1275 lines
31 KiB
C
1275 lines
31 KiB
C
/* $OpenBSD: if_lge.c,v 1.82 2024/09/06 10:54:08 jsg Exp $ */
|
|
/*
|
|
* Copyright (c) 2001 Wind River Systems
|
|
* Copyright (c) 1997, 1998, 1999, 2000, 2001
|
|
* Bill Paul <william.paul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
|
|
*/
|
|
|
|
/*
|
|
* Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
|
|
* documentation not available, but ask me nicely.
|
|
*
|
|
* Written by Bill Paul <william.paul@windriver.com>
|
|
* Wind River Systems
|
|
*/
|
|
|
|
/*
|
|
* The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
|
|
* It's a 64-bit PCI part that supports TCP/IP checksum offload,
|
|
* VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
|
|
* are three supported methods for data transfer between host and
|
|
* NIC: programmed I/O, traditional scatter/gather DMA and Packet
|
|
* Propulsion Technology (tm) DMA. The latter mechanism is a form
|
|
* of double buffer DMA where the packet data is copied to a
|
|
* pre-allocated DMA buffer who's physical address has been loaded
|
|
* into a table at device initialization time. The rationale is that
|
|
* the virtual to physical address translation needed for normal
|
|
* scatter/gather DMA is more expensive than the data copy needed
|
|
* for double buffering. This may be true in Windows NT and the like,
|
|
* but it isn't true for us, at least on the x86 arch. This driver
|
|
* uses the scatter/gather I/O method for both TX and RX.
|
|
*
|
|
* The LXT1001 only supports TCP/IP checksum offload on receive.
|
|
* Also, the VLAN tagging is done using a 16-entry table which allows
|
|
* the chip to perform hardware filtering based on VLAN tags. Sadly,
|
|
* our vlan support doesn't currently play well with this kind of
|
|
* hardware support.
|
|
*
|
|
* Special thanks to:
|
|
* - Jeff James at Intel, for arranging to have the LXT1001 manual
|
|
* released (at long last)
|
|
* - Beny Chen at D-Link, for actually sending it to me
|
|
* - Brad Short and Keith Alexis at SMC, for sending me sample
|
|
* SMC9462SX and SMC9462TX adapters for testing
|
|
* - Paul Saab at Y!, for not killing me (though it remains to be seen
|
|
* if in fact he did me much of a favor)
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <uvm/uvm_extern.h> /* for vtophys */
|
|
#define VTOPHYS(v) vtophys((vaddr_t)(v))
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#define LGE_USEIOSPACE
|
|
|
|
#include <dev/pci/if_lgereg.h>
|
|
|
|
int lge_probe(struct device *, void *, void *);
|
|
void lge_attach(struct device *, struct device *, void *);
|
|
|
|
const struct cfattach lge_ca = {
|
|
sizeof(struct lge_softc), lge_probe, lge_attach
|
|
};
|
|
|
|
struct cfdriver lge_cd = {
|
|
NULL, "lge", DV_IFNET
|
|
};
|
|
|
|
int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
|
|
struct mbuf *);
|
|
int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
|
|
void lge_rxeof(struct lge_softc *, int);
|
|
void lge_txeof(struct lge_softc *);
|
|
int lge_intr(void *);
|
|
void lge_tick(void *);
|
|
void lge_start(struct ifnet *);
|
|
int lge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
void lge_init(void *);
|
|
void lge_stop(struct lge_softc *);
|
|
void lge_watchdog(struct ifnet *);
|
|
int lge_ifmedia_upd(struct ifnet *);
|
|
void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
|
|
void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
|
|
|
|
int lge_miibus_readreg(struct device *, int, int);
|
|
void lge_miibus_writereg(struct device *, int, int, int);
|
|
void lge_miibus_statchg(struct device *);
|
|
|
|
void lge_setmulti(struct lge_softc *);
|
|
void lge_reset(struct lge_softc *);
|
|
int lge_list_rx_init(struct lge_softc *);
|
|
int lge_list_tx_init(struct lge_softc *);
|
|
|
|
#ifdef LGE_DEBUG
|
|
#define DPRINTF(x) if (lgedebug) printf x
|
|
#define DPRINTFN(n,x) if (lgedebug >= (n)) printf x
|
|
int lgedebug = 0;
|
|
#else
|
|
#define DPRINTF(x)
|
|
#define DPRINTFN(n,x)
|
|
#endif
|
|
|
|
const struct pci_matchid lge_devices[] = {
|
|
{ PCI_VENDOR_LEVEL1, PCI_PRODUCT_LEVEL1_LXT1001 }
|
|
};
|
|
|
|
#define LGE_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) | (x))
|
|
|
|
#define LGE_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) & ~(x))
|
|
|
|
#define SIO_SET(x) \
|
|
CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
|
|
|
|
#define SIO_CLR(x) \
|
|
CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
void
|
|
lge_eeprom_getword(struct lge_softc *sc, int addr, u_int16_t *dest)
|
|
{
|
|
int i;
|
|
u_int32_t val;
|
|
|
|
CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
|
|
LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
|
|
|
|
for (i = 0; i < LGE_TIMEOUT; i++)
|
|
if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
|
|
break;
|
|
|
|
if (i == LGE_TIMEOUT) {
|
|
printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
|
|
return;
|
|
}
|
|
|
|
val = CSR_READ_4(sc, LGE_EEDATA);
|
|
|
|
if (addr & 1)
|
|
*dest = (val >> 16) & 0xFFFF;
|
|
else
|
|
*dest = val & 0xFFFF;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
void
|
|
lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off,
|
|
int cnt, int swap)
|
|
{
|
|
int i;
|
|
u_int16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
lge_eeprom_getword(sc, off + i, &word);
|
|
ptr = (u_int16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
}
|
|
|
|
int
|
|
lge_miibus_readreg(struct device *dev, int phy, int reg)
|
|
{
|
|
struct lge_softc *sc = (struct lge_softc *)dev;
|
|
int i;
|
|
|
|
/*
|
|
* If we have a non-PCS PHY, pretend that the internal
|
|
* autoneg stuff at PHY address 0 isn't there so that
|
|
* the miibus code will find only the GMII PHY.
|
|
*/
|
|
if (sc->lge_pcs == 0 && phy == 0)
|
|
return (0);
|
|
|
|
CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
|
|
|
|
for (i = 0; i < LGE_TIMEOUT; i++)
|
|
if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
|
|
break;
|
|
|
|
if (i == LGE_TIMEOUT) {
|
|
printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
|
|
return (0);
|
|
}
|
|
|
|
return (CSR_READ_4(sc, LGE_GMIICTL) >> 16);
|
|
}
|
|
|
|
void
|
|
lge_miibus_writereg(struct device *dev, int phy, int reg, int data)
|
|
{
|
|
struct lge_softc *sc = (struct lge_softc *)dev;
|
|
int i;
|
|
|
|
CSR_WRITE_4(sc, LGE_GMIICTL,
|
|
(data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
|
|
|
|
for (i = 0; i < LGE_TIMEOUT; i++)
|
|
if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
|
|
break;
|
|
|
|
if (i == LGE_TIMEOUT) {
|
|
printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
|
|
}
|
|
}
|
|
|
|
void
|
|
lge_miibus_statchg(struct device *dev)
|
|
{
|
|
struct lge_softc *sc = (struct lge_softc *)dev;
|
|
struct mii_data *mii = &sc->lge_mii;
|
|
|
|
LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_T:
|
|
case IFM_1000_SX:
|
|
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
|
|
break;
|
|
case IFM_100_TX:
|
|
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
|
|
break;
|
|
case IFM_10_T:
|
|
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
|
|
break;
|
|
default:
|
|
/*
|
|
* Choose something, even if it's wrong. Clearing
|
|
* all the bits will hose autoneg on the internal
|
|
* PHY.
|
|
*/
|
|
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
|
|
break;
|
|
}
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
|
|
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
|
|
} else {
|
|
LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
|
|
}
|
|
}
|
|
|
|
void
|
|
lge_setmulti(struct lge_softc *sc)
|
|
{
|
|
struct arpcom *ac = &sc->arpcom;
|
|
struct ifnet *ifp = &ac->ac_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
u_int32_t h = 0, hashes[2] = { 0, 0 };
|
|
|
|
/* Make sure multicast hash table is enabled. */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
|
|
|
|
if (ac->ac_multirangecnt > 0)
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, LGE_MAR0, 0);
|
|
CSR_WRITE_4(sc, LGE_MAR1, 0);
|
|
|
|
/* now program new ones */
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
|
|
0x0000003F;
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
|
|
}
|
|
|
|
void
|
|
lge_reset(struct lge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
|
|
|
|
for (i = 0; i < LGE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
|
|
break;
|
|
}
|
|
|
|
if (i == LGE_TIMEOUT)
|
|
printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
}
|
|
|
|
/*
|
|
* Probe for a Level 1 chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
int
|
|
lge_probe(struct device *parent, void *match, void *aux)
|
|
{
|
|
return (pci_matchbyid((struct pci_attach_args *)aux, lge_devices,
|
|
nitems(lge_devices)));
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
void
|
|
lge_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct lge_softc *sc = (struct lge_softc *)self;
|
|
struct pci_attach_args *pa = aux;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr = NULL;
|
|
bus_size_t size;
|
|
bus_dma_segment_t seg;
|
|
bus_dmamap_t dmamap;
|
|
int rseg;
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
#ifndef LGE_USEIOSPACE
|
|
pcireg_t memtype;
|
|
#endif
|
|
struct ifnet *ifp;
|
|
caddr_t kva;
|
|
|
|
pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
DPRINTFN(5, ("Map control/status regs\n"));
|
|
|
|
DPRINTFN(5, ("pci_mapreg_map\n"));
|
|
#ifdef LGE_USEIOSPACE
|
|
if (pci_mapreg_map(pa, LGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
|
|
&sc->lge_btag, &sc->lge_bhandle, NULL, &size, 0)) {
|
|
printf(": can't map i/o space\n");
|
|
return;
|
|
}
|
|
#else
|
|
memtype = pci_mapreg_type(pc, pa->pa_tag, LGE_PCI_LOMEM);
|
|
if (pci_mapreg_map(pa, LGE_PCI_LOMEM, memtype, 0, &sc->lge_btag,
|
|
&sc->lge_bhandle, NULL, &size, 0)) {
|
|
printf(": can't map mem space\n");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
DPRINTFN(5, ("pci_intr_map\n"));
|
|
if (pci_intr_map(pa, &ih)) {
|
|
printf(": couldn't map interrupt\n");
|
|
goto fail_1;
|
|
}
|
|
|
|
DPRINTFN(5, ("pci_intr_string\n"));
|
|
intrstr = pci_intr_string(pc, ih);
|
|
DPRINTFN(5, ("pci_intr_establish\n"));
|
|
sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
|
|
sc->sc_dv.dv_xname);
|
|
if (sc->lge_intrhand == NULL) {
|
|
printf(": couldn't establish interrupt");
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
goto fail_1;
|
|
}
|
|
printf(": %s", intrstr);
|
|
|
|
/* Reset the adapter. */
|
|
DPRINTFN(5, ("lge_reset\n"));
|
|
lge_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
DPRINTFN(5, ("lge_read_eeprom\n"));
|
|
lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
|
|
lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
|
|
lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
|
|
|
|
/*
|
|
* A Level 1 chip was detected. Inform the world.
|
|
*/
|
|
printf(", address %s\n", ether_sprintf(eaddr));
|
|
|
|
bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
sc->sc_dmatag = pa->pa_dmat;
|
|
DPRINTFN(5, ("bus_dmamem_alloc\n"));
|
|
if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
|
|
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
|
|
printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
|
|
goto fail_2;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamem_map\n"));
|
|
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
|
|
sizeof(struct lge_list_data), &kva,
|
|
BUS_DMA_NOWAIT)) {
|
|
printf("%s: can't map dma buffers (%zd bytes)\n",
|
|
sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
|
|
goto fail_3;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamap_create\n"));
|
|
if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
|
|
sizeof(struct lge_list_data), 0,
|
|
BUS_DMA_NOWAIT, &dmamap)) {
|
|
printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
|
|
goto fail_4;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamap_load\n"));
|
|
if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
|
|
sizeof(struct lge_list_data), NULL,
|
|
BUS_DMA_NOWAIT)) {
|
|
goto fail_5;
|
|
}
|
|
|
|
DPRINTFN(5, ("bzero\n"));
|
|
sc->lge_ldata = (struct lge_list_data *)kva;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = lge_ioctl;
|
|
ifp->if_start = lge_start;
|
|
ifp->if_watchdog = lge_watchdog;
|
|
ifp->if_hardmtu = LGE_JUMBO_MTU;
|
|
ifq_init_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
|
|
DPRINTFN(5, ("bcopy\n"));
|
|
bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
|
|
if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
|
|
sc->lge_pcs = 1;
|
|
else
|
|
sc->lge_pcs = 0;
|
|
|
|
/*
|
|
* Do MII setup.
|
|
*/
|
|
DPRINTFN(5, ("mii setup\n"));
|
|
sc->lge_mii.mii_ifp = ifp;
|
|
sc->lge_mii.mii_readreg = lge_miibus_readreg;
|
|
sc->lge_mii.mii_writereg = lge_miibus_writereg;
|
|
sc->lge_mii.mii_statchg = lge_miibus_statchg;
|
|
ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
|
|
lge_ifmedia_sts);
|
|
mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
|
|
if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
|
|
printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
|
|
ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
|
|
0, NULL);
|
|
ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
|
|
} else {
|
|
DPRINTFN(5, ("ifmedia_set\n"));
|
|
ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
DPRINTFN(5, ("if_attach\n"));
|
|
if_attach(ifp);
|
|
DPRINTFN(5, ("ether_ifattach\n"));
|
|
ether_ifattach(ifp);
|
|
DPRINTFN(5, ("timeout_set\n"));
|
|
timeout_set(&sc->lge_timeout, lge_tick, sc);
|
|
timeout_add_sec(&sc->lge_timeout, 1);
|
|
return;
|
|
|
|
fail_5:
|
|
bus_dmamap_destroy(sc->sc_dmatag, dmamap);
|
|
|
|
fail_4:
|
|
bus_dmamem_unmap(sc->sc_dmatag, kva,
|
|
sizeof(struct lge_list_data));
|
|
|
|
fail_3:
|
|
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
|
|
|
|
fail_2:
|
|
pci_intr_disestablish(pc, sc->lge_intrhand);
|
|
|
|
fail_1:
|
|
bus_space_unmap(sc->lge_btag, sc->lge_bhandle, size);
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
int
|
|
lge_list_tx_init(struct lge_softc *sc)
|
|
{
|
|
struct lge_list_data *ld;
|
|
struct lge_ring_data *cd;
|
|
int i;
|
|
|
|
cd = &sc->lge_cdata;
|
|
ld = sc->lge_ldata;
|
|
for (i = 0; i < LGE_TX_LIST_CNT; i++) {
|
|
ld->lge_tx_list[i].lge_mbuf = NULL;
|
|
ld->lge_tx_list[i].lge_ctl = 0;
|
|
}
|
|
|
|
cd->lge_tx_prod = cd->lge_tx_cons = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
int
|
|
lge_list_rx_init(struct lge_softc *sc)
|
|
{
|
|
struct lge_list_data *ld;
|
|
struct lge_ring_data *cd;
|
|
int i;
|
|
|
|
ld = sc->lge_ldata;
|
|
cd = &sc->lge_cdata;
|
|
|
|
cd->lge_rx_prod = cd->lge_rx_cons = 0;
|
|
|
|
CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
|
|
|
|
for (i = 0; i < LGE_RX_LIST_CNT; i++) {
|
|
if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
|
|
break;
|
|
if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/* Clear possible 'rx command queue empty' interrupt. */
|
|
CSR_READ_4(sc, LGE_ISR);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize a RX descriptor and attach a MBUF cluster.
|
|
*/
|
|
int
|
|
lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
|
|
if (m == NULL) {
|
|
m_new = MCLGETL(NULL, M_DONTWAIT, LGE_JLEN);
|
|
if (m_new == NULL)
|
|
return (ENOBUFS);
|
|
} else {
|
|
/*
|
|
* We're re-using a previously allocated mbuf;
|
|
* be sure to re-init pointers and lengths to
|
|
* default values.
|
|
*/
|
|
m_new = m;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
|
|
|
|
/*
|
|
* Adjust alignment so packet payload begins on a
|
|
* longword boundary. Mandatory for Alpha, useful on
|
|
* x86 too.
|
|
*/
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
|
|
c->lge_mbuf = m_new;
|
|
c->lge_fragptr_hi = 0;
|
|
c->lge_fragptr_lo = VTOPHYS(mtod(m_new, caddr_t));
|
|
c->lge_fraglen = m_new->m_len;
|
|
c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
|
|
c->lge_sts = 0;
|
|
|
|
/*
|
|
* Put this buffer in the RX command FIFO. To do this,
|
|
* we just write the physical address of the descriptor
|
|
* into the RX descriptor address registers. Note that
|
|
* there are two registers, one high DWORD and one low
|
|
* DWORD, which lets us specify a 64-bit address if
|
|
* desired. We only use a 32-bit address for now.
|
|
* Writing to the low DWORD register is what actually
|
|
* causes the command to be issued, so we do that
|
|
* last.
|
|
*/
|
|
CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, VTOPHYS(c));
|
|
LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
void
|
|
lge_rxeof(struct lge_softc *sc, int cnt)
|
|
{
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct lge_rx_desc *cur_rx;
|
|
int c, i, total_len = 0;
|
|
u_int32_t rxsts, rxctl;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Find out how many frames were processed. */
|
|
c = cnt;
|
|
i = sc->lge_cdata.lge_rx_cons;
|
|
|
|
/* Suck them in. */
|
|
while(c) {
|
|
struct mbuf *m0 = NULL;
|
|
|
|
cur_rx = &sc->lge_ldata->lge_rx_list[i];
|
|
rxctl = cur_rx->lge_ctl;
|
|
rxsts = cur_rx->lge_sts;
|
|
m = cur_rx->lge_mbuf;
|
|
cur_rx->lge_mbuf = NULL;
|
|
total_len = LGE_RXBYTES(cur_rx);
|
|
LGE_INC(i, LGE_RX_LIST_CNT);
|
|
c--;
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
*/
|
|
if (rxctl & LGE_RXCTL_ERRMASK) {
|
|
ifp->if_ierrors++;
|
|
lge_newbuf(sc, &LGE_RXTAIL(sc), m);
|
|
continue;
|
|
}
|
|
|
|
if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
|
|
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
|
|
lge_newbuf(sc, &LGE_RXTAIL(sc), m);
|
|
if (m0 == NULL) {
|
|
ifp->if_ierrors++;
|
|
continue;
|
|
}
|
|
m = m0;
|
|
} else {
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
}
|
|
|
|
/* Do IP checksum checking. */
|
|
if (rxsts & LGE_RXSTS_ISIP) {
|
|
if (!(rxsts & LGE_RXSTS_IPCSUMERR))
|
|
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
|
|
}
|
|
if (rxsts & LGE_RXSTS_ISTCP) {
|
|
if (!(rxsts & LGE_RXSTS_TCPCSUMERR))
|
|
m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
|
|
}
|
|
if (rxsts & LGE_RXSTS_ISUDP) {
|
|
if (!(rxsts & LGE_RXSTS_UDPCSUMERR))
|
|
m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
|
|
}
|
|
|
|
ml_enqueue(&ml, m);
|
|
}
|
|
|
|
if_input(ifp, &ml);
|
|
|
|
sc->lge_cdata.lge_rx_cons = i;
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
|
|
void
|
|
lge_txeof(struct lge_softc *sc)
|
|
{
|
|
struct lge_tx_desc *cur_tx = NULL;
|
|
struct ifnet *ifp;
|
|
u_int32_t idx, txdone;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Clear the timeout timer. */
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
idx = sc->lge_cdata.lge_tx_cons;
|
|
txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
|
|
|
|
while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
|
|
cur_tx = &sc->lge_ldata->lge_tx_list[idx];
|
|
|
|
if (cur_tx->lge_mbuf != NULL) {
|
|
m_freem(cur_tx->lge_mbuf);
|
|
cur_tx->lge_mbuf = NULL;
|
|
}
|
|
cur_tx->lge_ctl = 0;
|
|
|
|
txdone--;
|
|
LGE_INC(idx, LGE_TX_LIST_CNT);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
sc->lge_cdata.lge_tx_cons = idx;
|
|
|
|
if (cur_tx != NULL)
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
}
|
|
|
|
void
|
|
lge_tick(void *xsc)
|
|
{
|
|
struct lge_softc *sc = xsc;
|
|
struct mii_data *mii = &sc->lge_mii;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
|
|
ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
|
|
CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
|
|
ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
|
|
|
|
if (!sc->lge_link) {
|
|
mii_tick(mii);
|
|
if (mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->lge_link++;
|
|
if (!ifq_empty(&ifp->if_snd))
|
|
lge_start(ifp);
|
|
}
|
|
}
|
|
|
|
timeout_add_sec(&sc->lge_timeout, 1);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
lge_intr(void *arg)
|
|
{
|
|
struct lge_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int32_t status;
|
|
int claimed = 0;
|
|
|
|
sc = arg;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Suppress unwanted interrupts */
|
|
if (!(ifp->if_flags & IFF_UP)) {
|
|
lge_stop(sc);
|
|
return (0);
|
|
}
|
|
|
|
for (;;) {
|
|
/*
|
|
* Reading the ISR register clears all interrupts, and
|
|
* clears the 'interrupts enabled' bit in the IMR
|
|
* register.
|
|
*/
|
|
status = CSR_READ_4(sc, LGE_ISR);
|
|
|
|
if ((status & LGE_INTRS) == 0)
|
|
break;
|
|
|
|
claimed = 1;
|
|
|
|
if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
|
|
lge_txeof(sc);
|
|
|
|
if (status & LGE_ISR_RXDMA_DONE)
|
|
lge_rxeof(sc, LGE_RX_DMACNT(status));
|
|
|
|
if (status & LGE_ISR_RXCMDFIFO_EMPTY)
|
|
lge_init(sc);
|
|
|
|
if (status & LGE_ISR_PHY_INTR) {
|
|
sc->lge_link = 0;
|
|
timeout_del(&sc->lge_timeout);
|
|
lge_tick(sc);
|
|
}
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
|
|
|
|
if (!ifq_empty(&ifp->if_snd))
|
|
lge_start(ifp);
|
|
|
|
return (claimed);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
int
|
|
lge_encap(struct lge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
|
|
{
|
|
struct lge_frag *f = NULL;
|
|
struct lge_tx_desc *cur_tx;
|
|
struct mbuf *m;
|
|
int frag = 0, tot_len = 0;
|
|
|
|
/*
|
|
* Start packing the mbufs in this chain into
|
|
* the fragment pointers. Stop when we run out
|
|
* of fragments or hit the end of the mbuf chain.
|
|
*/
|
|
m = m_head;
|
|
cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
|
|
frag = 0;
|
|
|
|
for (m = m_head; m != NULL; m = m->m_next) {
|
|
if (m->m_len != 0) {
|
|
tot_len += m->m_len;
|
|
f = &cur_tx->lge_frags[frag];
|
|
f->lge_fraglen = m->m_len;
|
|
f->lge_fragptr_lo = VTOPHYS(mtod(m, vaddr_t));
|
|
f->lge_fragptr_hi = 0;
|
|
frag++;
|
|
}
|
|
}
|
|
|
|
if (m != NULL)
|
|
return (ENOBUFS);
|
|
|
|
cur_tx->lge_mbuf = m_head;
|
|
cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
|
|
LGE_INC((*txidx), LGE_TX_LIST_CNT);
|
|
|
|
/* Queue for transmit */
|
|
CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, VTOPHYS(cur_tx));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
* physical addresses.
|
|
*/
|
|
|
|
void
|
|
lge_start(struct ifnet *ifp)
|
|
{
|
|
struct lge_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
u_int32_t idx;
|
|
int pkts = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (!sc->lge_link)
|
|
return;
|
|
|
|
idx = sc->lge_cdata.lge_tx_prod;
|
|
|
|
if (ifq_is_oactive(&ifp->if_snd))
|
|
return;
|
|
|
|
while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
|
|
if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
|
|
break;
|
|
|
|
m_head = ifq_deq_begin(&ifp->if_snd);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
if (lge_encap(sc, m_head, &idx)) {
|
|
ifq_deq_rollback(&ifp->if_snd, m_head);
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
break;
|
|
}
|
|
|
|
/* now we are committed to transmit the packet */
|
|
ifq_deq_commit(&ifp->if_snd, m_head);
|
|
pkts++;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
|
|
#endif
|
|
}
|
|
if (pkts == 0)
|
|
return;
|
|
|
|
sc->lge_cdata.lge_tx_prod = idx;
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
void
|
|
lge_init(void *xsc)
|
|
{
|
|
struct lge_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
lge_stop(sc);
|
|
lge_reset(sc);
|
|
|
|
/* Set MAC address */
|
|
CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
|
|
CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
|
|
|
|
/* Init circular RX list. */
|
|
if (lge_list_rx_init(sc) == ENOBUFS) {
|
|
printf("%s: initialization failed: no "
|
|
"memory for rx buffers\n", sc->sc_dv.dv_xname);
|
|
lge_stop(sc);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Init tx descriptors.
|
|
*/
|
|
lge_list_tx_init(sc);
|
|
|
|
/* Set initial value for MODE1 register. */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
|
|
LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
|
|
LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
|
|
LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
CSR_WRITE_4(sc, LGE_MODE1,
|
|
LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
|
|
} else {
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
|
|
}
|
|
|
|
/*
|
|
* Set the capture broadcast bit to capture broadcast frames.
|
|
*/
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
CSR_WRITE_4(sc, LGE_MODE1,
|
|
LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
|
|
} else {
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
|
|
}
|
|
|
|
/* Packet padding workaround? */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
|
|
|
|
/* No error frames */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
|
|
|
|
/* Receive large frames */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
|
|
|
|
/* Workaround: disable RX/TX flow control */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
|
|
|
|
/* Make sure to strip CRC from received frames */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
|
|
|
|
/* Turn off magic packet mode */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
|
|
|
|
/* Turn off all VLAN stuff */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
|
|
LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
|
|
|
|
/* Workaround: FIFO overflow */
|
|
CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
|
|
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
|
|
|
|
/*
|
|
* Load the multicast filter.
|
|
*/
|
|
lge_setmulti(sc);
|
|
|
|
/*
|
|
* Enable hardware checksum validation for all received IPv4
|
|
* packets, do not reject packets with bad checksums.
|
|
*/
|
|
CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
|
|
LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
|
|
LGE_MODE2_RX_ERRCSUM);
|
|
|
|
/*
|
|
* Enable the delivery of PHY interrupts based on
|
|
* link/speed/duplex status changes.
|
|
*/
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
|
|
|
|
CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
|
|
LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
|
|
|
|
lge_ifmedia_upd(ifp);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
splx(s);
|
|
|
|
timeout_add_sec(&sc->lge_timeout, 1);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
int
|
|
lge_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct lge_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->lge_mii;
|
|
|
|
sc->lge_link = 0;
|
|
if (mii->mii_instance) {
|
|
struct mii_softc *miisc;
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
mii_phy_reset(miisc);
|
|
}
|
|
mii_mediachg(mii);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
void
|
|
lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct lge_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->lge_mii;
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
}
|
|
|
|
int
|
|
lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct lge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
lge_init(sc);
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc->lge_if_flags & IFF_PROMISC)) {
|
|
CSR_WRITE_4(sc, LGE_MODE1,
|
|
LGE_MODE1_SETRST_CTL1|
|
|
LGE_MODE1_RX_PROMISC);
|
|
lge_setmulti(sc);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc->lge_if_flags & IFF_PROMISC) {
|
|
CSR_WRITE_4(sc, LGE_MODE1,
|
|
LGE_MODE1_RX_PROMISC);
|
|
lge_setmulti(sc);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
(ifp->if_flags ^ sc->lge_if_flags) & IFF_ALLMULTI) {
|
|
lge_setmulti(sc);
|
|
} else {
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
lge_init(sc);
|
|
}
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
lge_stop(sc);
|
|
}
|
|
sc->lge_if_flags = ifp->if_flags;
|
|
break;
|
|
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = &sc->lge_mii;
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, &sc->arpcom, command, data);
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
lge_setmulti(sc);
|
|
error = 0;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
lge_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct lge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
ifp->if_oerrors++;
|
|
printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
|
|
|
|
lge_stop(sc);
|
|
lge_reset(sc);
|
|
lge_init(sc);
|
|
|
|
if (!ifq_empty(&ifp->if_snd))
|
|
lge_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
void
|
|
lge_stop(struct lge_softc *sc)
|
|
{
|
|
int i;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_timer = 0;
|
|
timeout_del(&sc->lge_timeout);
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
|
|
|
|
/* Disable receiver and transmitter. */
|
|
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
|
|
sc->lge_link = 0;
|
|
|
|
/*
|
|
* Free data in the RX lists.
|
|
*/
|
|
for (i = 0; i < LGE_RX_LIST_CNT; i++) {
|
|
if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
|
|
m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
|
|
sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
|
|
}
|
|
}
|
|
bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
|
|
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < LGE_TX_LIST_CNT; i++) {
|
|
if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
|
|
m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
|
|
sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
|
|
}
|