src/lib/libcrypto/evp/evp_cipher.c

1181 lines
28 KiB
C

/* $OpenBSD: evp_cipher.c,v 1.19 2024/02/18 15:53:54 tb Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 2015 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include "asn1_local.h"
#include "evp_local.h"
int
EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv, int enc)
{
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
}
int
EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine,
const unsigned char *key, const unsigned char *iv, int enc)
{
if (enc == -1)
enc = ctx->encrypt;
if (enc != 0)
enc = 1;
ctx->encrypt = enc;
if (cipher == NULL && ctx->cipher == NULL) {
EVPerror(EVP_R_NO_CIPHER_SET);
return 0;
}
/*
* Set up cipher and context. Allocate cipher data and initialize ctx.
* On ctx reuse only retain encryption direction and key wrap flag.
*/
if (cipher != NULL) {
unsigned long flags = ctx->flags;
EVP_CIPHER_CTX_cleanup(ctx);
ctx->encrypt = enc;
ctx->flags = flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW;
ctx->cipher = cipher;
ctx->key_len = cipher->key_len;
if (ctx->cipher->ctx_size != 0) {
ctx->cipher_data = calloc(1, ctx->cipher->ctx_size);
if (ctx->cipher_data == NULL) {
EVPerror(ERR_R_MALLOC_FAILURE);
return 0;
}
}
if ((ctx->cipher->flags & EVP_CIPH_CTRL_INIT) != 0) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
EVPerror(EVP_R_INITIALIZATION_ERROR);
return 0;
}
}
}
/* Block sizes must be a power of 2 due to the use of block_mask. */
if (ctx->cipher->block_size != 1 &&
ctx->cipher->block_size != 8 &&
ctx->cipher->block_size != 16) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
if ((ctx->flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW) == 0 &&
EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_WRAP_MODE) {
EVPerror(EVP_R_WRAP_MODE_NOT_ALLOWED);
return 0;
}
if ((EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV) == 0) {
int iv_len;
switch (EVP_CIPHER_CTX_mode(ctx)) {
case EVP_CIPH_STREAM_CIPHER:
case EVP_CIPH_ECB_MODE:
break;
case EVP_CIPH_CFB_MODE:
case EVP_CIPH_OFB_MODE:
ctx->num = 0;
/* fall-through */
case EVP_CIPH_CBC_MODE:
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
if (iv_len < 0 || iv_len > sizeof(ctx->oiv) ||
iv_len > sizeof(ctx->iv)) {
EVPerror(EVP_R_IV_TOO_LARGE);
return 0;
}
if (iv != NULL)
memcpy(ctx->oiv, iv, iv_len);
memcpy(ctx->iv, ctx->oiv, iv_len);
break;
case EVP_CIPH_CTR_MODE:
ctx->num = 0;
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
if (iv_len < 0 || iv_len > sizeof(ctx->iv)) {
EVPerror(EVP_R_IV_TOO_LARGE);
return 0;
}
/* Don't reuse IV for CTR mode */
if (iv != NULL)
memcpy(ctx->iv, iv, iv_len);
break;
default:
return 0;
break;
}
}
if (key != NULL || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT) != 0) {
if (!ctx->cipher->init(ctx, key, iv, enc))
return 0;
}
ctx->partial_len = 0;
ctx->final_used = 0;
return 1;
}
int
EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
if (ctx->encrypt)
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
}
int
EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
if (ctx->encrypt)
return EVP_EncryptFinal_ex(ctx, out, out_len);
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
int
EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
if (ctx->encrypt)
return EVP_EncryptFinal_ex(ctx, out, out_len);
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
int
EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit(ctx, cipher, key, iv, 1);
}
int
EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, 1);
}
/*
* EVP_Cipher() is an implementation detail of EVP_Cipher{Update,Final}().
* Behavior depends on EVP_CIPH_FLAG_CUSTOM_CIPHER being set on ctx->cipher.
*
* If the flag is set, do_cipher() operates in update mode if in != NULL and
* in final mode if in == NULL. It returns the number of bytes written to out
* (which may be 0) or -1 on error.
*
* If the flag is not set, do_cipher() assumes properly aligned data and that
* padding is handled correctly by the caller. Most do_cipher() methods will
* silently produce garbage and succeed. Returns 1 on success, 0 on error.
*/
int
EVP_Cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in,
unsigned int in_len)
{
return ctx->cipher->do_cipher(ctx, out, in, in_len);
}
static int
evp_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
int len;
*out_len = 0;
if (in_len < 0)
return 0;
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0) {
if ((len = ctx->cipher->do_cipher(ctx, out, in, in_len)) < 0)
return 0;
*out_len = len;
return 1;
}
if (!ctx->cipher->do_cipher(ctx, out, in, in_len))
return 0;
*out_len = in_len;
return 1;
}
int
EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
const int block_size = ctx->cipher->block_size;
const int block_mask = block_size - 1;
int partial_len = ctx->partial_len;
int len = 0, total_len = 0;
*out_len = 0;
if ((block_size & block_mask) != 0)
return 0;
if (in_len < 0)
return 0;
if (in_len == 0 && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)
return 1;
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
return evp_cipher(ctx, out, out_len, in, in_len);
if (partial_len == 0 && (in_len & block_mask) == 0)
return evp_cipher(ctx, out, out_len, in, in_len);
if (partial_len < 0 || partial_len >= block_size ||
block_size > sizeof(ctx->buf)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
if (partial_len > 0) {
int partial_needed;
if ((partial_needed = block_size - partial_len) > in_len) {
memcpy(&ctx->buf[partial_len], in, in_len);
ctx->partial_len += in_len;
return 1;
}
/*
* Once the first partial_needed bytes from in are processed,
* the number of multiples of block_size of data remaining is
* (in_len - partial_needed) & ~block_mask. Ensure that this
* plus the block processed from ctx->buf doesn't overflow.
*/
if (((in_len - partial_needed) & ~block_mask) > INT_MAX - block_size) {
EVPerror(EVP_R_TOO_LARGE);
return 0;
}
memcpy(&ctx->buf[partial_len], in, partial_needed);
len = 0;
if (!evp_cipher(ctx, out, &len, ctx->buf, block_size))
return 0;
total_len = len;
in_len -= partial_needed;
in += partial_needed;
out += len;
}
partial_len = in_len & block_mask;
if ((in_len -= partial_len) > 0) {
if (INT_MAX - in_len < total_len)
return 0;
len = 0;
if (!evp_cipher(ctx, out, &len, in, in_len))
return 0;
if (INT_MAX - len < total_len)
return 0;
total_len += len;
}
if ((ctx->partial_len = partial_len) > 0)
memcpy(ctx->buf, &in[in_len], partial_len);
*out_len = total_len;
return 1;
}
int
EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
return EVP_EncryptFinal_ex(ctx, out, out_len);
}
int
EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
const int block_size = ctx->cipher->block_size;
int partial_len = ctx->partial_len;
int pad;
*out_len = 0;
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
return evp_cipher(ctx, out, out_len, NULL, 0);
if (partial_len < 0 || partial_len >= block_size ||
block_size > sizeof(ctx->buf)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
if (block_size == 1)
return 1;
if ((ctx->flags & EVP_CIPH_NO_PADDING) != 0) {
if (partial_len != 0) {
EVPerror(EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
return 1;
}
pad = block_size - partial_len;
memset(&ctx->buf[partial_len], pad, pad);
return evp_cipher(ctx, out, out_len, ctx->buf, block_size);
}
int
EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit(ctx, cipher, key, iv, 0);
}
int
EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, 0);
}
int
EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
const int block_size = ctx->cipher->block_size;
const int block_mask = block_size - 1;
int len = 0, total_len = 0;
*out_len = 0;
if ((block_size & block_mask) != 0)
return 0;
if (in_len < 0)
return 0;
if (in_len == 0 && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)
return 1;
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
return evp_cipher(ctx, out, out_len, in, in_len);
if ((ctx->flags & EVP_CIPH_NO_PADDING) != 0)
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
if (block_size > sizeof(ctx->final)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
if (ctx->final_used) {
/*
* final_used is only set if partial_len is 0. Therefore the
* output from EVP_EncryptUpdate() is in_len & ~block_mask.
* Ensure (in_len & ~block_mask) + block_size doesn't overflow.
*/
if ((in_len & ~block_mask) > INT_MAX - block_size) {
EVPerror(EVP_R_TOO_LARGE);
return 0;
}
memcpy(out, ctx->final, block_size);
out += block_size;
total_len = block_size;
}
ctx->final_used = 0;
len = 0;
if (!EVP_EncryptUpdate(ctx, out, &len, in, in_len))
return 0;
/* Keep copy of last block if a multiple of block_size was decrypted. */
if (block_size > 1 && ctx->partial_len == 0) {
if (len < block_size)
return 0;
len -= block_size;
memcpy(ctx->final, &out[len], block_size);
ctx->final_used = 1;
}
if (len > INT_MAX - total_len)
return 0;
total_len += len;
*out_len = total_len;
return 1;
}
int
EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
int
EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
const int block_size = ctx->cipher->block_size;
int partial_len = ctx->partial_len;
int i, pad, plain_len;
*out_len = 0;
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
return evp_cipher(ctx, out, out_len, NULL, 0);
if ((ctx->flags & EVP_CIPH_NO_PADDING) != 0) {
if (partial_len != 0) {
EVPerror(EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
return 1;
}
if (block_size == 1)
return 1;
if (partial_len != 0 || !ctx->final_used) {
EVPerror(EVP_R_WRONG_FINAL_BLOCK_LENGTH);
return 0;
}
if (block_size > sizeof(ctx->final)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
pad = ctx->final[block_size - 1];
if (pad <= 0 || pad > block_size) {
EVPerror(EVP_R_BAD_DECRYPT);
return 0;
}
plain_len = block_size - pad;
for (i = plain_len; i < block_size; i++) {
if (ctx->final[i] != pad) {
EVPerror(EVP_R_BAD_DECRYPT);
return 0;
}
}
memcpy(out, ctx->final, plain_len);
*out_len = plain_len;
return 1;
}
EVP_CIPHER_CTX *
EVP_CIPHER_CTX_new(void)
{
return calloc(1, sizeof(EVP_CIPHER_CTX));
}
void
EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx)
{
if (ctx == NULL)
return;
EVP_CIPHER_CTX_cleanup(ctx);
free(ctx);
}
void
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx)
{
memset(ctx, 0, sizeof(*ctx));
}
void
EVP_CIPHER_CTX_legacy_clear(EVP_CIPHER_CTX *ctx)
{
memset(ctx, 0, sizeof(*ctx));
}
int
EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_CTX_cleanup(ctx);
}
int
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *ctx)
{
if (ctx == NULL)
return 1;
if (ctx->cipher != NULL) {
/* XXX - Avoid leaks, so ignore return value of cleanup()... */
if (ctx->cipher->cleanup != NULL)
ctx->cipher->cleanup(ctx);
if (ctx->cipher_data != NULL)
explicit_bzero(ctx->cipher_data, ctx->cipher->ctx_size);
}
/* XXX - store size of cipher_data so we can always freezero(). */
free(ctx->cipher_data);
explicit_bzero(ctx, sizeof(EVP_CIPHER_CTX));
return 1;
}
int
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
{
int ret;
if (!ctx->cipher) {
EVPerror(EVP_R_NO_CIPHER_SET);
return 0;
}
if (!ctx->cipher->ctrl) {
EVPerror(EVP_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
ret = ctx->cipher->ctrl(ctx, type, arg, ptr);
if (ret == -1) {
EVPerror(EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED);
return 0;
}
return ret;
}
int
EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key)
{
if (ctx->cipher->flags & EVP_CIPH_RAND_KEY)
return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key);
arc4random_buf(key, ctx->key_len);
return 1;
}
int
EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in)
{
if (in == NULL || in->cipher == NULL) {
EVPerror(EVP_R_INPUT_NOT_INITIALIZED);
return 0;
}
EVP_CIPHER_CTX_cleanup(out);
memcpy(out, in, sizeof *out);
if (in->cipher_data && in->cipher->ctx_size) {
out->cipher_data = calloc(1, in->cipher->ctx_size);
if (out->cipher_data == NULL) {
EVPerror(ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
}
if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY,
0, out)) {
/*
* If the custom copy control failed, assume that there
* may still be pointers copied in the cipher_data that
* we do not own. This may result in a leak from a bad
* custom copy control, but that's preferable to a
* double free...
*/
freezero(out->cipher_data, in->cipher->ctx_size);
out->cipher_data = NULL;
return 0;
}
}
return 1;
}
/*
* EVP_CIPHER_CTX accessors.
*/
const EVP_CIPHER *
EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx)
{
return ctx->cipher;
}
int
EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx)
{
return ctx->encrypt;
}
int
EVP_CIPHER_CTX_get_iv(const EVP_CIPHER_CTX *ctx, unsigned char *iv, size_t len)
{
if (ctx == NULL || len != EVP_CIPHER_CTX_iv_length(ctx))
return 0;
if (len > EVP_MAX_IV_LENGTH)
return 0; /* sanity check; shouldn't happen */
/*
* Skip the memcpy entirely when the requested IV length is zero,
* since the iv pointer may be NULL or invalid.
*/
if (len != 0) {
if (iv == NULL)
return 0;
memcpy(iv, ctx->iv, len);
}
return 1;
}
int
EVP_CIPHER_CTX_set_iv(EVP_CIPHER_CTX *ctx, const unsigned char *iv, size_t len)
{
if (ctx == NULL || len != EVP_CIPHER_CTX_iv_length(ctx))
return 0;
if (len > EVP_MAX_IV_LENGTH)
return 0; /* sanity check; shouldn't happen */
/*
* Skip the memcpy entirely when the requested IV length is zero,
* since the iv pointer may be NULL or invalid.
*/
if (len != 0) {
if (iv == NULL)
return 0;
memcpy(ctx->iv, iv, len);
}
return 1;
}
unsigned char *
EVP_CIPHER_CTX_buf_noconst(EVP_CIPHER_CTX *ctx)
{
return ctx->buf;
}
void *
EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx)
{
return ctx->app_data;
}
void
EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data)
{
ctx->app_data = data;
}
int
EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx)
{
return ctx->key_len;
}
int
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *ctx, int key_len)
{
/* XXX - remove this. It's unused. */
if (ctx->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH)
return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_KEY_LENGTH,
key_len, NULL);
if (ctx->key_len == key_len)
return 1;
if (key_len > 0 && (ctx->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
ctx->key_len = key_len;
return 1;
}
EVPerror(EVP_R_INVALID_KEY_LENGTH);
return 0;
}
int
EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad)
{
if (pad)
ctx->flags &= ~EVP_CIPH_NO_PADDING;
else
ctx->flags |= EVP_CIPH_NO_PADDING;
return 1;
}
void
EVP_CIPHER_CTX_set_flags(EVP_CIPHER_CTX *ctx, int flags)
{
ctx->flags |= flags;
}
void
EVP_CIPHER_CTX_clear_flags(EVP_CIPHER_CTX *ctx, int flags)
{
ctx->flags &= ~flags;
}
int
EVP_CIPHER_CTX_test_flags(const EVP_CIPHER_CTX *ctx, int flags)
{
return (ctx->flags & flags);
}
void *
EVP_CIPHER_CTX_get_cipher_data(const EVP_CIPHER_CTX *ctx)
{
return ctx->cipher_data;
}
void *
EVP_CIPHER_CTX_set_cipher_data(EVP_CIPHER_CTX *ctx, void *cipher_data)
{
void *old_cipher_data;
old_cipher_data = ctx->cipher_data;
ctx->cipher_data = cipher_data;
return old_cipher_data;
}
/*
* EVP_CIPHER_CTX getters that reach into the cipher attached to the context.
*/
int
EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx)
{
return ctx->cipher->nid;
}
int
EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx)
{
return ctx->cipher->block_size;
}
int
EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx)
{
int iv_length = 0;
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_IV_LENGTH) == 0)
return ctx->cipher->iv_len;
/*
* XXX - sanity would suggest to pass the size of the pointer along,
* but unfortunately we have to match the other crowd.
*/
if (EVP_CIPHER_CTX_ctrl((EVP_CIPHER_CTX *)ctx, EVP_CTRL_GET_IVLEN, 0,
&iv_length) != 1)
return -1;
return iv_length;
}
unsigned long
EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx)
{
return ctx->cipher->flags;
}
/*
* Used by CMS and its predecessors. Only GOST and RC2 have a custom method.
*/
int
EVP_CIPHER_get_asn1_iv(EVP_CIPHER_CTX *ctx, ASN1_TYPE *type)
{
int iv_len;
if (type == NULL)
return 0;
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
if (iv_len < 0 || iv_len > sizeof(ctx->oiv) || iv_len > sizeof(ctx->iv)) {
EVPerror(EVP_R_IV_TOO_LARGE);
return 0; /* XXX */
}
if (ASN1_TYPE_get_octetstring(type, ctx->oiv, iv_len) != iv_len)
return -1;
if (iv_len > 0)
memcpy(ctx->iv, ctx->oiv, iv_len);
return iv_len;
}
int
EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *ctx, ASN1_TYPE *type)
{
if (ctx->cipher->get_asn1_parameters != NULL)
return ctx->cipher->get_asn1_parameters(ctx, type);
if ((ctx->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1) != 0)
return EVP_CIPHER_get_asn1_iv(ctx, type);
return -1;
}
int
EVP_CIPHER_set_asn1_iv(EVP_CIPHER_CTX *ctx, ASN1_TYPE *type)
{
int iv_len;
if (type == NULL)
return 0;
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
if (iv_len < 0 || iv_len > sizeof(ctx->oiv)) {
EVPerror(EVP_R_IV_TOO_LARGE);
return 0;
}
return ASN1_TYPE_set_octetstring(type, ctx->oiv, iv_len);
}
int
EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *ctx, ASN1_TYPE *type)
{
if (ctx->cipher->set_asn1_parameters != NULL)
return ctx->cipher->set_asn1_parameters(ctx, type);
if ((ctx->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1) != 0)
return EVP_CIPHER_set_asn1_iv(ctx, type);
return -1;
}
/* Convert the various cipher NIDs and dummies to a proper OID NID */
int
EVP_CIPHER_type(const EVP_CIPHER *cipher)
{
ASN1_OBJECT *aobj;
int nid;
nid = EVP_CIPHER_nid(cipher);
switch (nid) {
case NID_rc2_cbc:
case NID_rc2_64_cbc:
case NID_rc2_40_cbc:
return NID_rc2_cbc;
case NID_rc4:
case NID_rc4_40:
return NID_rc4;
case NID_aes_128_cfb128:
case NID_aes_128_cfb8:
case NID_aes_128_cfb1:
return NID_aes_128_cfb128;
case NID_aes_192_cfb128:
case NID_aes_192_cfb8:
case NID_aes_192_cfb1:
return NID_aes_192_cfb128;
case NID_aes_256_cfb128:
case NID_aes_256_cfb8:
case NID_aes_256_cfb1:
return NID_aes_256_cfb128;
case NID_des_cfb64:
case NID_des_cfb8:
case NID_des_cfb1:
return NID_des_cfb64;
case NID_des_ede3_cfb64:
case NID_des_ede3_cfb8:
case NID_des_ede3_cfb1:
return NID_des_cfb64;
default:
/* Check it has an OID and it is valid */
if (((aobj = OBJ_nid2obj(nid)) == NULL) || aobj->data == NULL)
nid = NID_undef;
ASN1_OBJECT_free(aobj);
return nid;
}
}
/*
* Accessors. First the trivial getters, then the setters for the method API.
*/
int
EVP_CIPHER_nid(const EVP_CIPHER *cipher)
{
return cipher->nid;
}
int
EVP_CIPHER_block_size(const EVP_CIPHER *cipher)
{
return cipher->block_size;
}
int
EVP_CIPHER_key_length(const EVP_CIPHER *cipher)
{
return cipher->key_len;
}
int
EVP_CIPHER_iv_length(const EVP_CIPHER *cipher)
{
return cipher->iv_len;
}
unsigned long
EVP_CIPHER_flags(const EVP_CIPHER *cipher)
{
return cipher->flags;
}
EVP_CIPHER *
EVP_CIPHER_meth_new(int cipher_type, int block_size, int key_len)
{
EVP_CIPHER *cipher;
if (cipher_type < 0 || key_len < 0)
return NULL;
/* EVP_CipherInit() will fail for any other value. */
if (block_size != 1 && block_size != 8 && block_size != 16)
return NULL;
if ((cipher = calloc(1, sizeof(*cipher))) == NULL)
return NULL;
cipher->nid = cipher_type;
cipher->block_size = block_size;
cipher->key_len = key_len;
return cipher;
}
EVP_CIPHER *
EVP_CIPHER_meth_dup(const EVP_CIPHER *cipher)
{
EVP_CIPHER *copy;
if ((copy = calloc(1, sizeof(*copy))) == NULL)
return NULL;
*copy = *cipher;
return copy;
}
void
EVP_CIPHER_meth_free(EVP_CIPHER *cipher)
{
free(cipher);
}
int
EVP_CIPHER_meth_set_iv_length(EVP_CIPHER *cipher, int iv_len)
{
cipher->iv_len = iv_len;
return 1;
}
int
EVP_CIPHER_meth_set_flags(EVP_CIPHER *cipher, unsigned long flags)
{
cipher->flags = flags;
return 1;
}
int
EVP_CIPHER_meth_set_impl_ctx_size(EVP_CIPHER *cipher, int ctx_size)
{
cipher->ctx_size = ctx_size;
return 1;
}
int
EVP_CIPHER_meth_set_init(EVP_CIPHER *cipher,
int (*init)(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc))
{
cipher->init = init;
return 1;
}
int
EVP_CIPHER_meth_set_do_cipher(EVP_CIPHER *cipher,
int (*do_cipher)(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl))
{
cipher->do_cipher = do_cipher;
return 1;
}
int
EVP_CIPHER_meth_set_cleanup(EVP_CIPHER *cipher,
int (*cleanup)(EVP_CIPHER_CTX *))
{
cipher->cleanup = cleanup;
return 1;
}
int
EVP_CIPHER_meth_set_set_asn1_params(EVP_CIPHER *cipher,
int (*set_asn1_parameters)(EVP_CIPHER_CTX *, ASN1_TYPE *))
{
cipher->set_asn1_parameters = set_asn1_parameters;
return 1;
}
int
EVP_CIPHER_meth_set_get_asn1_params(EVP_CIPHER *cipher,
int (*get_asn1_parameters)(EVP_CIPHER_CTX *, ASN1_TYPE *))
{
cipher->get_asn1_parameters = get_asn1_parameters;
return 1;
}
int
EVP_CIPHER_meth_set_ctrl(EVP_CIPHER *cipher,
int (*ctrl)(EVP_CIPHER_CTX *, int type, int arg, void *ptr))
{
cipher->ctrl = ctrl;
return 1;
}