|
|
/* Partial power. */
|
|
RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PARTIAL_PWR_ON);
|
|
if (sc->flags & RTSX_F_5209)
|
|
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_SUSPEND);
|
|
else
|
|
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1);
|
|
|
|
delay(200);
|
|
|
|
/* Full power. */
|
|
RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
|
|
if (sc->flags & RTSX_F_5209)
|
|
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
|
|
else
|
|
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC2);
|
|
|
|
/* Enable SD card output. */
|
|
RTSX_WRITE(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rtsx_set_bus_width(struct rtsx_softc *sc, int w)
|
|
{
|
|
u_int32_t bus_width;
|
|
int error;
|
|
|
|
switch (w) {
|
|
case 8:
|
|
bus_width = RTSX_BUS_WIDTH_8;
|
|
break;
|
|
case 4:
|
|
bus_width = RTSX_BUS_WIDTH_4;
|
|
break;
|
|
case 1:
|
|
default:
|
|
bus_width = RTSX_BUS_WIDTH_1;
|
|
break;
|
|
}
|
|
|
|
error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_BUS_WIDTH_MASK, bus_width);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
rtsx_stop_sd_clock(struct rtsx_softc *sc)
|
|
{
|
|
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
|
|
RTSX_SET(sc, RTSX_SD_BUS_STAT, RTSX_SD_CLK_FORCE_STOP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rtsx_switch_sd_clock(struct rtsx_softc *sc, u_int8_t n, int div, int mcu)
|
|
{
|
|
/* Enable SD 2.0 mode. */
|
|
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK);
|
|
|
|
RTSX_SET(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
|
|
|
|
RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
|
|
RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1);
|
|
RTSX_CLR(sc, RTSX_SD_SAMPLE_POINT_CTL, RTSX_SD20_RX_SEL_MASK);
|
|
RTSX_WRITE(sc, RTSX_SD_PUSH_POINT_CTL, RTSX_SD20_TX_NEG_EDGE);
|
|
RTSX_WRITE(sc, RTSX_CLK_DIV, (div << 4) | mcu);
|
|
RTSX_CLR(sc, RTSX_SSC_CTL1, RTSX_RSTB);
|
|
RTSX_CLR(sc, RTSX_SSC_CTL2, RTSX_SSC_DEPTH_MASK);
|
|
RTSX_WRITE(sc, RTSX_SSC_DIV_N_0, n);
|
|
RTSX_SET(sc, RTSX_SSC_CTL1, RTSX_RSTB);
|
|
delay(100);
|
|
|
|
RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set or change SD bus voltage and enable or disable SD bus power.
|
|
* Return zero on success.
|
|
*/
|
|
int
|
|
rtsx_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
|
|
{
|
|
struct rtsx_softc *sc = sch;
|
|
int s, error = 0;
|
|
|
|
DPRINTF(1,("%s: voltage change ocr=0x%x\n", DEVNAME(sc), ocr));
|
|
|
|
s = splsdmmc();
|
|
|
|
/*
|
|
* Disable bus power before voltage change.
|
|
*/
|
|
error = rtsx_bus_power_off(sc);
|
|
if (error)
|
|
goto ret;
|
|
|
|
delay(200);
|
|
|
|
/* If power is disabled, reset the host and return now. */
|
|
if (ocr == 0) {
|
|
splx(s);
|
|
(void)rtsx_host_reset(sc);
|
|
return 0;
|
|
}
|
|
|
|
if (!ISSET(ocr, RTSX_SUPPORT_VOLTAGE)) {
|
|
/* Unsupported voltage level requested. */
|
|
DPRINTF(1,("%s: unsupported voltage ocr=0x%x\n",
|
|
DEVNAME(sc), ocr));
|
|
error = EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
error = rtsx_bus_power_on(sc);
|
|
if (error)
|
|
goto ret;
|
|
|
|
error = rtsx_set_bus_width(sc, 1);
|
|
ret:
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Set or change SDCLK frequency or disable the SD clock.
|
|
* Return zero on success.
|
|
*/
|
|
int
|
|
rtsx_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing)
|
|
{
|
|
struct rtsx_softc *sc = sch;
|
|
int s;
|
|
u_int8_t n;
|
|
int div;
|
|
int mcu;
|
|
int error = 0;
|
|
|
|
s = splsdmmc();
|
|
|
|
if (freq == SDMMC_SDCLK_OFF) {
|
|
error = rtsx_stop_sd_clock(sc);
|
|
goto ret;
|
|
}
|
|
|
|
/* Round down to a supported frequency. */
|
|
if (freq >= SDMMC_SDCLK_50MHZ)
|
|
freq = SDMMC_SDCLK_50MHZ;
|
|
else if (freq >= SDMMC_SDCLK_25MHZ)
|
|
freq = SDMMC_SDCLK_25MHZ;
|
|
else
|
|
freq = SDMMC_SDCLK_400KHZ;
|
|
|
|
/*
|
|
* Configure the clock frequency.
|
|
*/
|
|
switch (freq) {
|
|
case SDMMC_SDCLK_400KHZ:
|
|
n = 80; /* minimum */
|
|
div = RTSX_CLK_DIV_8;
|
|
mcu = 7;
|
|
RTSX_SET(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_128);
|
|
break;
|
|
case SDMMC_SDCLK_25MHZ:
|
|
n = 100;
|
|
div = RTSX_CLK_DIV_4;
|
|
mcu = 7;
|
|
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
|
|
break;
|
|
case SDMMC_SDCLK_50MHZ:
|
|
n = 100;
|
|
div = RTSX_CLK_DIV_2;
|
|
mcu = 7;
|
|
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
/*
|
|
* Enable SD clock.
|
|
*/
|
|
error = rtsx_switch_sd_clock(sc, n, div, mcu);
|
|
ret:
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
rtsx_bus_width(sdmmc_chipset_handle_t sch, int width)
|
|
{
|
|
struct rtsx_softc *sc = sch;
|
|
|
|
return rtsx_set_bus_width(sc, width);
|
|
}
|
|
|
|
int
|
|
rtsx_read(struct rtsx_softc *sc, u_int16_t addr, u_int8_t *val)
|
|
{
|
|
int tries = 1024;
|
|
u_int32_t reg;
|
|
|
|
WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY |
|
|
(u_int32_t)((addr & 0x3FFF) << 16));
|
|
|
|
while (tries--) {
|
|
reg = READ4(sc, RTSX_HAIMR);
|
|
if (!(reg & RTSX_HAIMR_BUSY))
|
|
break;
|
|
}
|
|
|
|
*val = (reg & 0xff);
|
|
return (tries == 0) ? ETIMEDOUT : 0;
|
|
}
|
|
|
|
int
|
|
rtsx_write(struct rtsx_softc *sc, u_int16_t addr, u_int8_t mask, u_int8_t val)
|
|
{
|
|
int tries = 1024;
|
|
u_int32_t reg;
|
|
|
|
WRITE4(sc, RTSX_HAIMR,
|
|
RTSX_HAIMR_BUSY | RTSX_HAIMR_WRITE |
|
|
(u_int32_t)(((addr & 0x3FFF) << 16) |
|
|
(mask << 8) | val));
|
|
|
|
while (tries--) {
|
|
reg = READ4(sc, RTSX_HAIMR);
|
|
if (!(reg & RTSX_HAIMR_BUSY)) {
|
|
if (val != (reg & 0xff))
|
|
return EIO;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
#ifdef notyet
|
|
int
|
|
rtsx_read_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t *val)
|
|
{
|
|
int timeout = 100000;
|
|
u_int8_t data0;
|
|
u_int8_t data1;
|
|
u_int8_t rwctl;
|
|
|
|
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
|
|
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_READ);
|
|
|
|
while (timeout--) {
|
|
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
|
|
if (!(rwctl & RTSX_PHY_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (timeout == 0)
|
|
return ETIMEDOUT;
|
|
|
|
RTSX_READ(sc, RTSX_PHY_DATA0, &data0);
|
|
RTSX_READ(sc, RTSX_PHY_DATA1, &data1);
|
|
*val = data0 | (data1 << 8);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int
|
|
rtsx_write_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t val)
|
|
{
|
|
int timeout = 100000;
|
|
u_int8_t rwctl;
|
|
|
|
RTSX_WRITE(sc, RTSX_PHY_DATA0, val);
|
|
RTSX_WRITE(sc, RTSX_PHY_DATA1, val >> 8);
|
|
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
|
|
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_WRITE);
|
|
|
|
while (timeout--) {
|
|
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
|
|
if (!(rwctl & RTSX_PHY_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (timeout == 0)
|
|
return ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rtsx_read_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr,
|
|
u_int32_t *val)
|
|
{
|
|
int tries = 1024;
|
|
u_int8_t data0, data1, data2, data3, rwctl;
|
|
|
|
RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
|
|
RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
|
|
RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | (func & 0x03 << 4));
|
|
|
|
while (tries--) {
|
|
RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
|
|
if (!(rwctl & RTSX_CFG_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (tries == 0)
|
|
return EIO;
|
|
|
|
RTSX_READ(sc, RTSX_CFGDATA0, &data0);
|
|
RTSX_READ(sc, RTSX_CFGDATA1, &data1);
|
|
RTSX_READ(sc, RTSX_CFGDATA2, &data2);
|
|
RTSX_READ(sc, RTSX_CFGDATA3, &data3);
|
|
|
|
*val = (data3 << 24) | (data2 << 16) | (data1 << 8) | data0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef notyet
|
|
int
|
|
rtsx_write_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr,
|
|
u_int32_t mask, u_int32_t val)
|
|
{
|
|
int i, writemask = 0, tries = 1024;
|
|
u_int8_t rwctl;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (mask & 0xff) {
|
|
RTSX_WRITE(sc, RTSX_CFGDATA0 + i, val & mask & 0xff);
|
|
writemask |= (1 << i);
|
|
}
|
|
mask >>= 8;
|
|
val >>= 8;
|
|
}
|
|
|
|
if (writemask) {
|
|
RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
|
|
RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
|
|
RTSX_WRITE(sc, RTSX_CFGRWCTL,
|
|
RTSX_CFG_BUSY | writemask | (func & 0x03 << 4));
|
|
}
|
|
|
|
while (tries--) {
|
|
RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
|
|
if (!(rwctl & RTSX_CFG_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (tries == 0)
|
|
return EIO;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Append a properly encoded host command to the host command buffer. */
|
|
void
|
|
rtsx_hostcmd(u_int32_t *cmdbuf, int *n, u_int8_t cmd, u_int16_t reg,
|
|
u_int8_t mask, u_int8_t data)
|
|
{
|
|
KASSERT(*n < RTSX_HOSTCMD_MAX);
|
|
|
|
cmdbuf[(*n)++] = htole32((u_int32_t)(cmd & 0x3) << 30) |
|
|
((u_int32_t)(reg & 0x3fff) << 16) |
|
|
((u_int32_t)(mask) << 8) |
|
|
((u_int32_t)data);
|
|
}
|
|
|
|
void
|
|
rtsx_save_regs(struct rtsx_softc *sc)
|
|
{
|
|
int s, i;
|
|
u_int16_t reg;
|
|
|
|
s = splsdmmc();
|
|
|
|
i = 0;
|
|
for (reg = 0xFDA0; reg < 0xFDAE; reg++)
|
|
(void)rtsx_read(sc, reg, &sc->regs[i++]);
|
|
for (reg = 0xFD52; reg < 0xFD69; reg++)
|
|
(void)rtsx_read(sc, reg, &sc->regs[i++]);
|
|
for (reg = 0xFE20; reg < 0xFE34; reg++)
|
|
(void)rtsx_read(sc, reg, &sc->regs[i++]);
|
|
|
|
sc->regs4[0] = READ4(sc, RTSX_HCBAR);
|
|
sc->regs4[1] = READ4(sc, RTSX_HCBCTLR);
|
|
sc->regs4[2] = READ4(sc, RTSX_HDBAR);
|
|
sc->regs4[3] = READ4(sc, RTSX_HDBCTLR);
|
|
sc->regs4[4] = READ4(sc, RTSX_HAIMR);
|
|
sc->regs4[5] = READ4(sc, RTSX_BIER);
|
|
/* Not saving RTSX_BIPR. */
|
|
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
rtsx_restore_regs(struct rtsx_softc *sc)
|
|
{
|
|
int s, i;
|
|
u_int16_t reg;
|
|
|
|
s = splsdmmc();
|
|
|
|
WRITE4(sc, RTSX_HCBAR, sc->regs4[0]);
|
|
WRITE4(sc, RTSX_HCBCTLR, sc->regs4[1]);
|
|
WRITE4(sc, RTSX_HDBAR, sc->regs4[2]);
|
|
WRITE4(sc, RTSX_HDBCTLR, sc->regs4[3]);
|
|
WRITE4(sc, RTSX_HAIMR, sc->regs4[4]);
|
|
WRITE4(sc, RTSX_BIER, sc->regs4[5]);
|
|
/* Not writing RTSX_BIPR since doing so would clear it. */
|
|
|
|
i = 0;
|
|
for (reg = 0xFDA0; reg < 0xFDAE; reg++)
|
|
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
|
|
for (reg = 0xFD52; reg < 0xFD69; reg++)
|
|
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
|
|
for (reg = 0xFE20; reg < 0xFE34; reg++)
|
|
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
u_int8_t
|
|
rtsx_response_type(u_int16_t sdmmc_rsp)
|
|
{
|
|
int i;
|
|
struct rsp_type {
|
|
u_int16_t sdmmc_rsp;
|
|
u_int8_t rtsx_rsp;
|
|
} rsp_types[] = {
|
|
{ SCF_RSP_R0, RTSX_SD_RSP_TYPE_R0 },
|
|
{ SCF_RSP_R1, RTSX_SD_RSP_TYPE_R1 },
|
|
{ SCF_RSP_R1B, RTSX_SD_RSP_TYPE_R1B },
|
|
{ SCF_RSP_R2, RTSX_SD_RSP_TYPE_R2 },
|
|
{ SCF_RSP_R3, RTSX_SD_RSP_TYPE_R3 },
|
|
{ SCF_RSP_R4, RTSX_SD_RSP_TYPE_R4 },
|
|
{ SCF_RSP_R5, RTSX_SD_RSP_TYPE_R5 },
|
|
{ SCF_RSP_R6, RTSX_SD_RSP_TYPE_R6 },
|
|
{ SCF_RSP_R7, RTSX_SD_RSP_TYPE_R7 }
|
|
};
|
|
|
|
for (i = 0; i < nitems(rsp_types); i++) {
|
|
if (sdmmc_rsp == rsp_types[i].sdmmc_rsp)
|
|
return rsp_types[i].rtsx_rsp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rtsx_hostcmd_send(struct rtsx_softc *sc, int ncmd)
|
|
{
|
|
int s;
|
|
|
|
s = splsdmmc();
|
|
|
|
/* Tell the chip where the command buffer is and run the commands. */
|
|
WRITE4(sc, RTSX_HCBAR, sc->dmap_cmd->dm_segs[0].ds_addr);
|
|
WRITE4(sc, RTSX_HCBCTLR,
|
|
((ncmd * 4) & 0x00ffffff) | RTSX_START_CMD | RTSX_HW_AUTO_RSP);
|
|
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rtsx_xfer_exec(struct rtsx_softc *sc, bus_dmamap_t dmap, int dmaflags)
|
|
{
|
|
int s = splsdmmc();
|
|
|
|
/* Tell the chip where the data buffer is and run the transfer. */
|
|
WRITE4(sc, RTSX_HDBAR, dmap->dm_segs[0].ds_addr);
|
|
WRITE4(sc, RTSX_HDBCTLR, dmaflags);
|
|
|
|
splx(s);
|
|
|
|
/* Wait for completion. */
|
|
return rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 10);
|
|
}
|
|
|
|
int
|
|
rtsx_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd, u_int32_t *cmdbuf)
|
|
{
|
|
int ncmd, dma_dir, error, tmode;
|
|
int read = ISSET(cmd->c_flags, SCF_CMD_READ);
|
|
u_int8_t cfg2;
|
|
|
|
DPRINTF(3,("%s: %s xfer: %d bytes with block size %d\n", DEVNAME(sc),
|
|
read ? "read" : "write",
|
|
cmd->c_datalen, cmd->c_blklen));
|
|
|
|
if (cmd->c_datalen > RTSX_DMA_DATA_BUFSIZE) {
|
|
DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n",
|
|
DEVNAME(sc), cmd->c_datalen, RTSX_DMA_DATA_BUFSIZE));
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* Configure DMA transfer mode parameters. */
|
|
cfg2 = RTSX_SD_NO_CHECK_WAIT_CRC_TO | RTSX_SD_CHECK_CRC16 |
|
|
RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_0;
|
|
if (read) {
|
|
dma_dir = RTSX_DMA_DIR_FROM_CARD;
|
|
/* Use transfer mode AUTO_READ3, which assumes we've already
|
|
* sent the read command and gotten the response, and will
|
|
* send CMD 12 manually after reading multiple blocks. */
|
|
tmode = RTSX_TM_AUTO_READ3;
|
|
cfg2 |= RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC7;
|
|
} else {
|
|
dma_dir = RTSX_DMA_DIR_TO_CARD;
|
|
/* Use transfer mode AUTO_WRITE3, which assumes we've already
|
|
* sent the write command and gotten the response, and will
|
|
* send CMD 12 manually after writing multiple blocks. */
|
|
tmode = RTSX_TM_AUTO_WRITE3;
|
|
cfg2 |= RTSX_SD_NO_CALCULATE_CRC7 | RTSX_SD_NO_CHECK_CRC7;
|
|
}
|
|
|
|
ncmd = 0;
|
|
|
|
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
|
|
0xff, cfg2);
|
|
|
|
/* Queue commands to configure data transfer size. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L, 0xff,
|
|
(cmd->c_blklen & 0xff));
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H, 0xff,
|
|
(cmd->c_blklen >> 8));
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L, 0xff,
|
|
((cmd->c_datalen / cmd->c_blklen) & 0xff));
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H, 0xff,
|
|
((cmd->c_datalen / cmd->c_blklen) >> 8));
|
|
|
|
/* Use the DMA ring buffer for commands which transfer data. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE, 0x01, RTSX_RING_BUFFER);
|
|
|
|
/* Configure DMA controller. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_IRQSTAT0,
|
|
RTSX_DMA_DONE_INT, RTSX_DMA_DONE_INT);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_DMATC3, 0xff, cmd->c_datalen >> 24);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_DMATC2, 0xff, cmd->c_datalen >> 16);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_DMATC1, 0xff, cmd->c_datalen >> 8);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_DMATC0, 0xff, cmd->c_datalen);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_DMACTL,
|
|
0x03 | RTSX_DMA_PACK_SIZE_MASK,
|
|
dma_dir | RTSX_DMA_EN | RTSX_DMA_512);
|
|
|
|
/* Queue commands to perform SD transfer. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
|
|
0xff, tmode | RTSX_SD_TRANSFER_START);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
|
|
RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
|
|
|
|
error = rtsx_hostcmd_send(sc, ncmd);
|
|
if (error)
|
|
goto ret;
|
|
|
|
if (cmd->c_dmamap)
|
|
error = rtsx_xfer_adma(sc, cmd);
|
|
else
|
|
error = rtsx_xfer_bounce(sc, cmd);
|
|
ret:
|
|
DPRINTF(3,("%s: xfer done, error=%d\n", DEVNAME(sc), error));
|
|
return error;
|
|
}
|
|
|
|
int
|
|
rtsx_xfer_bounce(struct rtsx_softc *sc, struct sdmmc_command *cmd)
|
|
{
|
|
caddr_t datakvap;
|
|
bus_dma_segment_t segs;
|
|
int rsegs, error;
|
|
int read = ISSET(cmd->c_flags, SCF_CMD_READ);
|
|
|
|
/* Allocate and map DMA bounce buffer for data transfer. */
|
|
error = bus_dmamem_alloc(sc->dmat, cmd->c_datalen, 0, 0, &segs, 1,
|
|
&rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO);
|
|
if (error) {
|
|
DPRINTF(3, ("%s: could not allocate %d bytes\n",
|
|
DEVNAME(sc), cmd->c_datalen));
|
|
return error;
|
|
}
|
|
error = bus_dmamem_map(sc->dmat, &segs, rsegs, cmd->c_datalen,
|
|
&datakvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
|
|
if (error) {
|
|
DPRINTF(3, ("%s: could not map data buffer\n", DEVNAME(sc)));
|
|
goto free_databuf;
|
|
}
|
|
|
|
/* If this is a write, copy data from sdmmc-provided buffer. */
|
|
if (!read)
|
|
memcpy(datakvap, cmd->c_data, cmd->c_datalen);
|
|
|
|
/* Load the data buffer and sync it. */
|
|
error = bus_dmamap_load(sc->dmat, sc->dmap_data, datakvap,
|
|
cmd->c_datalen, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
DPRINTF(3, ("%s: could not load DMA map\n", DEVNAME(sc)));
|
|
goto unmap_databuf;
|
|
}
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
|
|
BUS_DMASYNC_PREREAD);
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
error = rtsx_xfer_exec(sc, sc->dmap_data,
|
|
RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0) |
|
|
(cmd->c_datalen & 0x00ffffff));
|
|
if (error)
|
|
goto unload_databuf;
|
|
|
|
/* Sync and unload data DMA buffer. */
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
unload_databuf:
|
|
bus_dmamap_unload(sc->dmat, sc->dmap_data);
|
|
|
|
/* If this is a read, copy data into sdmmc-provided buffer. */
|
|
if (error == 0 && read)
|
|
memcpy(cmd->c_data, datakvap, cmd->c_datalen);
|
|
|
|
/* Free DMA data buffer. */
|
|
unmap_databuf:
|
|
bus_dmamem_unmap(sc->dmat, datakvap, cmd->c_datalen);
|
|
free_databuf:
|
|
bus_dmamem_free(sc->dmat, &segs, rsegs);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
rtsx_xfer_adma(struct rtsx_softc *sc, struct sdmmc_command *cmd)
|
|
{
|
|
int i, error;
|
|
uint64_t *descp;
|
|
int read = ISSET(cmd->c_flags, SCF_CMD_READ);
|
|
|
|
/* Initialize scatter-gather transfer descriptors. */
|
|
descp = (uint64_t *)sc->admabuf;
|
|
for (i = 0; i < cmd->c_dmamap->dm_nsegs; i++) {
|
|
uint64_t paddr = cmd->c_dmamap->dm_segs[i].ds_addr;
|
|
uint64_t len = cmd->c_dmamap->dm_segs[i].ds_len;
|
|
uint8_t sgflags = RTSX_SG_VALID | RTSX_SG_TRANS_DATA;
|
|
uint64_t desc;
|
|
|
|
if (i == cmd->c_dmamap->dm_nsegs - 1)
|
|
sgflags |= RTSX_SG_END;
|
|
len &= 0x00ffffff;
|
|
desc = htole64((paddr << 32) | (len << 12) | sgflags);
|
|
memcpy(descp, &desc, sizeof(*descp));
|
|
descp++;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->dmat, sc->dmap_adma, sc->admabuf,
|
|
RTSX_ADMA_DESC_SIZE, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
DPRINTF(3, ("%s: could not load DMA map\n", DEVNAME(sc)));
|
|
return error;
|
|
}
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_adma, 0, RTSX_ADMA_DESC_SIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
error = rtsx_xfer_exec(sc, sc->dmap_adma,
|
|
RTSX_ADMA_MODE | RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0));
|
|
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_adma, 0, RTSX_ADMA_DESC_SIZE,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
bus_dmamap_unload(sc->dmat, sc->dmap_adma);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
rtsx_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
|
|
{
|
|
struct rtsx_softc *sc = sch;
|
|
bus_dma_segment_t segs;
|
|
int rsegs;
|
|
caddr_t cmdkvap;
|
|
u_int32_t *cmdbuf;
|
|
u_int8_t rsp_type;
|
|
u_int16_t r;
|
|
int ncmd;
|
|
int error = 0;
|
|
|
|
DPRINTF(3,("%s: executing cmd %hu\n", DEVNAME(sc), cmd->c_opcode));
|
|
|
|
/* Refuse SDIO probe if the chip doesn't support SDIO. */
|
|
if (cmd->c_opcode == SD_IO_SEND_OP_COND &&
|
|
!ISSET(sc->flags, RTSX_F_SDIO_SUPPORT)) {
|
|
error = ENOTSUP;
|
|
goto ret;
|
|
}
|
|
|
|
rsp_type = rtsx_response_type(cmd->c_flags & 0xff00);
|
|
if (rsp_type == 0) {
|
|
printf("%s: unknown response type 0x%x\n", DEVNAME(sc),
|
|
(cmd->c_flags & 0xff00));
|
|
error = EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
/* Allocate and map the host command buffer. */
|
|
error = bus_dmamem_alloc(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 0, 0, &segs, 1,
|
|
&rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO);
|
|
if (error)
|
|
goto ret;
|
|
error = bus_dmamem_map(sc->dmat, &segs, rsegs, RTSX_HOSTCMD_BUFSIZE,
|
|
&cmdkvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
|
|
if (error)
|
|
goto free_cmdbuf;
|
|
|
|
/* The command buffer queues commands the host controller will
|
|
* run asynchronously. */
|
|
cmdbuf = (u_int32_t *)cmdkvap;
|
|
ncmd = 0;
|
|
|
|
/* Queue commands to set SD command index and argument. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_CMD0, 0xff, 0x40 | cmd->c_opcode);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_CMD1, 0xff, cmd->c_arg >> 24);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_CMD2, 0xff, cmd->c_arg >> 16);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_CMD3, 0xff, cmd->c_arg >> 8);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_CMD4, 0xff, cmd->c_arg);
|
|
|
|
/* Queue command to set response type. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff, rsp_type);
|
|
|
|
/* Use the ping-pong buffer for commands which do not transfer data. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
|
|
0x01, RTSX_PINGPONG_BUFFER);
|
|
|
|
/* Queue commands to perform SD transfer. */
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
|
|
0xff, RTSX_TM_CMD_RSP | RTSX_SD_TRANSFER_START);
|
|
rtsx_hostcmd(cmdbuf, &ncmd,
|
|
RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
|
|
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE,
|
|
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE);
|
|
|
|
/* Queue commands to read back card status response.*/
|
|
if (rsp_type == RTSX_SD_RSP_TYPE_R2) {
|
|
for (r = RTSX_PPBUF_BASE2 + 15; r > RTSX_PPBUF_BASE2; r--)
|
|
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
|
|
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, RTSX_SD_CMD5,
|
|
0, 0);
|
|
} else if (rsp_type != RTSX_SD_RSP_TYPE_R0) {
|
|
for (r = RTSX_SD_CMD0; r <= RTSX_SD_CMD4; r++)
|
|
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
|
|
}
|
|
|
|
/* Load and sync command DMA buffer. */
|
|
error = bus_dmamap_load(sc->dmat, sc->dmap_cmd, cmdkvap,
|
|
RTSX_HOSTCMD_BUFSIZE, NULL, BUS_DMA_WAITOK);
|
|
if (error)
|
|
goto unmap_cmdbuf;
|
|
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
|
|
BUS_DMASYNC_PREREAD);
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Run the command queue and wait for completion. */
|
|
error = rtsx_hostcmd_send(sc, ncmd);
|
|
if (error == 0)
|
|
error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 1);
|
|
if (error)
|
|
goto unload_cmdbuf;
|
|
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Copy card response into sdmmc response buffer. */
|
|
if (ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
|
|
/* Copy bytes like sdhc(4), which on little-endian uses
|
|
* different byte order for short and long responses... */
|
|
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
|
|
memcpy(cmd->c_resp, cmdkvap + 1, sizeof(cmd->c_resp));
|
|
} else {
|
|
/* First byte is CHECK_REG_CMD return value, second
|
|
* one is the command op code -- we skip those. */
|
|
cmd->c_resp[0] =
|
|
((betoh32(cmdbuf[0]) & 0x0000ffff) << 16) |
|
|
((betoh32(cmdbuf[1]) & 0xffff0000) >> 16);
|
|
}
|
|
}
|
|
|
|
if (cmd->c_data) {
|
|
error = rtsx_xfer(sc, cmd, cmdbuf);
|
|
if (error) {
|
|
u_int8_t stat1;
|
|
|
|
if (rtsx_read(sc, RTSX_SD_STAT1, &stat1) == 0 &&
|
|
(stat1 & RTSX_SD_CRC_ERR))
|
|
printf("%s: CRC error\n", DEVNAME(sc));
|
|
}
|
|
}
|
|
|
|
unload_cmdbuf:
|
|
bus_dmamap_unload(sc->dmat, sc->dmap_cmd);
|
|
unmap_cmdbuf:
|
|
bus_dmamem_unmap(sc->dmat, cmdkvap, RTSX_HOSTCMD_BUFSIZE);
|
|
free_cmdbuf:
|
|
bus_dmamem_free(sc->dmat, &segs, rsegs);
|
|
ret:
|
|
SET(cmd->c_flags, SCF_ITSDONE);
|
|
cmd->c_error = error;
|
|
}
|
|
|
|
/* Prepare for another command. */
|
|
void
|
|
rtsx_soft_reset(struct rtsx_softc *sc)
|
|
{
|
|
DPRINTF(1,("%s: soft reset\n", DEVNAME(sc)));
|
|
|
|
/* Stop command transfer. */
|
|
WRITE4(sc, RTSX_HCBCTLR, RTSX_STOP_CMD);
|
|
|
|
(void)rtsx_write(sc, RTSX_CARD_STOP, RTSX_SD_STOP|RTSX_SD_CLR_ERR,
|
|
RTSX_SD_STOP|RTSX_SD_CLR_ERR);
|
|
|
|
/* Stop DMA transfer. */
|
|
WRITE4(sc, RTSX_HDBCTLR, RTSX_STOP_DMA);
|
|
(void)rtsx_write(sc, RTSX_DMACTL, RTSX_DMA_RST, RTSX_DMA_RST);
|
|
|
|
(void)rtsx_write(sc, RTSX_RBCTL, RTSX_RB_FLUSH, RTSX_RB_FLUSH);
|
|
}
|
|
|
|
int
|
|
rtsx_wait_intr(struct rtsx_softc *sc, int mask, int secs)
|
|
{
|
|
int status;
|
|
int error = 0;
|
|
int s;
|
|
|
|
mask |= RTSX_TRANS_FAIL_INT;
|
|
|
|
s = splsdmmc();
|
|
status = sc->intr_status & mask;
|
|
while (status == 0) {
|
|
if (tsleep_nsec(&sc->intr_status, PRIBIO, "rtsxintr",
|
|
SEC_TO_NSEC(secs)) == EWOULDBLOCK) {
|
|
rtsx_soft_reset(sc);
|
|
error = ETIMEDOUT;
|
|
break;
|
|
}
|
|
status = sc->intr_status & mask;
|
|
}
|
|
sc->intr_status &= ~status;
|
|
|
|
/* Has the card disappeared? */
|
|
if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT))
|
|
error = ENODEV;
|
|
|
|
splx(s);
|
|
|
|
if (error == 0 && (status & RTSX_TRANS_FAIL_INT))
|
|
error = EIO;
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
rtsx_card_insert(struct rtsx_softc *sc)
|
|
{
|
|
DPRINTF(1, ("%s: card inserted\n", DEVNAME(sc)));
|
|
|
|
sc->flags |= RTSX_F_CARD_PRESENT;
|
|
(void)rtsx_led_enable(sc);
|
|
|
|
/* Schedule card discovery task. */
|
|
sdmmc_needs_discover(sc->sdmmc);
|
|
}
|
|
|
|
void
|
|
rtsx_card_eject(struct rtsx_softc *sc)
|
|
{
|
|
DPRINTF(1, ("%s: card ejected\n", DEVNAME(sc)));
|
|
|
|
sc->flags &= ~RTSX_F_CARD_PRESENT;
|
|
(void)rtsx_led_disable(sc);
|
|
|
|
/* Schedule card discovery task. */
|
|
sdmmc_needs_discover(sc->sdmmc);
|
|
}
|
|
|
|
/*
|
|
* Established by attachment driver at interrupt priority IPL_SDMMC.
|
|
*/
|
|
int
|
|
rtsx_intr(void *arg)
|
|
{
|
|
struct rtsx_softc *sc = arg;
|
|
u_int32_t enabled, status;
|
|
|
|
enabled = READ4(sc, RTSX_BIER);
|
|
status = READ4(sc, RTSX_BIPR);
|
|
|
|
/* Ack interrupts. */
|
|
WRITE4(sc, RTSX_BIPR, status);
|
|
|
|
if (((enabled & status) == 0) || status == 0xffffffff)
|
|
return 0;
|
|
|
|
if (status & RTSX_SD_INT) {
|
|
if (status & RTSX_SD_EXIST) {
|
|
if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT))
|
|
rtsx_card_insert(sc);
|
|
} else {
|
|
rtsx_card_eject(sc);
|
|
}
|
|
}
|
|
|
|
if (status & (RTSX_TRANS_OK_INT | RTSX_TRANS_FAIL_INT)) {
|
|
sc->intr_status |= status;
|
|
wakeup(&sc->intr_status);
|
|
}
|
|
|
|
return 1;
|
|
}
|