src/sys/dev/ic/ar5008.c
2023-07-10 00:10:46 +00:00

2954 lines
83 KiB
C

/* $OpenBSD: ar5008.c,v 1.71 2022/12/27 20:13:03 patrick Exp $ */
/*-
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros 802.11a/g/n chipsets.
* Routines common to AR5008, AR9001 and AR9002 families.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/timeout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/stdint.h> /* uintptr_t */
#include <sys/endian.h>
#include <machine/bus.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_ra.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>
#include <dev/ic/ar5008reg.h>
int ar5008_attach(struct athn_softc *);
int ar5008_read_eep_word(struct athn_softc *, uint32_t, uint16_t *);
int ar5008_read_rom(struct athn_softc *);
void ar5008_swap_rom(struct athn_softc *);
int ar5008_gpio_read(struct athn_softc *, int);
void ar5008_gpio_write(struct athn_softc *, int, int);
void ar5008_gpio_config_input(struct athn_softc *, int);
void ar5008_gpio_config_output(struct athn_softc *, int, int);
void ar5008_rfsilent_init(struct athn_softc *);
int ar5008_dma_alloc(struct athn_softc *);
void ar5008_dma_free(struct athn_softc *);
int ar5008_tx_alloc(struct athn_softc *);
void ar5008_tx_free(struct athn_softc *);
int ar5008_rx_alloc(struct athn_softc *);
void ar5008_rx_free(struct athn_softc *);
void ar5008_rx_enable(struct athn_softc *);
void ar5008_rx_radiotap(struct athn_softc *, struct mbuf *,
struct ar_rx_desc *);
int ar5008_ccmp_decap(struct athn_softc *, struct mbuf *,
struct ieee80211_node *);
void ar5008_rx_intr(struct athn_softc *);
int ar5008_tx_process(struct athn_softc *, int);
void ar5008_tx_intr(struct athn_softc *);
int ar5008_swba_intr(struct athn_softc *);
int ar5008_intr(struct athn_softc *);
int ar5008_ccmp_encap(struct mbuf *, u_int, struct ieee80211_key *);
int ar5008_tx(struct athn_softc *, struct mbuf *, struct ieee80211_node *,
int);
void ar5008_set_rf_mode(struct athn_softc *, struct ieee80211_channel *);
int ar5008_rf_bus_request(struct athn_softc *);
void ar5008_rf_bus_release(struct athn_softc *);
void ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
void ar5008_set_delta_slope(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
void ar5008_enable_antenna_diversity(struct athn_softc *);
void ar5008_init_baseband(struct athn_softc *);
void ar5008_disable_phy(struct athn_softc *);
void ar5008_init_chains(struct athn_softc *);
void ar5008_set_rxchains(struct athn_softc *);
void ar5008_read_noisefloor(struct athn_softc *, int16_t *, int16_t *);
void ar5008_write_noisefloor(struct athn_softc *, int16_t *, int16_t *);
int ar5008_get_noisefloor(struct athn_softc *);
void ar5008_apply_noisefloor(struct athn_softc *);
void ar5008_bb_load_noisefloor(struct athn_softc *);
void ar5008_do_noisefloor_calib(struct athn_softc *);
void ar5008_init_noisefloor_calib(struct athn_softc *);
void ar5008_do_calib(struct athn_softc *);
void ar5008_next_calib(struct athn_softc *);
void ar5008_calib_iq(struct athn_softc *);
void ar5008_calib_adc_gain(struct athn_softc *);
void ar5008_calib_adc_dc_off(struct athn_softc *);
void ar5008_write_txpower(struct athn_softc *, int16_t *);
void ar5008_set_viterbi_mask(struct athn_softc *, int);
void ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
uint8_t ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int);
void ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *,
struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *);
void ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *,
uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t *);
void ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *,
uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t *);
void ar5008_set_noise_immunity_level(struct athn_softc *, int);
void ar5008_enable_ofdm_weak_signal(struct athn_softc *);
void ar5008_disable_ofdm_weak_signal(struct athn_softc *);
void ar5008_set_cck_weak_signal(struct athn_softc *, int);
void ar5008_set_firstep_level(struct athn_softc *, int);
void ar5008_set_spur_immunity_level(struct athn_softc *, int);
/* Extern functions. */
void athn_stop(struct ifnet *, int);
int athn_interpolate(int, int, int, int, int);
int athn_txtime(struct athn_softc *, int, int, u_int);
void athn_inc_tx_trigger_level(struct athn_softc *);
int athn_tx_pending(struct athn_softc *, int);
void athn_stop_tx_dma(struct athn_softc *, int);
void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
void athn_config_pcie(struct athn_softc *);
void athn_config_nonpcie(struct athn_softc *);
uint8_t athn_chan2fbin(struct ieee80211_channel *);
uint8_t ar5416_get_rf_rev(struct athn_softc *);
void ar5416_reset_addac(struct athn_softc *, struct ieee80211_channel *);
void ar5416_rf_reset(struct athn_softc *, struct ieee80211_channel *);
void ar5416_reset_bb_gain(struct athn_softc *, struct ieee80211_channel *);
void ar9280_reset_rx_gain(struct athn_softc *, struct ieee80211_channel *);
void ar9280_reset_tx_gain(struct athn_softc *, struct ieee80211_channel *);
int
ar5008_attach(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ar_base_eep_header *base;
uint8_t eep_ver, kc_entries_log;
int error;
/* Set callbacks for AR5008, AR9001 and AR9002 families. */
ops->gpio_read = ar5008_gpio_read;
ops->gpio_write = ar5008_gpio_write;
ops->gpio_config_input = ar5008_gpio_config_input;
ops->gpio_config_output = ar5008_gpio_config_output;
ops->rfsilent_init = ar5008_rfsilent_init;
ops->dma_alloc = ar5008_dma_alloc;
ops->dma_free = ar5008_dma_free;
ops->rx_enable = ar5008_rx_enable;
ops->intr = ar5008_intr;
ops->tx = ar5008_tx;
ops->set_rf_mode = ar5008_set_rf_mode;
ops->rf_bus_request = ar5008_rf_bus_request;
ops->rf_bus_release = ar5008_rf_bus_release;
ops->set_phy = ar5008_set_phy;
ops->set_delta_slope = ar5008_set_delta_slope;
ops->enable_antenna_diversity = ar5008_enable_antenna_diversity;
ops->init_baseband = ar5008_init_baseband;
ops->disable_phy = ar5008_disable_phy;
ops->set_rxchains = ar5008_set_rxchains;
ops->noisefloor_calib = ar5008_do_noisefloor_calib;
ops->init_noisefloor_calib = ar5008_init_noisefloor_calib;
ops->get_noisefloor = ar5008_get_noisefloor;
ops->apply_noisefloor = ar5008_apply_noisefloor;
ops->do_calib = ar5008_do_calib;
ops->next_calib = ar5008_next_calib;
ops->hw_init = ar5008_hw_init;
ops->set_noise_immunity_level = ar5008_set_noise_immunity_level;
ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal;
ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal;
ops->set_cck_weak_signal = ar5008_set_cck_weak_signal;
ops->set_firstep_level = ar5008_set_firstep_level;
ops->set_spur_immunity_level = ar5008_set_spur_immunity_level;
/* Set MAC registers offsets. */
sc->obs_off = AR_OBS;
sc->gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
if (!(sc->flags & ATHN_FLAG_PCIE))
athn_config_nonpcie(sc);
else
athn_config_pcie(sc);
/* Read entire ROM content in memory. */
if ((error = ar5008_read_rom(sc)) != 0) {
printf("%s: could not read ROM\n", sc->sc_dev.dv_xname);
return (error);
}
/* Get RF revision. */
sc->rf_rev = ar5416_get_rf_rev(sc);
base = sc->eep;
eep_ver = (base->version >> 12) & 0xf;
sc->eep_rev = (base->version & 0xfff);
if (eep_ver != AR_EEP_VER || sc->eep_rev == 0) {
printf("%s: unsupported ROM version %d.%d\n",
sc->sc_dev.dv_xname, eep_ver, sc->eep_rev);
return (EINVAL);
}
if (base->opCapFlags & AR_OPFLAGS_11A) {
sc->flags |= ATHN_FLAG_11A;
if ((base->opCapFlags & AR_OPFLAGS_11N_5G20) == 0)
sc->flags |= ATHN_FLAG_11N;
#ifdef notyet
if ((base->opCapFlags & AR_OPFLAGS_11N_5G40) == 0)
sc->flags |= ATHN_FLAG_11N;
#endif
}
if (base->opCapFlags & AR_OPFLAGS_11G) {
sc->flags |= ATHN_FLAG_11G;
if ((base->opCapFlags & AR_OPFLAGS_11N_2G20) == 0)
sc->flags |= ATHN_FLAG_11N;
#ifdef notyet
if ((base->opCapFlags & AR_OPFLAGS_11N_2G40) == 0)
sc->flags |= ATHN_FLAG_11N;
#endif
}
IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr);
/* Check if we have a hardware radio switch. */
if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) {
sc->flags |= ATHN_FLAG_RFSILENT;
/* Get GPIO pin used by hardware radio switch. */
sc->rfsilent_pin = MS(base->rfSilent,
AR_EEP_RFSILENT_GPIO_SEL);
/* Get polarity of hardware radio switch. */
if (base->rfSilent & AR_EEP_RFSILENT_POLARITY)
sc->flags |= ATHN_FLAG_RFSILENT_REVERSED;
}
/* Get the number of HW key cache entries. */
kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES);
sc->kc_entries = (kc_entries_log != 0) ?
1 << kc_entries_log : AR_KEYTABLE_SIZE;
if (sc->kc_entries > AR_KEYTABLE_SIZE)
sc->kc_entries = AR_KEYTABLE_SIZE;
sc->txchainmask = base->txMask;
if (sc->mac_ver == AR_SREV_VERSION_5416_PCI &&
!(base->opCapFlags & AR_OPFLAGS_11A)) {
/* For single-band AR5416 PCI, use GPIO pin 0. */
sc->rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7;
} else
sc->rxchainmask = base->rxMask;
ops->setup(sc);
return (0);
}
/*
* Read 16-bit word from ROM.
*/
int
ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
{
uint32_t reg;
int ntries;
reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
for (ntries = 0; ntries < 1000; ntries++) {
reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
return (0);
}
DELAY(10);
}
*val = 0xffff;
return (ETIMEDOUT);
}
int
ar5008_read_rom(struct athn_softc *sc)
{
uint32_t addr, end;
uint16_t magic, sum, *eep;
int need_swap = 0;
int error;
/* Determine ROM endianness. */
error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic);
if (error != 0)
return (error);
if (magic != AR_EEPROM_MAGIC) {
if (magic != swap16(AR_EEPROM_MAGIC)) {
DPRINTF(("invalid ROM magic 0x%x != 0x%x\n",
magic, AR_EEPROM_MAGIC));
return (EIO);
}
DPRINTF(("non-native ROM endianness\n"));
need_swap = 1;
}
/* Allocate space to store ROM in host memory. */
sc->eep = malloc(sc->eep_size, M_DEVBUF, M_NOWAIT);
if (sc->eep == NULL)
return (ENOMEM);
/* Read entire ROM and compute checksum. */
sum = 0;
eep = sc->eep;
end = sc->eep_base + sc->eep_size / sizeof(uint16_t);
for (addr = sc->eep_base; addr < end; addr++, eep++) {
if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) {
DPRINTF(("could not read ROM at 0x%x\n", addr));
return (error);
}
if (need_swap)
*eep = swap16(*eep);
sum ^= *eep;
}
if (sum != 0xffff) {
printf("%s: bad ROM checksum 0x%04x\n",
sc->sc_dev.dv_xname, sum);
return (EIO);
}
if (need_swap)
ar5008_swap_rom(sc);
return (0);
}
void
ar5008_swap_rom(struct athn_softc *sc)
{
struct ar_base_eep_header *base = sc->eep;
/* Swap common fields first. */
base->length = swap16(base->length);
base->version = swap16(base->version);
base->regDmn[0] = swap16(base->regDmn[0]);
base->regDmn[1] = swap16(base->regDmn[1]);
base->rfSilent = swap16(base->rfSilent);
base->blueToothOptions = swap16(base->blueToothOptions);
base->deviceCap = swap16(base->deviceCap);
/* Swap device-dependent fields. */
sc->ops.swap_rom(sc);
}
/*
* Access to General Purpose Input/Output ports.
*/
int
ar5008_gpio_read(struct athn_softc *sc, int pin)
{
KASSERT(pin < sc->ngpiopins);
if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc))
return (!((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1));
return ((AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->ngpiopins + pin)) & 1);
}
void
ar5008_gpio_write(struct athn_softc *sc, int pin, int set)
{
uint32_t reg;
KASSERT(pin < sc->ngpiopins);
if (sc->flags & ATHN_FLAG_USB)
set = !set; /* AR9271/AR7010 is reversed. */
if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
/* Special case for AR7010. */
reg = AR_READ(sc, AR7010_GPIO_OUT);
if (set)
reg |= 1 << pin;
else
reg &= ~(1 << pin);
AR_WRITE(sc, AR7010_GPIO_OUT, reg);
} else {
reg = AR_READ(sc, AR_GPIO_IN_OUT);
if (set)
reg |= 1 << pin;
else
reg &= ~(1 << pin);
AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
}
AR_WRITE_BARRIER(sc);
}
void
ar5008_gpio_config_input(struct athn_softc *sc, int pin)
{
uint32_t reg;
if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
/* Special case for AR7010. */
AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin);
} else {
reg = AR_READ(sc, AR_GPIO_OE_OUT);
reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
}
AR_WRITE_BARRIER(sc);
}
void
ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type)
{
uint32_t reg;
int mux, off;
if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
/* Special case for AR7010. */
AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin);
AR_WRITE_BARRIER(sc);
return;
}
mux = pin / 6;
off = pin % 6;
reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0)
reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1;
reg &= ~(0x1f << (off * 5));
reg |= (type & 0x1f) << (off * 5);
AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
reg = AR_READ(sc, AR_GPIO_OE_OUT);
reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
AR_WRITE_BARRIER(sc);
}
void
ar5008_rfsilent_init(struct athn_softc *sc)
{
uint32_t reg;
/* Configure hardware radio switch. */
AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
ar5008_gpio_config_input(sc, sc->rfsilent_pin);
AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
if (!(sc->flags & ATHN_FLAG_RFSILENT_REVERSED)) {
AR_SETBITS(sc, AR_GPIO_INTR_POL,
AR_GPIO_INTR_POL_PIN(sc->rfsilent_pin));
}
AR_WRITE_BARRIER(sc);
}
int
ar5008_dma_alloc(struct athn_softc *sc)
{
int error;
error = ar5008_tx_alloc(sc);
if (error != 0)
return (error);
error = ar5008_rx_alloc(sc);
if (error != 0)
return (error);
return (0);
}
void
ar5008_dma_free(struct athn_softc *sc)
{
ar5008_tx_free(sc);
ar5008_rx_free(sc);
}
int
ar5008_tx_alloc(struct athn_softc *sc)
{
struct athn_tx_buf *bf;
bus_size_t size;
int error, nsegs, i;
/*
* Allocate a pool of Tx descriptors shared between all Tx queues.
*/
size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->map);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->seg, 1,
&nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (error != 0)
goto fail;
error = bus_dmamem_map(sc->sc_dmat, &sc->seg, 1, size,
(caddr_t *)&sc->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0)
goto fail;
error = bus_dmamap_load_raw(sc->sc_dmat, sc->map, &sc->seg, 1, size,
BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
SIMPLEQ_INIT(&sc->txbufs);
for (i = 0; i < ATHN_NTXBUFS; i++) {
bf = &sc->txpool[i];
error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
&bf->bf_map);
if (error != 0) {
printf("%s: could not create Tx buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
bf->bf_descs =
&((struct ar_tx_desc *)sc->descs)[i * AR5008_MAX_SCATTER];
bf->bf_daddr = sc->map->dm_segs[0].ds_addr +
i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list);
}
return (0);
fail:
ar5008_tx_free(sc);
return (error);
}
void
ar5008_tx_free(struct athn_softc *sc)
{
struct athn_tx_buf *bf;
int i;
for (i = 0; i < ATHN_NTXBUFS; i++) {
bf = &sc->txpool[i];
if (bf->bf_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
}
/* Free Tx descriptors. */
if (sc->map != NULL) {
if (sc->descs != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->descs,
ATHN_NTXBUFS * AR5008_MAX_SCATTER *
sizeof(struct ar_tx_desc));
bus_dmamem_free(sc->sc_dmat, &sc->seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->map);
}
}
int
ar5008_rx_alloc(struct athn_softc *sc)
{
struct athn_rxq *rxq = &sc->rxq[0];
struct athn_rx_buf *bf;
struct ar_rx_desc *ds;
bus_size_t size;
int error, nsegs, i;
rxq->bf = mallocarray(ATHN_NRXBUFS, sizeof(*bf), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (rxq->bf == NULL)
return (ENOMEM);
size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc);
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &rxq->map);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1,
&nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (error != 0)
goto fail;
error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size,
(caddr_t *)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0)
goto fail;
error = bus_dmamap_load_raw(sc->sc_dmat, rxq->map, &rxq->seg, 1,
size, BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
for (i = 0; i < ATHN_NRXBUFS; i++) {
bf = &rxq->bf[i];
ds = &((struct ar_rx_desc *)rxq->descs)[i];
error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&bf->bf_map);
if (error != 0) {
printf("%s: could not create Rx buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Assumes MCLGETL returns cache-line-size aligned buffers.
*/
bf->bf_m = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ);
if (bf->bf_m == NULL) {
printf("%s: could not allocate Rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOBUFS;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
printf("%s: could not DMA map Rx buffer\n",
sc->sc_dev.dv_xname);
goto fail;
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
BUS_DMASYNC_PREREAD);
bf->bf_desc = ds;
bf->bf_daddr = rxq->map->dm_segs[0].ds_addr +
i * sizeof(struct ar_rx_desc);
}
return (0);
fail:
ar5008_rx_free(sc);
return (error);
}
void
ar5008_rx_free(struct athn_softc *sc)
{
struct athn_rxq *rxq = &sc->rxq[0];
struct athn_rx_buf *bf;
int i;
if (rxq->bf == NULL)
return;
for (i = 0; i < ATHN_NRXBUFS; i++) {
bf = &rxq->bf[i];
if (bf->bf_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
m_freem(bf->bf_m);
}
free(rxq->bf, M_DEVBUF, 0);
/* Free Rx descriptors. */
if (rxq->map != NULL) {
if (rxq->descs != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxq->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)rxq->descs,
ATHN_NRXBUFS * sizeof(struct ar_rx_desc));
bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, rxq->map);
}
}
void
ar5008_rx_enable(struct athn_softc *sc)
{
struct athn_rxq *rxq = &sc->rxq[0];
struct athn_rx_buf *bf;
struct ar_rx_desc *ds;
int i;
/* Setup and link Rx descriptors. */
SIMPLEQ_INIT(&rxq->head);
rxq->lastds = NULL;
for (i = 0; i < ATHN_NRXBUFS; i++) {
bf = &rxq->bf[i];
ds = bf->bf_desc;
memset(ds, 0, sizeof(*ds));
ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ);
if (rxq->lastds != NULL) {
((struct ar_rx_desc *)rxq->lastds)->ds_link =
bf->bf_daddr;
}
SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
rxq->lastds = ds;
}
bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize,
BUS_DMASYNC_PREREAD);
/* Enable Rx. */
AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr);
AR_WRITE(sc, AR_CR, AR_CR_RXE);
AR_WRITE_BARRIER(sc);
}
#if NBPFILTER > 0
void
ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
struct ar_rx_desc *ds)
{
#define IEEE80211_RADIOTAP_F_SHORTGI 0x80 /* XXX from FBSD */
struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
struct ieee80211com *ic = &sc->sc_ic;
uint64_t tsf;
uint32_t tstamp;
uint8_t rate;
/* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */
tstamp = ds->ds_status2;
tsf = AR_READ(sc, AR_TSF_U32);
tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
if ((tsf & 0x7fff) < tstamp)
tsf -= 0x8000;
tsf = (tsf & ~0x7fff) | tstamp;
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_tsft = htole64(tsf);
tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
/* XXX noise. */
tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA);
tap->wr_rate = 0; /* In case it can't be found below. */
if (AR_SREV_5416_20_OR_LATER(sc))
rate = MS(ds->ds_status0, AR_RXS0_RATE);
else
rate = MS(ds->ds_status3, AR_RXS3_RATE);
if (rate & 0x80) { /* HT. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = rate;
if (!(ds->ds_status3 & AR_RXS3_GI))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
} else if (rate & 0x10) { /* CCK. */
if (rate & 0x04)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
switch (rate & ~0x14) {
case 0xb: tap->wr_rate = 2; break;
case 0xa: tap->wr_rate = 4; break;
case 0x9: tap->wr_rate = 11; break;
case 0x8: tap->wr_rate = 22; break;
}
} else { /* OFDM. */
switch (rate) {
case 0xb: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0xa: tap->wr_rate = 24; break;
case 0xe: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xd: tap->wr_rate = 72; break;
case 0x8: tap->wr_rate = 96; break;
case 0xc: tap->wr_rate = 108; break;
}
}
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_DIRECTION_IN);
}
#endif
int
ar5008_ccmp_decap(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_key *k;
struct ieee80211_frame *wh;
struct ieee80211_rx_ba *ba;
uint64_t pn, *prsc;
u_int8_t *ivp;
uint8_t tid;
int hdrlen, hasqos;
uintptr_t entry;
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_get_hdrlen(wh);
ivp = mtod(m, u_int8_t *) + hdrlen;
/* find key for decryption */
k = ieee80211_get_rxkey(ic, m, ni);
if (k == NULL || k->k_cipher != IEEE80211_CIPHER_CCMP)
return 1;
/* Sanity checks to ensure this is really a key we installed. */
entry = (uintptr_t)k->k_priv;
if (k->k_flags & IEEE80211_KEY_GROUP) {
if (k->k_id >= IEEE80211_WEP_NKID ||
entry != k->k_id)
return 1;
} else {
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
if (entry != IEEE80211_WEP_NKID +
IEEE80211_AID(ni->ni_associd))
return 1;
} else
#endif
if (entry != IEEE80211_WEP_NKID)
return 1;
}
/* Check that ExtIV bit is set. */
if (!(ivp[3] & IEEE80211_WEP_EXTIV))
return 1;
hasqos = ieee80211_has_qos(wh);
tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
ba = hasqos ? &ni->ni_rx_ba[tid] : NULL;
prsc = &k->k_rsc[tid];
/* Extract the 48-bit PN from the CCMP header. */
pn = (uint64_t)ivp[0] |
(uint64_t)ivp[1] << 8 |
(uint64_t)ivp[4] << 16 |
(uint64_t)ivp[5] << 24 |
(uint64_t)ivp[6] << 32 |
(uint64_t)ivp[7] << 40;
if (pn <= *prsc) {
ic->ic_stats.is_ccmp_replays++;
return 1;
}
/* Last seen packet number is updated in ieee80211_inputm(). */
/* Strip MIC. IV will be stripped by ieee80211_inputm(). */
m_adj(m, -IEEE80211_CCMP_MICLEN);
return 0;
}
static __inline int
ar5008_rx_process(struct athn_softc *sc, struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct athn_rxq *rxq = &sc->rxq[0];
struct athn_rx_buf *bf, *nbf;
struct ar_rx_desc *ds;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct mbuf *m, *m1;
int error, len, michael_mic_failure = 0;
bf = SIMPLEQ_FIRST(&rxq->head);
if (__predict_false(bf == NULL)) { /* Should not happen. */
printf("%s: Rx queue is empty!\n", sc->sc_dev.dv_xname);
return (ENOENT);
}
ds = bf->bf_desc;
if (!(ds->ds_status8 & AR_RXS8_DONE)) {
/*
* On some parts, the status words can get corrupted
* (including the "done" bit), so we check the next
* descriptor "done" bit. If it is set, it is a good
* indication that the status words are corrupted, so
* we skip this descriptor and drop the frame.
*/
nbf = SIMPLEQ_NEXT(bf, bf_list);
if (nbf != NULL &&
(((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 &
AR_RXS8_DONE)) {
DPRINTF(("corrupted descriptor status=0x%x\n",
ds->ds_status8));
/* HW will not "move" RXDP in this case, so do it. */
AR_WRITE(sc, AR_RXDP, nbf->bf_daddr);
AR_WRITE_BARRIER(sc);
ifp->if_ierrors++;
goto skip;
}
return (EBUSY);
}
if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) {
/* Drop frames that span multiple Rx descriptors. */
DPRINTF(("dropping split frame\n"));
ifp->if_ierrors++;
goto skip;
}
if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) {
if (ds->ds_status8 & AR_RXS8_CRC_ERR)
DPRINTFN(6, ("CRC error\n"));
else if (ds->ds_status8 & AR_RXS8_PHY_ERR)
DPRINTFN(6, ("PHY error=0x%x\n",
MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE)));
else if (ds->ds_status8 & (AR_RXS8_DECRYPT_CRC_ERR |
AR_RXS8_KEY_MISS | AR_RXS8_DECRYPT_BUSY_ERR)) {
DPRINTFN(6, ("Decryption CRC error\n"));
ic->ic_stats.is_ccmp_dec_errs++;
} else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) {
DPRINTFN(2, ("Michael MIC failure\n"));
michael_mic_failure = 1;
}
if (!michael_mic_failure) {
ifp->if_ierrors++;
goto skip;
}
} else {
if (ds->ds_status8 & (AR_RXS8_CRC_ERR | AR_RXS8_PHY_ERR |
AR_RXS8_DECRYPT_CRC_ERR | AR_RXS8_MICHAEL_ERR)) {
ifp->if_ierrors++;
goto skip;
}
}
len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
if (__predict_false(len < IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) {
DPRINTF(("corrupted descriptor length=%d\n", len));
ifp->if_ierrors++;
goto skip;
}
/* Allocate a new Rx buffer. */
m1 = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ);
if (__predict_false(m1 == NULL)) {
ic->ic_stats.is_rx_nombuf++;
ifp->if_ierrors++;
goto skip;
}
/* Sync and unmap the old Rx buffer. */
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
/* Map the new Rx buffer. */
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
if (__predict_false(error != 0)) {
m_freem(m1);
/* Remap the old Rx buffer or panic. */
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
KASSERT(error != 0);
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
BUS_DMASYNC_PREREAD);
/* Write physical address of new Rx buffer. */
ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
m = bf->bf_m;
bf->bf_m = m1;
/* Finalize mbuf. */
m->m_pkthdr.len = m->m_len = len;
wh = mtod(m, struct ieee80211_frame *);
if (michael_mic_failure) {
/*
* Check that it is not a control frame
* (invalid MIC failures on valid ctl frames).
* Validate the transmitter's address to avoid passing
* corrupt frames with bogus addresses to net80211.
*/
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
switch (ic->ic_opmode) {
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_HOSTAP:
if (ieee80211_find_node(ic, wh->i_addr2))
michael_mic_failure = 0;
break;
#endif
case IEEE80211_M_STA:
if (IEEE80211_ADDR_EQ(wh->i_addr2,
ic->ic_bss->ni_macaddr))
michael_mic_failure = 0;
break;
case IEEE80211_M_MONITOR:
michael_mic_failure = 0;
break;
default:
break;
}
}
if (michael_mic_failure) {
/* Report Michael MIC failures to net80211. */
if ((ic->ic_rsnciphers & IEEE80211_CIPHER_TKIP) ||
ic->ic_rsngroupcipher == IEEE80211_CIPHER_TKIP) {
ic->ic_stats.is_rx_locmicfail++;
ieee80211_michael_mic_failure(ic, 0);
}
ifp->if_ierrors++;
m_freem(m);
goto skip;
}
}
/* Grab a reference to the source node. */
ni = ieee80211_find_rxnode(ic, wh);
/* Remove any HW padding after the 802.11 header. */
if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
u_int hdrlen = ieee80211_get_hdrlen(wh);
if (hdrlen & 3) {
memmove((caddr_t)wh + 2, wh, hdrlen);
m_adj(m, 2);
}
wh = mtod(m, struct ieee80211_frame *);
}
#if NBPFILTER > 0
if (__predict_false(sc->sc_drvbpf != NULL))
ar5008_rx_radiotap(sc, m, ds);
#endif
/* Trim 802.11 FCS after radiotap. */
m_adj(m, -IEEE80211_CRC_LEN);
/* Send the frame to the 802.11 layer. */
memset(&rxi, 0, sizeof(rxi));
rxi.rxi_rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
rxi.rxi_rssi += AR_DEFAULT_NOISE_FLOOR;
rxi.rxi_tstamp = ds->ds_status2;
if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL) &&
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
(ic->ic_flags & IEEE80211_F_RSNON) &&
(ni->ni_flags & IEEE80211_NODE_RXPROT) &&
((!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
ni->ni_rsncipher == IEEE80211_CIPHER_CCMP) ||
(IEEE80211_IS_MULTICAST(wh->i_addr1) &&
ni->ni_rsngroupcipher == IEEE80211_CIPHER_CCMP))) {
if (ar5008_ccmp_decap(sc, m, ni) != 0) {
ifp->if_ierrors++;
ieee80211_release_node(ic, ni);
m_freem(m);
goto skip;
}
rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
}
ieee80211_inputm(ifp, m, ni, &rxi, ml);
/* Node is no longer needed. */
ieee80211_release_node(ic, ni);
skip:
/* Unlink this descriptor from head. */
SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
memset(&ds->ds_status0, 0, 36); /* XXX Really needed? */
ds->ds_status8 &= ~AR_RXS8_DONE;
ds->ds_link = 0;
/* Re-use this descriptor and link it to tail. */
if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head)))
((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr;
else
AR_WRITE(sc, AR_RXDP, bf->bf_daddr);
SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
rxq->lastds = ds;
/* Re-enable Rx. */
AR_WRITE(sc, AR_CR, AR_CR_RXE);
AR_WRITE_BARRIER(sc);
return (0);
}
void
ar5008_rx_intr(struct athn_softc *sc)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
while (ar5008_rx_process(sc, &ml) == 0);
if_input(ifp, &ml);
}
int
ar5008_tx_process(struct athn_softc *sc, int qid)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct athn_txq *txq = &sc->txq[qid];
struct athn_node *an;
struct ieee80211_node *ni;
struct athn_tx_buf *bf;
struct ar_tx_desc *ds;
uint8_t failcnt;
int txfail = 0, rtscts;
bf = SIMPLEQ_FIRST(&txq->head);
if (bf == NULL)
return (ENOENT);
/* Get descriptor of last DMA segment. */
ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1];
if (!(ds->ds_status9 & AR_TXS9_DONE))
return (EBUSY);
SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
sc->sc_tx_timer = 0;
/* These status bits are valid if “FRM_XMIT_OK” is clear. */
if ((ds->ds_status1 & AR_TXS1_FRM_XMIT_OK) == 0) {
txfail = (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES);
if (txfail)
ifp->if_oerrors++;
if (ds->ds_status1 & AR_TXS1_UNDERRUN)
athn_inc_tx_trigger_level(sc);
}
an = (struct athn_node *)bf->bf_ni;
ni = (struct ieee80211_node *)bf->bf_ni;
/*
* NB: the data fail count contains the number of un-acked tries
* for the final series used. We must add the number of tries for
* each series that was fully processed to punish transmit rates in
* the earlier series which did not perform well.
*/
failcnt = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT);
/* Assume two tries per series, as per AR_TXC2_XMIT_DATA_TRIESx. */
failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2;
rtscts = (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE));
/* Update rate control statistics. */
if ((ni->ni_flags & IEEE80211_NODE_HT) && ic->ic_fixed_mcs == -1) {
const struct ieee80211_ht_rateset *rs =
ieee80211_ra_get_ht_rateset(bf->bf_txmcs, 0 /* chan40 */,
ieee80211_node_supports_ht_sgi20(ni));
unsigned int retries = 0, i;
int mcs = bf->bf_txmcs;
/* With RTS/CTS each Tx series used the same MCS. */
if (rtscts) {
retries = failcnt;
} else {
for (i = 0; i < failcnt; i++) {
if (mcs > rs->min_mcs) {
ieee80211_ra_add_stats_ht(&an->rn,
ic, ni, mcs, 1, 1);
if (i % 2) /* two tries per series */
mcs--;
} else
retries++;
}
}
if (txfail && retries == 0) {
ieee80211_ra_add_stats_ht(&an->rn, ic, ni,
mcs, 1, 1);
} else {
ieee80211_ra_add_stats_ht(&an->rn, ic, ni,
mcs, retries + 1, retries);
}
if (ic->ic_state == IEEE80211_S_RUN) {
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode != IEEE80211_M_HOSTAP ||
ni->ni_state == IEEE80211_STA_ASSOC)
#endif
ieee80211_ra_choose(&an->rn, ic, ni);
}
} else if (ic->ic_fixed_rate == -1) {
an->amn.amn_txcnt++;
if (failcnt > 0)
an->amn.amn_retrycnt++;
}
DPRINTFN(5, ("Tx done qid=%d status1=%d fail count=%d\n",
qid, ds->ds_status1, failcnt));
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
m_freem(bf->bf_m);
bf->bf_m = NULL;
ieee80211_release_node(ic, bf->bf_ni);
bf->bf_ni = NULL;
/* Link Tx buffer back to global free list. */
SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list);
return (0);
}
void
ar5008_tx_intr(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
uint16_t mask = 0;
uint32_t reg;
int qid;
reg = AR_READ(sc, AR_ISR_S0_S);
mask |= MS(reg, AR_ISR_S0_QCU_TXOK);
mask |= MS(reg, AR_ISR_S0_QCU_TXDESC);
reg = AR_READ(sc, AR_ISR_S1_S);
mask |= MS(reg, AR_ISR_S1_QCU_TXERR);
mask |= MS(reg, AR_ISR_S1_QCU_TXEOL);
DPRINTFN(4, ("Tx interrupt mask=0x%x\n", mask));
for (qid = 0; mask != 0; mask >>= 1, qid++) {
if (mask & 1)
while (ar5008_tx_process(sc, qid) == 0);
}
if (!SIMPLEQ_EMPTY(&sc->txbufs)) {
ifq_clr_oactive(&ifp->if_snd);
ifp->if_start(ifp);
}
}
#ifndef IEEE80211_STA_ONLY
/*
* Process Software Beacon Alert interrupts.
*/
int
ar5008_swba_intr(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ieee80211_node *ni = ic->ic_bss;
struct athn_tx_buf *bf = sc->bcnbuf;
struct ieee80211_frame *wh;
struct ar_tx_desc *ds;
struct mbuf *m;
uint8_t ridx, hwrate;
int error, totlen;
if (ic->ic_tim_mcast_pending &&
mq_empty(&ni->ni_savedq) &&
SIMPLEQ_EMPTY(&sc->txq[ATHN_QID_CAB].head))
ic->ic_tim_mcast_pending = 0;
if (ic->ic_dtim_count == 0)
ic->ic_dtim_count = ic->ic_dtim_period - 1;
else
ic->ic_dtim_count--;
/* Make sure previous beacon has been sent. */
if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
DPRINTF(("beacon stuck\n"));
return (EBUSY);
}
/* Get new beacon. */
m = ieee80211_beacon_alloc(ic, ic->ic_bss);
if (__predict_false(m == NULL))
return (ENOBUFS);
/* Assign sequence number. */
wh = mtod(m, struct ieee80211_frame *);
*(uint16_t *)&wh->i_seq[0] =
htole16(ic->ic_bss->ni_txseq << IEEE80211_SEQ_SEQ_SHIFT);
ic->ic_bss->ni_txseq++;
/* Unmap and free old beacon if any. */
if (__predict_true(bf->bf_m != NULL)) {
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
/* DMA map new beacon. */
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (__predict_false(error != 0)) {
m_freem(m);
return (error);
}
bf->bf_m = m;
/* Setup Tx descriptor (simplified ar5008_tx()). */
ds = bf->bf_descs;
memset(ds, 0, sizeof(*ds));
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen);
ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER);
ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
ds->ds_ctl1 |= AR_TXC1_NO_ACK;
ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
/* Write number of tries. */
ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1);
/* Write Tx rate. */
ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
hwrate = athn_rates[ridx].hwrate;
ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate);
/* Write Tx chains. */
ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->txchainmask);
ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
/* Segment length must be a multiple of 4. */
ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
(bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Stop Tx DMA before putting the new beacon on the queue. */
athn_stop_tx_dma(sc, ATHN_QID_BEACON);
AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
for(;;) {
if (SIMPLEQ_EMPTY(&sc->txbufs))
break;
m = mq_dequeue(&ni->ni_savedq);
if (m == NULL)
break;
if (!mq_empty(&ni->ni_savedq)) {
/* more queued frames, set the more data bit */
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
}
if (sc->ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
break;
}
}
/* Kick Tx. */
AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
AR_WRITE_BARRIER(sc);
return (0);
}
#endif
int
ar5008_intr(struct athn_softc *sc)
{
uint32_t intr, intr2, intr5, sync;
/* Get pending interrupts. */
intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
if (intr == AR_INTR_SPURIOUS || (intr & sc->isync) == 0)
return (0); /* Not for us. */
}
if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
(AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
intr = AR_READ(sc, AR_ISR);
else
intr = 0;
sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->isync;
if (intr == 0 && sync == 0)
return (0); /* Not for us. */
if (intr != 0) {
if (intr & AR_ISR_BCNMISC) {
intr2 = AR_READ(sc, AR_ISR_S2);
if (intr2 & AR_ISR_S2_TIM)
/* TBD */;
if (intr2 & AR_ISR_S2_TSFOOR)
/* TBD */;
}
intr = AR_READ(sc, AR_ISR_RAC);
if (intr == AR_INTR_SPURIOUS)
return (1);
#ifndef IEEE80211_STA_ONLY
if (intr & AR_ISR_SWBA)
ar5008_swba_intr(sc);
#endif
if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
ar5008_rx_intr(sc);
if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN))
ar5008_rx_intr(sc);
if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC |
AR_ISR_TXERR | AR_ISR_TXEOL))
ar5008_tx_intr(sc);
intr5 = AR_READ(sc, AR_ISR_S5_S);
if (intr & AR_ISR_GENTMR) {
if (intr5 & AR_ISR_GENTMR) {
DPRINTF(("GENTMR trigger=%d thresh=%d\n",
MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
MS(intr5, AR_ISR_S5_GENTIMER_THRESH)));
}
}
if (intr5 & AR_ISR_S5_TIM_TIMER)
/* TBD */;
}
if (sync != 0) {
if (sync & (AR_INTR_SYNC_HOST1_FATAL |
AR_INTR_SYNC_HOST1_PERR))
/* TBD */;
if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
AR_WRITE(sc, AR_RC, 0);
}
if ((sc->flags & ATHN_FLAG_RFSILENT) &&
(sync & AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin))) {
struct ifnet *ifp = &sc->sc_ic.ic_if;
printf("%s: radio switch turned off\n",
sc->sc_dev.dv_xname);
/* Turn the interface down. */
athn_stop(ifp, 1);
return (1);
}
AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
}
return (1);
}
int
ar5008_ccmp_encap(struct mbuf *m, u_int hdrlen, struct ieee80211_key *k)
{
struct mbuf *n;
uint8_t *ivp;
int off;
/* Insert IV for CCMP hardware encryption. */
n = m_makespace(m, hdrlen, IEEE80211_CCMP_HDRLEN, &off);
if (n == NULL) {
m_freem(m);
return (ENOBUFS);
}
ivp = mtod(n, uint8_t *) + off;
k->k_tsc++;
ivp[0] = k->k_tsc;
ivp[1] = k->k_tsc >> 8;
ivp[2] = 0;
ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
ivp[4] = k->k_tsc >> 16;
ivp[5] = k->k_tsc >> 24;
ivp[6] = k->k_tsc >> 32;
ivp[7] = k->k_tsc >> 40;
return 0;
}
int
ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
int txflags)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_key *k = NULL;
struct ieee80211_frame *wh;
struct athn_series series[4];
struct ar_tx_desc *ds, *lastds;
struct athn_txq *txq;
struct athn_tx_buf *bf;
struct athn_node *an = (void *)ni;
uintptr_t entry;
uint16_t qos;
uint8_t txpower, type, encrtype, tid, ridx[4];
int i, error, totlen, hasqos, qid;
/* Grab a Tx buffer from our global free list. */
bf = SIMPLEQ_FIRST(&sc->txbufs);
KASSERT(bf != NULL);
/* Map 802.11 frame type to hardware frame type. */
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* NB: Beacons do not use ar5008_tx(). */
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
type = AR_FRAME_TYPE_PROBE_RESP;
else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_ATIM)
type = AR_FRAME_TYPE_ATIM;
else
type = AR_FRAME_TYPE_NORMAL;
} else if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
type = AR_FRAME_TYPE_PSPOLL;
} else
type = AR_FRAME_TYPE_NORMAL;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_get_txkey(ic, wh, ni);
if (k->k_cipher == IEEE80211_CIPHER_CCMP) {
u_int hdrlen = ieee80211_get_hdrlen(wh);
if (ar5008_ccmp_encap(m, hdrlen, k) != 0)
return (ENOBUFS);
} else {
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
return (ENOBUFS);
k = NULL; /* skip hardware crypto further below */
}
wh = mtod(m, struct ieee80211_frame *);
}
/* XXX 2-byte padding for QoS and 4-addr headers. */
/* Select the HW Tx queue to use for this frame. */
if ((hasqos = ieee80211_has_qos(wh))) {
qos = ieee80211_get_qos(wh);
tid = qos & IEEE80211_QOS_TID;
qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
} else if (type == AR_FRAME_TYPE_PSPOLL) {
qid = ATHN_QID_PSPOLL;
} else if (txflags & ATHN_TXFLAG_CAB) {
qid = ATHN_QID_CAB;
} else
qid = ATHN_QID_AC_BE;
txq = &sc->txq[qid];
/* Select the transmit rates to use for this frame. */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_DATA) {
/* Use lowest rate for all tries. */
ridx[0] = ridx[1] = ridx[2] = ridx[3] =
(IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1);
} else if ((ni->ni_flags & IEEE80211_NODE_HT) &&
ic->ic_fixed_mcs != -1) {
/* Use same fixed rate for all tries. */
ridx[0] = ridx[1] = ridx[2] = ridx[3] =
ATHN_RIDX_MCS0 + ic->ic_fixed_mcs;
} else if (ic->ic_fixed_rate != -1) {
/* Use same fixed rate for all tries. */
ridx[0] = ridx[1] = ridx[2] = ridx[3] =
sc->fixed_ridx;
} else {
/* Use fallback table of the node. */
int txrate;
if (ni->ni_flags & IEEE80211_NODE_HT)
txrate = ATHN_NUM_LEGACY_RATES + ni->ni_txmcs;
else
txrate = ni->ni_txrate;
for (i = 0; i < 4; i++) {
ridx[i] = an->ridx[txrate];
txrate = an->fallback[txrate];
}
}
#if NBPFILTER > 0
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
/* Use initial transmit rate. */
if (athn_rates[ridx[0]].hwrate & 0x80) /* MCS */
tap->wt_rate = athn_rates[ridx[0]].hwrate;
else
tap->wt_rate = athn_rates[ridx[0]].rate;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
if (athn_rates[ridx[0]].phy == IEEE80211_T_DS &&
ridx[0] != ATHN_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
BPF_DIRECTION_OUT);
}
#endif
/* DMA map mbuf. */
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (__predict_false(error != 0)) {
if (error != EFBIG) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return (error);
}
/*
* DMA mapping requires too many DMA segments; linearize
* mbuf in kernel virtual address space and retry.
*/
if (m_defrag(m, M_DONTWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return (error);
}
}
bf->bf_m = m;
bf->bf_ni = ni;
bf->bf_txmcs = ni->ni_txmcs;
bf->bf_txflags = txflags;
wh = mtod(m, struct ieee80211_frame *);
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
/* Clear all Tx descriptors that we will use. */
memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds));
/* Setup first Tx descriptor. */
ds = bf->bf_descs;
ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK;
txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */
ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower);
ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type);
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(hasqos && (qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
IEEE80211_QOS_ACK_POLICY_NOACK))
ds->ds_ctl1 |= AR_TXC1_NO_ACK;
if (k != NULL) {
/* Map 802.11 cipher to hardware encryption type. */
if (k->k_cipher == IEEE80211_CIPHER_CCMP) {
encrtype = AR_ENCR_TYPE_AES;
totlen += IEEE80211_CCMP_MICLEN;
} else
panic("unsupported cipher");
/*
* NB: The key cache entry index is stored in the key
* private field when the key is installed.
*/
entry = (uintptr_t)k->k_priv;
ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry);
ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID;
} else
encrtype = AR_ENCR_TYPE_CLEAR;
ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype);
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
enum ieee80211_htprot htprot;
htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
/* NB: Group frames are sent using CCK in 802.11b/g. */
if (totlen > ic->ic_rtsthreshold) {
ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
} else if (((ic->ic_flags & IEEE80211_F_USEPROT) &&
athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) ||
((ni->ni_flags & IEEE80211_NODE_HT) &&
htprot != IEEE80211_HTPROT_NONE)) {
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE;
}
}
/*
* Disable multi-rate retries when protection is used.
* The RTS/CTS frame's duration field is fixed and won't be
* updated by hardware when the data rate changes.
*/
if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
ridx[1] = ridx[2] = ridx[3] = ridx[0];
}
/* Setup multi-rate retries. */
for (i = 0; i < 4; i++) {
series[i].hwrate = athn_rates[ridx[i]].hwrate;
if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
ridx[i] != ATHN_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
series[i].hwrate |= 0x04;
/* Compute duration for each series. */
series[i].dur = athn_txtime(sc, totlen, ridx[i], ic->ic_flags);
if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
/* Account for ACK duration. */
series[i].dur += athn_txtime(sc, IEEE80211_ACK_LEN,
athn_rates[ridx[i]].rspridx, ic->ic_flags);
}
}
/* Write number of tries for each series. */
ds->ds_ctl2 =
SM(AR_TXC2_XMIT_DATA_TRIES0, 2) |
SM(AR_TXC2_XMIT_DATA_TRIES1, 2) |
SM(AR_TXC2_XMIT_DATA_TRIES2, 2) |
SM(AR_TXC2_XMIT_DATA_TRIES3, 4);
/* Tell HW to update duration field in 802.11 header. */
if (type != AR_FRAME_TYPE_PSPOLL)
ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA;
/* Write Tx rate for each series. */
ds->ds_ctl3 =
SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) |
SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) |
SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) |
SM(AR_TXC3_XMIT_RATE3, series[3].hwrate);
/* Write duration for each series. */
ds->ds_ctl4 =
SM(AR_TXC4_PACKET_DUR0, series[0].dur) |
SM(AR_TXC4_PACKET_DUR1, series[1].dur);
ds->ds_ctl5 =
SM(AR_TXC5_PACKET_DUR2, series[2].dur) |
SM(AR_TXC5_PACKET_DUR3, series[3].dur);
/* Use the same Tx chains for all tries. */
ds->ds_ctl7 =
SM(AR_TXC7_CHAIN_SEL0, sc->txchainmask) |
SM(AR_TXC7_CHAIN_SEL1, sc->txchainmask) |
SM(AR_TXC7_CHAIN_SEL2, sc->txchainmask) |
SM(AR_TXC7_CHAIN_SEL3, sc->txchainmask);
#ifdef notyet
/* Use the same short GI setting for all tries. */
if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20)
ds->ds_ctl7 |= AR_TXC7_GI0123;
/* Use the same channel width for all tries. */
if (ic->ic_flags & IEEE80211_F_CBW40)
ds->ds_ctl7 |= AR_TXC7_2040_0123;
#endif
/* Set Tx power for series 1 - 3 */
ds->ds_ctl9 = SM(AR_TXC9_XMIT_POWER1, txpower);
ds->ds_ctl10 = SM(AR_TXC10_XMIT_POWER2, txpower);
ds->ds_ctl11 = SM(AR_TXC11_XMIT_POWER3, txpower);
if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
uint8_t protridx, hwrate;
uint16_t dur = 0;
/* Use the same protection mode for all tries. */
if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01;
ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23;
}
/* Select protection rate (suboptimal but ok). */
protridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
/* Account for CTS duration. */
dur += athn_txtime(sc, IEEE80211_ACK_LEN,
athn_rates[protridx].rspridx, ic->ic_flags);
}
dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
/* Account for ACK duration. */
dur += athn_txtime(sc, IEEE80211_ACK_LEN,
athn_rates[ridx[0]].rspridx, ic->ic_flags);
}
/* Write protection frame duration and rate. */
ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur);
hwrate = athn_rates[protridx].hwrate;
if (protridx == ATHN_RIDX_CCK2 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
hwrate |= 0x04;
ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate);
}
/* Finalize first Tx descriptor and fill others (if any). */
ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen);
for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) {
ds->ds_data = bf->bf_map->dm_segs[i].ds_addr;
ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
bf->bf_map->dm_segs[i].ds_len);
if (i != bf->bf_map->dm_nsegs - 1)
ds->ds_ctl1 |= AR_TXC1_MORE;
ds->ds_link = 0;
/* Chain Tx descriptor. */
if (i != 0)
lastds->ds_link = bf->bf_daddr + i * sizeof(*ds);
lastds = ds;
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if (!SIMPLEQ_EMPTY(&txq->head))
((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr;
else
AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
txq->lastds = lastds;
SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list);
SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
ds = bf->bf_descs;
DPRINTFN(6, ("Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n",
qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3));
/* Kick Tx. */
AR_WRITE(sc, AR_Q_TXE, 1 << qid);
AR_WRITE_BARRIER(sc);
return (0);
}
void
ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
{
uint32_t reg;
reg = IEEE80211_IS_CHAN_2GHZ(c) ?
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (!AR_SREV_9280_10_OR_LATER(sc)) {
reg |= IEEE80211_IS_CHAN_2GHZ(c) ?
AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ;
} else if (IEEE80211_IS_CHAN_5GHZ(c) &&
(sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
}
AR_WRITE(sc, AR_PHY_MODE, reg);
AR_WRITE_BARRIER(sc);
}
static __inline uint32_t
ar5008_synth_delay(struct athn_softc *sc)
{
uint32_t delay;
delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
delay = (delay * 4) / 22;
else
delay = delay / 10; /* in 100ns steps */
return (delay);
}
int
ar5008_rf_bus_request(struct athn_softc *sc)
{
int ntries;
/* Request RF Bus grant. */
AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
for (ntries = 0; ntries < 10000; ntries++) {
if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
return (0);
DELAY(10);
}
DPRINTF(("could not kill baseband Rx"));
return (ETIMEDOUT);
}
void
ar5008_rf_bus_release(struct athn_softc *sc)
{
/* Wait for the synthesizer to settle. */
DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc));
/* Release the RF Bus grant. */
AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
AR_WRITE_BARRIER(sc);
}
void
ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint32_t phy;
if (AR_SREV_9285_10_OR_LATER(sc))
phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO;
else
phy = 0;
phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 |
AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
if (extc != NULL) {
phy |= AR_PHY_FC_DYN2040_EN;
if (extc > c) /* XXX */
phy |= AR_PHY_FC_DYN2040_PRI_CH;
}
AR_WRITE(sc, AR_PHY_TURBO, phy);
AR_WRITE(sc, AR_2040_MODE,
(extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
/* Set global transmit timeout. */
AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
/* Set carrier sense timeout. */
AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
AR_WRITE_BARRIER(sc);
}
void
ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint32_t coeff, exp, man, reg;
/* Set Delta Slope (exponent and mantissa). */
coeff = (100 << 24) / c->ic_freq;
athn_get_delta_slope(coeff, &exp, &man);
DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man));
reg = AR_READ(sc, AR_PHY_TIMING3);
reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
AR_WRITE(sc, AR_PHY_TIMING3, reg);
/* For Short GI, coeff is 9/10 that of normal coeff. */
coeff = (9 * coeff) / 10;
athn_get_delta_slope(coeff, &exp, &man);
DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man));
reg = AR_READ(sc, AR_PHY_HALFGI);
reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp);
reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man);
AR_WRITE(sc, AR_PHY_HALFGI, reg);
AR_WRITE_BARRIER(sc);
}
void
ar5008_enable_antenna_diversity(struct athn_softc *sc)
{
AR_SETBITS(sc, AR_PHY_CCK_DETECT,
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
AR_WRITE_BARRIER(sc);
}
void
ar5008_init_baseband(struct athn_softc *sc)
{
uint32_t synth_delay;
synth_delay = ar5008_synth_delay(sc);
/* Activate the PHY (includes baseband activate and synthesizer on). */
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
AR_WRITE_BARRIER(sc);
DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
}
void
ar5008_disable_phy(struct athn_softc *sc)
{
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
AR_WRITE_BARRIER(sc);
}
void
ar5008_init_chains(struct athn_softc *sc)
{
if (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5)
AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
/* Setup chain masks. */
if (sc->mac_ver <= AR_SREV_VERSION_9160 &&
(sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5)) {
AR_WRITE(sc, AR_PHY_RX_CHAINMASK, 0x7);
AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7);
} else {
AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask);
AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask);
}
AR_WRITE(sc, AR_SELFGEN_MASK, sc->txchainmask);
AR_WRITE_BARRIER(sc);
}
void
ar5008_set_rxchains(struct athn_softc *sc)
{
if (sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5) {
AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask);
AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask);
AR_WRITE_BARRIER(sc);
}
}
void
ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
{
/* Sign-extends 9-bit value (assumes upper bits are zeroes). */
#define SIGN_EXT(v) (((v) ^ 0x100) - 0x100)
uint32_t reg;
int i;
for (i = 0; i < sc->nrxchains; i++) {
reg = AR_READ(sc, AR_PHY_CCA(i));
if (AR_SREV_9280_10_OR_LATER(sc))
nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR);
else
nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
nf[i] = SIGN_EXT(nf[i]);
reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
if (AR_SREV_9280_10_OR_LATER(sc))
nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR);
else
nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
nf_ext[i] = SIGN_EXT(nf_ext[i]);
}
#undef SIGN_EXT
}
void
ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
{
uint32_t reg;
int i;
for (i = 0; i < sc->nrxchains; i++) {
reg = AR_READ(sc, AR_PHY_CCA(i));
reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
AR_WRITE(sc, AR_PHY_CCA(i), reg);
reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
}
AR_WRITE_BARRIER(sc);
}
int
ar5008_get_noisefloor(struct athn_softc *sc)
{
int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
int i;
if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
/* Noisefloor calibration not finished. */
return 0;
}
/* Noisefloor calibration is finished. */
ar5008_read_noisefloor(sc, nf, nf_ext);
/* Update noisefloor history. */
for (i = 0; i < sc->nrxchains; i++) {
sc->nf_hist[sc->nf_hist_cur].nf[i] = nf[i];
sc->nf_hist[sc->nf_hist_cur].nf_ext[i] = nf_ext[i];
}
if (++sc->nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
sc->nf_hist_cur = 0;
return 1;
}
void
ar5008_bb_load_noisefloor(struct athn_softc *sc)
{
int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
int i, ntries;
/* Write filtered noisefloor values. */
for (i = 0; i < sc->nrxchains; i++) {
nf[i] = sc->nf_priv[i] * 2;
nf_ext[i] = sc->nf_ext_priv[i] * 2;
}
ar5008_write_noisefloor(sc, nf, nf_ext);
/* Load filtered noisefloor values into baseband. */
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
/* Wait for load to complete. */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
break;
DELAY(50);
}
if (ntries == 1000) {
DPRINTF(("failed to load noisefloor values\n"));
return;
}
/*
* Restore noisefloor values to initial (max) values. These will
* be used as initial values during the next NF calibration.
*/
for (i = 0; i < AR_MAX_CHAINS; i++)
nf[i] = nf_ext[i] = AR_DEFAULT_NOISE_FLOOR;
ar5008_write_noisefloor(sc, nf, nf_ext);
}
void
ar5008_apply_noisefloor(struct athn_softc *sc)
{
uint32_t agc_nfcal;
agc_nfcal = AR_READ(sc, AR_PHY_AGC_CONTROL) &
(AR_PHY_AGC_CONTROL_NF | AR_PHY_AGC_CONTROL_ENABLE_NF |
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
if (agc_nfcal & AR_PHY_AGC_CONTROL_NF) {
/* Pause running NF calibration while values are updated. */
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
AR_WRITE_BARRIER(sc);
}
ar5008_bb_load_noisefloor(sc);
if (agc_nfcal & AR_PHY_AGC_CONTROL_NF) {
/* Restart interrupted NF calibration. */
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, agc_nfcal);
AR_WRITE_BARRIER(sc);
}
}
void
ar5008_do_noisefloor_calib(struct athn_softc *sc)
{
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
AR_WRITE_BARRIER(sc);
}
void
ar5008_init_noisefloor_calib(struct athn_softc *sc)
{
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
AR_WRITE_BARRIER(sc);
}
void
ar5008_do_calib(struct athn_softc *sc)
{
uint32_t mode, reg;
int log;
reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2;
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log);
AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
if (sc->cur_calib_mask & ATHN_CAL_ADC_GAIN)
mode = AR_PHY_CALMODE_ADC_GAIN;
else if (sc->cur_calib_mask & ATHN_CAL_ADC_DC)
mode = AR_PHY_CALMODE_ADC_DC_PER;
else /* ATHN_CAL_IQ */
mode = AR_PHY_CALMODE_IQ;
AR_WRITE(sc, AR_PHY_CALMODE, mode);
DPRINTF(("starting calibration mode=0x%x\n", mode));
AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL);
AR_WRITE_BARRIER(sc);
}
void
ar5008_next_calib(struct athn_softc *sc)
{
/* Check if we have any calibration in progress. */
if (sc->cur_calib_mask != 0) {
if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) &
AR_PHY_TIMING_CTRL4_DO_CAL)) {
/* Calibration completed for current sample. */
if (sc->cur_calib_mask & ATHN_CAL_ADC_GAIN)
ar5008_calib_adc_gain(sc);
else if (sc->cur_calib_mask & ATHN_CAL_ADC_DC)
ar5008_calib_adc_dc_off(sc);
else /* ATHN_CAL_IQ */
ar5008_calib_iq(sc);
}
}
}
void
ar5008_calib_iq(struct athn_softc *sc)
{
struct athn_iq_cal *cal;
uint32_t reg, i_coff_denom, q_coff_denom;
int32_t i_coff, q_coff;
int i, iq_corr_neg;
for (i = 0; i < AR_MAX_CHAINS; i++) {
cal = &sc->calib.iq[i];
/* Accumulate IQ calibration measures (clear on read). */
cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
cal->iq_corr_meas +=
(int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
}
if (!AR_SREV_9280_10_OR_LATER(sc) &&
++sc->calib.nsamples < AR_CAL_SAMPLES) {
/* Not enough samples accumulated, continue. */
ar5008_do_calib(sc);
return;
}
for (i = 0; i < sc->nrxchains; i++) {
cal = &sc->calib.iq[i];
if (cal->pwr_meas_q == 0)
continue;
if ((iq_corr_neg = cal->iq_corr_meas < 0))
cal->iq_corr_meas = -cal->iq_corr_meas;
i_coff_denom =
(cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128;
q_coff_denom = cal->pwr_meas_q / 64;
if (i_coff_denom == 0 || q_coff_denom == 0)
continue; /* Prevents division by zero. */
i_coff = cal->iq_corr_meas / i_coff_denom;
q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
/* Negate i_coff if iq_corr_meas is positive. */
if (!iq_corr_neg)
i_coff = 0x40 - (i_coff & 0x3f);
if (q_coff > 15)
q_coff = 15;
else if (q_coff <= -16)
q_coff = -16; /* XXX Linux has a bug here? */
DPRINTFN(2, ("IQ calibration for chain %d\n", i));
reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i));
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff);
AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg);
}
/* Apply new settings. */
AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
AR_WRITE_BARRIER(sc);
/* IQ calibration done. */
sc->cur_calib_mask &= ~ATHN_CAL_IQ;
memset(&sc->calib, 0, sizeof(sc->calib));
}
void
ar5008_calib_adc_gain(struct athn_softc *sc)
{
struct athn_adc_cal *cal;
uint32_t reg, gain_mismatch_i, gain_mismatch_q;
int i;
for (i = 0; i < AR_MAX_CHAINS; i++) {
cal = &sc->calib.adc_gain[i];
/* Accumulate ADC gain measures (clear on read). */
cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
}
if (!AR_SREV_9280_10_OR_LATER(sc) &&
++sc->calib.nsamples < AR_CAL_SAMPLES) {
/* Not enough samples accumulated, continue. */
ar5008_do_calib(sc);
return;
}
for (i = 0; i < sc->nrxchains; i++) {
cal = &sc->calib.adc_gain[i];
if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0)
continue; /* Prevents division by zero. */
gain_mismatch_i =
(cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i;
gain_mismatch_q =
(cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q;
DPRINTFN(2, ("ADC gain calibration for chain %d\n", i));
reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i);
reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q);
AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
}
/* Apply new settings. */
AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
AR_WRITE_BARRIER(sc);
/* ADC gain calibration done. */
sc->cur_calib_mask &= ~ATHN_CAL_ADC_GAIN;
memset(&sc->calib, 0, sizeof(sc->calib));
}
void
ar5008_calib_adc_dc_off(struct athn_softc *sc)
{
struct athn_adc_cal *cal;
int32_t dc_offset_mismatch_i, dc_offset_mismatch_q;
uint32_t reg;
int count, i;
for (i = 0; i < AR_MAX_CHAINS; i++) {
cal = &sc->calib.adc_dc_offset[i];
/* Accumulate ADC DC offset measures (clear on read). */
cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
}
if (!AR_SREV_9280_10_OR_LATER(sc) &&
++sc->calib.nsamples < AR_CAL_SAMPLES) {
/* Not enough samples accumulated, continue. */
ar5008_do_calib(sc);
return;
}
if (AR_SREV_9280_10_OR_LATER(sc))
count = (1 << (10 + 5));
else
count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES;
for (i = 0; i < sc->nrxchains; i++) {
cal = &sc->calib.adc_dc_offset[i];
dc_offset_mismatch_i =
(cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count;
dc_offset_mismatch_q =
(cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count;
DPRINTFN(2, ("ADC DC offset calibration for chain %d\n", i));
reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC,
dc_offset_mismatch_q);
reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC,
dc_offset_mismatch_i);
AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
}
/* Apply new settings. */
AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
AR_WRITE_BARRIER(sc);
/* ADC DC offset calibration done. */
sc->cur_calib_mask &= ~ATHN_CAL_ADC_DC;
memset(&sc->calib, 0, sizeof(sc->calib));
}
void
ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
{
AR_WRITE(sc, AR_PHY_POWER_TX_RATE1,
(power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |
(power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |
(power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |
(power[ATHN_POWER_OFDM6 ] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE2,
(power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |
(power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |
(power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |
(power[ATHN_POWER_OFDM24 ] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE3,
(power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
(power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
(power[ATHN_POWER_XR ] & 0x3f) << 8 |
(power[ATHN_POWER_CCK1_LP ] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE4,
(power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
(power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
(power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |
(power[ATHN_POWER_CCK55_LP] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE5,
(power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 |
(power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 |
(power[ATHN_POWER_HT20(1) ] & 0x3f) << 8 |
(power[ATHN_POWER_HT20(0) ] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE6,
(power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 |
(power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 |
(power[ATHN_POWER_HT20(5) ] & 0x3f) << 8 |
(power[ATHN_POWER_HT20(4) ] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE7,
(power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 |
(power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 |
(power[ATHN_POWER_HT40(1) ] & 0x3f) << 8 |
(power[ATHN_POWER_HT40(0) ] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE8,
(power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 |
(power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 |
(power[ATHN_POWER_HT40(5) ] & 0x3f) << 8 |
(power[ATHN_POWER_HT40(4) ] & 0x3f));
AR_WRITE(sc, AR_PHY_POWER_TX_RATE9,
(power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 |
(power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 |
(power[ATHN_POWER_OFDM_DUP] & 0x3f) << 8 |
(power[ATHN_POWER_CCK_DUP ] & 0x3f));
AR_WRITE_BARRIER(sc);
}
void
ar5008_set_viterbi_mask(struct athn_softc *sc, int bin)
{
uint32_t mask[4], reg;
uint8_t m[62], p[62]; /* XXX use bit arrays? */
int i, bit, cur;
/* Compute pilot mask. */
cur = -6000;
for (i = 0; i < 4; i++) {
mask[i] = 0;
for (bit = 0; bit < 30; bit++) {
if (abs(cur - bin) < 100)
mask[i] |= 1 << bit;
cur += 100;
}
if (cur == 0) /* Skip entry "0". */
cur = 100;
}
/* Write entries from -6000 to -3100. */
AR_WRITE(sc, AR_PHY_TIMING7, mask[0]);
AR_WRITE(sc, AR_PHY_TIMING9, mask[0]);
/* Write entries from -3000 to -100. */
AR_WRITE(sc, AR_PHY_TIMING8, mask[1]);
AR_WRITE(sc, AR_PHY_TIMING10, mask[1]);
/* Write entries from 100 to 3000. */
AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]);
AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]);
/* Write entries from 3100 to 6000. */
AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]);
AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]);
/* Compute viterbi mask. */
for (cur = 6100; cur >= 0; cur -= 100)
p[+cur / 100] = abs(cur - bin) < 75;
for (cur = -100; cur >= -6100; cur -= 100)
m[-cur / 100] = abs(cur - bin) < 75;
/* Write viterbi mask (XXX needs to be reworked). */
reg =
m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 |
m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 |
m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] << 8 |
m[58] << 6 | m[59] << 4 | m[60] << 2 | m[61] << 0;
AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg);
/* XXX m[48] should be m[38] ? */
reg = m[31] << 28 | m[32] << 26 | m[33] << 24 |
m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 |
m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] << 8 |
m[42] << 6 | m[43] << 4 | m[44] << 2 | m[45] << 0;
AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg);
/* XXX This one is weird too. */
reg =
m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 |
m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 |
m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] << 8 |
m[27] << 6 | m[28] << 4 | m[29] << 2 | m[30] << 0;
AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg);
reg =
m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 |
m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 |
m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] << 8 |
m[12] << 6 | m[13] << 4 | m[14] << 2 | m[15] << 0;
AR_WRITE(sc, AR_PHY_MASK_CTL, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg);
reg = p[15] << 28 | p[14] << 26 | p[13] << 24 |
p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 |
p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] << 8 |
p[ 4] << 6 | p[ 3] << 4 | p[ 2] << 2 | p[ 1] << 0;
AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg);
reg = p[30] << 28 | p[29] << 26 | p[28] << 24 |
p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 |
p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] << 8 |
p[19] << 6 | p[18] << 4 | p[17] << 2 | p[16] << 0;
AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg);
reg = p[45] << 28 | p[44] << 26 | p[43] << 24 |
p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 |
p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] << 8 |
p[34] << 6 | p[33] << 4 | p[32] << 2 | p[31] << 0;
AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg);
reg =
p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 |
p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 |
p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] << 8 |
p[49] << 6 | p[48] << 4 | p[47] << 2 | p[46] << 0;
AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg);
AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg);
AR_WRITE_BARRIER(sc);
}
void
ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
struct athn_ops *ops = &sc->ops;
const struct athn_ini *ini = sc->ini;
const uint32_t *pvals;
uint32_t reg;
int i;
AR_WRITE(sc, AR_PHY(0), 0x00000007);
AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
if (!AR_SINGLE_CHIP(sc))
ar5416_reset_addac(sc, c);
AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
/* First initialization step (depends on channel band/bandwidth). */
if (extc != NULL) {
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = ini->vals_2g40;
else
pvals = ini->vals_5g40;
} else {
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = ini->vals_2g20;
else
pvals = ini->vals_5g20;
}
DPRINTFN(4, ("writing modal init vals\n"));
for (i = 0; i < ini->nregs; i++) {
uint32_t val = pvals[i];
/* Fix AR_AN_TOP2 initialization value if required. */
if (ini->regs[i] == AR_AN_TOP2 &&
(sc->flags & ATHN_FLAG_AN_TOP2_FIXUP))
val &= ~AR_AN_TOP2_PWDCLKIND;
AR_WRITE(sc, ini->regs[i], val);
if (AR_IS_ANALOG_REG(ini->regs[i])) {
AR_WRITE_BARRIER(sc);
DELAY(100);
}
if ((i & 0x1f) == 0)
DELAY(1);
}
AR_WRITE_BARRIER(sc);
if (sc->rx_gain != NULL)
ar9280_reset_rx_gain(sc, c);
if (sc->tx_gain != NULL)
ar9280_reset_tx_gain(sc, c);
if (AR_SREV_9271_10(sc)) {
AR_WRITE(sc, AR_PHY(68), 0x30002311);
AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001);
}
AR_WRITE_BARRIER(sc);
/* Second initialization step (common to all channels). */
DPRINTFN(4, ("writing common init vals\n"));
for (i = 0; i < ini->ncmregs; i++) {
AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]);
if (AR_IS_ANALOG_REG(ini->cmregs[i])) {
AR_WRITE_BARRIER(sc);
DELAY(100);
}
if ((i & 0x1f) == 0)
DELAY(1);
}
AR_WRITE_BARRIER(sc);
if (!AR_SINGLE_CHIP(sc))
ar5416_reset_bb_gain(sc, c);
if (IEEE80211_IS_CHAN_5GHZ(c) &&
(sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
/* Update modal values for fast PLL clock. */
if (extc != NULL)
pvals = ini->fastvals_5g40;
else
pvals = ini->fastvals_5g20;
DPRINTFN(4, ("writing fast pll clock init vals\n"));
for (i = 0; i < ini->nfastregs; i++) {
AR_WRITE(sc, ini->fastregs[i], pvals[i]);
if (AR_IS_ANALOG_REG(ini->fastregs[i])) {
AR_WRITE_BARRIER(sc);
DELAY(100);
}
if ((i & 0x1f) == 0)
DELAY(1);
}
}
/*
* Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
* descriptor status.
*/
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
/* Hardware workarounds for occasional Rx data corruption. */
if (AR_SREV_9280_10_OR_LATER(sc)) {
reg = AR_READ(sc, AR_PCU_MISC_MODE2);
if (!AR_SREV_9271(sc))
reg &= ~AR_PCU_MISC_MODE2_HWWAR1;
if (AR_SREV_9287_10_OR_LATER(sc))
reg &= ~AR_PCU_MISC_MODE2_HWWAR2;
AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
} else if (AR_SREV_5416_20_OR_LATER(sc)) {
/* Disable baseband clock gating. */
AR_WRITE(sc, AR_PHY(651), 0x11);
if (AR_SREV_9160(sc)) {
/* Disable RIFS search to fix baseband hang. */
AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS,
AR_PHY_RIFS_INIT_DELAY_M);
}
}
AR_WRITE_BARRIER(sc);
ar5008_set_phy(sc, c, extc);
ar5008_init_chains(sc);
if (sc->flags & ATHN_FLAG_OLPC) {
extern int ticks;
sc->olpc_ticks = ticks;
ops->olpc_init(sc);
}
ops->set_txpower(sc, c, extc);
if (!AR_SINGLE_CHIP(sc))
ar5416_rf_reset(sc, c);
}
uint8_t
ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg,
int nicepts)
{
uint8_t vpd;
int i, lo, hi;
for (i = 0; i < nicepts; i++)
if (pwrPdg[i] > pwr)
break;
hi = i;
lo = hi - 1;
if (lo == -1)
lo = hi;
else if (hi == nicepts)
hi = lo;
vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo],
pwrPdg[hi], vpdPdg[hi]);
return (vpd);
}
void
ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin,
struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains,
int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
{
#define DB(x) ((x) / 2) /* Convert half dB to dB. */
uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK];
uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr;
uint8_t lovpd, hivpd, boundary;
int16_t ss, delta, vpdstep, val;
int i, j, npdadcs, nvpds, maxidx, tgtidx;
/* Compute min and max power in half dB for each pdGain. */
for (i = 0; i < nxpdgains; i++) {
minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]);
maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1],
hipier->pwr[i][nicepts - 1]);
}
/* Fill phase domain analog-to-digital converter (PDADC) table. */
npdadcs = 0;
for (i = 0; i < nxpdgains; i++) {
if (i != nxpdgains - 1)
boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2;
else
boundaries[i] = DB(maxpwr[i]);
if (boundaries[i] > AR_MAX_RATE_POWER)
boundaries[i] = AR_MAX_RATE_POWER;
if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) {
/* Fix the gain delta (AR5416 1.0 only). */
delta = boundaries[0] - 23;
boundaries[0] = 23;
} else
delta = 0;
/* Find starting index for this pdGain. */
if (i != 0) {
ss = boundaries[i - 1] - DB(minpwr[i]) -
overlap + 1 + delta;
} else if (AR_SREV_9280_10_OR_LATER(sc)) {
ss = -DB(minpwr[i]);
} else
ss = 0;
/* Compute Vpd table for this pdGain. */
nvpds = DB(maxpwr[i] - minpwr[i]) + 1;
memset(vpd, 0, sizeof(vpd));
pwr = minpwr[i];
for (j = 0; j < nvpds; j++) {
/* Get lower and higher Vpd. */
lovpd = ar5008_get_vpd(pwr, lopier->pwr[i],
lopier->vpd[i], nicepts);
hivpd = ar5008_get_vpd(pwr, hipier->pwr[i],
hipier->vpd[i], nicepts);
/* Interpolate the final Vpd. */
vpd[j] = athn_interpolate(fbin,
lopier->fbin, lovpd, hipier->fbin, hivpd);
pwr += 2; /* In half dB. */
}
/* Extrapolate data for ss < 0. */
if (vpd[1] > vpd[0])
vpdstep = vpd[1] - vpd[0];
else
vpdstep = 1;
while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) {
val = vpd[0] + ss * vpdstep;
pdadcs[npdadcs++] = MAX(val, 0);
ss++;
}
tgtidx = boundaries[i] + overlap - DB(minpwr[i]);
maxidx = MIN(tgtidx, nvpds);
while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1)
pdadcs[npdadcs++] = vpd[ss++];
if (tgtidx < maxidx)
continue;
/* Extrapolate data for maxidx <= ss <= tgtidx. */
if (vpd[nvpds - 1] > vpd[nvpds - 2])
vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2];
else
vpdstep = 1;
while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) {
val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep;
pdadcs[npdadcs++] = MIN(val, 255);
ss++;
}
}
/* Fill remaining PDADC and boundaries entries. */
if (AR_SREV_9285(sc))
boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT;
else /* Fill with latest. */
boundary = boundaries[nxpdgains - 1];
for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++)
boundaries[nxpdgains] = boundary;
for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++)
pdadcs[npdadcs] = pdadcs[npdadcs - 1];
#undef DB
}
void
ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans,
uint8_t tpow[4])
{
uint8_t fbin;
int i, lo, hi;
/* Find interval (lower and upper indices). */
fbin = athn_chan2fbin(c);
for (i = 0; i < nchans; i++) {
if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
tgt[i].bChannel > fbin)
break;
}
hi = i;
lo = hi - 1;
if (lo == -1)
lo = hi;
else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
hi = lo;
/* Interpolate values. */
for (i = 0; i < 4; i++) {
tpow[i] = athn_interpolate(fbin,
tgt[lo].bChannel, tgt[lo].tPow2x[i],
tgt[hi].bChannel, tgt[hi].tPow2x[i]);
}
/* XXX Apply conformance testing limit. */
}
void
ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans,
uint8_t tpow[8])
{
uint8_t fbin;
int i, lo, hi;
/* Find interval (lower and upper indices). */
fbin = athn_chan2fbin(c);
for (i = 0; i < nchans; i++) {
if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
tgt[i].bChannel > fbin)
break;
}
hi = i;
lo = hi - 1;
if (lo == -1)
lo = hi;
else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
hi = lo;
/* Interpolate values. */
for (i = 0; i < 8; i++) {
tpow[i] = athn_interpolate(fbin,
tgt[lo].bChannel, tgt[lo].tPow2x[i],
tgt[hi].bChannel, tgt[hi].tPow2x[i]);
}
/* XXX Apply conformance testing limit. */
}
/*
* Adaptive noise immunity.
*/
void
ar5008_set_noise_immunity_level(struct athn_softc *sc, int level)
{
int high = level == 4;
uint32_t reg;
reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
reg = AR_READ(sc, AR_PHY_AGC_CTL1);
reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64);
reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14);
AR_WRITE(sc, AR_PHY_AGC_CTL1, reg);
reg = AR_READ(sc, AR_PHY_FIND_SIG);
reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
AR_WRITE_BARRIER(sc);
}
void
ar5008_enable_ofdm_weak_signal(struct athn_softc *sc)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
reg = AR_READ(sc, AR_PHY_SFCORR);
reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
AR_WRITE(sc, AR_PHY_SFCORR, reg);
reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
AR_WRITE_BARRIER(sc);
}
void
ar5008_disable_ofdm_weak_signal(struct athn_softc *sc)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
reg = AR_READ(sc, AR_PHY_SFCORR);
reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
AR_WRITE(sc, AR_PHY_SFCORR, reg);
reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
AR_WRITE_BARRIER(sc);
}
void
ar5008_set_cck_weak_signal(struct athn_softc *sc, int high)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_CCK_DETECT);
reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
AR_WRITE_BARRIER(sc);
}
void
ar5008_set_firstep_level(struct athn_softc *sc, int level)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_FIND_SIG);
reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
AR_WRITE_BARRIER(sc);
}
void
ar5008_set_spur_immunity_level(struct athn_softc *sc, int level)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_TIMING5);
reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
AR_WRITE(sc, AR_PHY_TIMING5, reg);
AR_WRITE_BARRIER(sc);
}