1035 lines
23 KiB
C
1035 lines
23 KiB
C
/* $OpenBSD: sys_pipe.c,v 1.146 2023/05/09 14:22:17 visa Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Absolutely no warranty of function or purpose is made by the author
|
|
* John S. Dyson.
|
|
* 4. Modifications may be freely made to this file if the above conditions
|
|
* are met.
|
|
*/
|
|
|
|
/*
|
|
* This file contains a high-performance replacement for the socket-based
|
|
* pipes scheme originally used in FreeBSD/4.4Lite. It does not support
|
|
* all features of sockets, but does do everything that pipes normally
|
|
* do.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/event.h>
|
|
#ifdef KTRACE
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <sys/pipe.h>
|
|
|
|
struct pipe_pair {
|
|
struct pipe pp_wpipe;
|
|
struct pipe pp_rpipe;
|
|
struct rwlock pp_lock;
|
|
};
|
|
|
|
/*
|
|
* interfaces to the outside world
|
|
*/
|
|
int pipe_read(struct file *, struct uio *, int);
|
|
int pipe_write(struct file *, struct uio *, int);
|
|
int pipe_close(struct file *, struct proc *);
|
|
int pipe_kqfilter(struct file *fp, struct knote *kn);
|
|
int pipe_ioctl(struct file *, u_long, caddr_t, struct proc *);
|
|
int pipe_stat(struct file *fp, struct stat *ub, struct proc *p);
|
|
|
|
static const struct fileops pipeops = {
|
|
.fo_read = pipe_read,
|
|
.fo_write = pipe_write,
|
|
.fo_ioctl = pipe_ioctl,
|
|
.fo_kqfilter = pipe_kqfilter,
|
|
.fo_stat = pipe_stat,
|
|
.fo_close = pipe_close
|
|
};
|
|
|
|
void filt_pipedetach(struct knote *kn);
|
|
int filt_piperead(struct knote *kn, long hint);
|
|
int filt_pipewrite(struct knote *kn, long hint);
|
|
int filt_pipeexcept(struct knote *kn, long hint);
|
|
int filt_pipemodify(struct kevent *kev, struct knote *kn);
|
|
int filt_pipeprocess(struct knote *kn, struct kevent *kev);
|
|
|
|
const struct filterops pipe_rfiltops = {
|
|
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
|
|
.f_attach = NULL,
|
|
.f_detach = filt_pipedetach,
|
|
.f_event = filt_piperead,
|
|
.f_modify = filt_pipemodify,
|
|
.f_process = filt_pipeprocess,
|
|
};
|
|
|
|
const struct filterops pipe_wfiltops = {
|
|
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
|
|
.f_attach = NULL,
|
|
.f_detach = filt_pipedetach,
|
|
.f_event = filt_pipewrite,
|
|
.f_modify = filt_pipemodify,
|
|
.f_process = filt_pipeprocess,
|
|
};
|
|
|
|
const struct filterops pipe_efiltops = {
|
|
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
|
|
.f_attach = NULL,
|
|
.f_detach = filt_pipedetach,
|
|
.f_event = filt_pipeexcept,
|
|
.f_modify = filt_pipemodify,
|
|
.f_process = filt_pipeprocess,
|
|
};
|
|
|
|
/*
|
|
* Default pipe buffer size(s), this can be kind-of large now because pipe
|
|
* space is pageable. The pipe code will try to maintain locality of
|
|
* reference for performance reasons, so small amounts of outstanding I/O
|
|
* will not wipe the cache.
|
|
*/
|
|
#define MINPIPESIZE (PIPE_SIZE/3)
|
|
|
|
/*
|
|
* Limit the number of "big" pipes
|
|
*/
|
|
#define LIMITBIGPIPES 32
|
|
unsigned int nbigpipe;
|
|
static unsigned int amountpipekva;
|
|
|
|
struct pool pipe_pair_pool;
|
|
|
|
int dopipe(struct proc *, int *, int);
|
|
void pipe_wakeup(struct pipe *);
|
|
|
|
int pipe_create(struct pipe *);
|
|
void pipe_destroy(struct pipe *);
|
|
int pipe_rundown(struct pipe *);
|
|
struct pipe *pipe_peer(struct pipe *);
|
|
int pipe_buffer_realloc(struct pipe *, u_int);
|
|
void pipe_buffer_free(struct pipe *);
|
|
|
|
int pipe_iolock(struct pipe *);
|
|
void pipe_iounlock(struct pipe *);
|
|
int pipe_iosleep(struct pipe *, const char *);
|
|
|
|
struct pipe_pair *pipe_pair_create(void);
|
|
void pipe_pair_destroy(struct pipe_pair *);
|
|
|
|
/*
|
|
* The pipe system call for the DTYPE_PIPE type of pipes
|
|
*/
|
|
|
|
int
|
|
sys_pipe(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
struct sys_pipe_args /* {
|
|
syscallarg(int *) fdp;
|
|
} */ *uap = v;
|
|
|
|
return (dopipe(p, SCARG(uap, fdp), 0));
|
|
}
|
|
|
|
int
|
|
sys_pipe2(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
struct sys_pipe2_args /* {
|
|
syscallarg(int *) fdp;
|
|
syscallarg(int) flags;
|
|
} */ *uap = v;
|
|
|
|
if (SCARG(uap, flags) & ~(O_CLOEXEC | FNONBLOCK))
|
|
return (EINVAL);
|
|
|
|
return (dopipe(p, SCARG(uap, fdp), SCARG(uap, flags)));
|
|
}
|
|
|
|
int
|
|
dopipe(struct proc *p, int *ufds, int flags)
|
|
{
|
|
struct filedesc *fdp = p->p_fd;
|
|
struct file *rf, *wf;
|
|
struct pipe_pair *pp;
|
|
struct pipe *rpipe, *wpipe = NULL;
|
|
int fds[2], cloexec, error;
|
|
|
|
cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0;
|
|
|
|
pp = pipe_pair_create();
|
|
if (pp == NULL)
|
|
return (ENOMEM);
|
|
wpipe = &pp->pp_wpipe;
|
|
rpipe = &pp->pp_rpipe;
|
|
|
|
fdplock(fdp);
|
|
|
|
error = falloc(p, &rf, &fds[0]);
|
|
if (error != 0)
|
|
goto free2;
|
|
rf->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
|
|
rf->f_type = DTYPE_PIPE;
|
|
rf->f_data = rpipe;
|
|
rf->f_ops = &pipeops;
|
|
|
|
error = falloc(p, &wf, &fds[1]);
|
|
if (error != 0)
|
|
goto free3;
|
|
wf->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
|
|
wf->f_type = DTYPE_PIPE;
|
|
wf->f_data = wpipe;
|
|
wf->f_ops = &pipeops;
|
|
|
|
fdinsert(fdp, fds[0], cloexec, rf);
|
|
fdinsert(fdp, fds[1], cloexec, wf);
|
|
|
|
error = copyout(fds, ufds, sizeof(fds));
|
|
if (error == 0) {
|
|
fdpunlock(fdp);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_STRUCT))
|
|
ktrfds(p, fds, 2);
|
|
#endif
|
|
} else {
|
|
/* fdrelease() unlocks fdp. */
|
|
fdrelease(p, fds[0]);
|
|
fdplock(fdp);
|
|
fdrelease(p, fds[1]);
|
|
}
|
|
|
|
FRELE(rf, p);
|
|
FRELE(wf, p);
|
|
return (error);
|
|
|
|
free3:
|
|
fdremove(fdp, fds[0]);
|
|
closef(rf, p);
|
|
rpipe = NULL;
|
|
free2:
|
|
fdpunlock(fdp);
|
|
pipe_destroy(wpipe);
|
|
pipe_destroy(rpipe);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Allocate kva for pipe circular buffer, the space is pageable.
|
|
* This routine will 'realloc' the size of a pipe safely, if it fails
|
|
* it will retain the old buffer.
|
|
* If it fails it will return ENOMEM.
|
|
*/
|
|
int
|
|
pipe_buffer_realloc(struct pipe *cpipe, u_int size)
|
|
{
|
|
caddr_t buffer;
|
|
|
|
/* buffer uninitialized or pipe locked */
|
|
KASSERT((cpipe->pipe_buffer.buffer == NULL) ||
|
|
(cpipe->pipe_state & PIPE_LOCK));
|
|
|
|
/* buffer should be empty */
|
|
KASSERT(cpipe->pipe_buffer.cnt == 0);
|
|
|
|
KERNEL_LOCK();
|
|
buffer = km_alloc(size, &kv_any, &kp_pageable, &kd_waitok);
|
|
KERNEL_UNLOCK();
|
|
if (buffer == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* free old resources if we are resizing */
|
|
pipe_buffer_free(cpipe);
|
|
|
|
cpipe->pipe_buffer.buffer = buffer;
|
|
cpipe->pipe_buffer.size = size;
|
|
cpipe->pipe_buffer.in = 0;
|
|
cpipe->pipe_buffer.out = 0;
|
|
|
|
atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* initialize and allocate VM and memory for pipe
|
|
*/
|
|
int
|
|
pipe_create(struct pipe *cpipe)
|
|
{
|
|
int error;
|
|
|
|
error = pipe_buffer_realloc(cpipe, PIPE_SIZE);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
sigio_init(&cpipe->pipe_sigio);
|
|
|
|
getnanotime(&cpipe->pipe_ctime);
|
|
cpipe->pipe_atime = cpipe->pipe_ctime;
|
|
cpipe->pipe_mtime = cpipe->pipe_ctime;
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct pipe *
|
|
pipe_peer(struct pipe *cpipe)
|
|
{
|
|
struct pipe *peer;
|
|
|
|
rw_assert_anylock(cpipe->pipe_lock);
|
|
|
|
peer = cpipe->pipe_peer;
|
|
if (peer == NULL || (peer->pipe_state & PIPE_EOF))
|
|
return (NULL);
|
|
return (peer);
|
|
}
|
|
|
|
/*
|
|
* Lock a pipe for exclusive I/O access.
|
|
*/
|
|
int
|
|
pipe_iolock(struct pipe *cpipe)
|
|
{
|
|
int error;
|
|
|
|
rw_assert_wrlock(cpipe->pipe_lock);
|
|
|
|
while (cpipe->pipe_state & PIPE_LOCK) {
|
|
cpipe->pipe_state |= PIPE_LWANT;
|
|
error = rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO | PCATCH,
|
|
"pipeiolk", INFSLP);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
cpipe->pipe_state |= PIPE_LOCK;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unlock a pipe I/O lock.
|
|
*/
|
|
void
|
|
pipe_iounlock(struct pipe *cpipe)
|
|
{
|
|
rw_assert_wrlock(cpipe->pipe_lock);
|
|
KASSERT(cpipe->pipe_state & PIPE_LOCK);
|
|
|
|
cpipe->pipe_state &= ~PIPE_LOCK;
|
|
if (cpipe->pipe_state & PIPE_LWANT) {
|
|
cpipe->pipe_state &= ~PIPE_LWANT;
|
|
wakeup(cpipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlock the pipe I/O lock and go to sleep. Returns 0 on success and the I/O
|
|
* lock is relocked. Otherwise if a signal was caught, non-zero is returned and
|
|
* the I/O lock is not locked.
|
|
*
|
|
* Any caller must obtain a reference to the pipe by incrementing `pipe_busy'
|
|
* before calling this function in order ensure that the same pipe is not
|
|
* destroyed while sleeping.
|
|
*/
|
|
int
|
|
pipe_iosleep(struct pipe *cpipe, const char *wmesg)
|
|
{
|
|
int error;
|
|
|
|
pipe_iounlock(cpipe);
|
|
error = rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO | PCATCH, wmesg,
|
|
INFSLP);
|
|
if (error)
|
|
return (error);
|
|
return (pipe_iolock(cpipe));
|
|
}
|
|
|
|
void
|
|
pipe_wakeup(struct pipe *cpipe)
|
|
{
|
|
rw_assert_wrlock(cpipe->pipe_lock);
|
|
|
|
knote_locked(&cpipe->pipe_klist, 0);
|
|
|
|
if (cpipe->pipe_state & PIPE_ASYNC)
|
|
pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
|
|
}
|
|
|
|
int
|
|
pipe_read(struct file *fp, struct uio *uio, int fflags)
|
|
{
|
|
struct pipe *rpipe = fp->f_data;
|
|
size_t nread = 0, size;
|
|
int error;
|
|
|
|
rw_enter_write(rpipe->pipe_lock);
|
|
++rpipe->pipe_busy;
|
|
error = pipe_iolock(rpipe);
|
|
if (error) {
|
|
--rpipe->pipe_busy;
|
|
pipe_rundown(rpipe);
|
|
rw_exit_write(rpipe->pipe_lock);
|
|
return (error);
|
|
}
|
|
|
|
while (uio->uio_resid) {
|
|
/* Normal pipe buffer receive. */
|
|
if (rpipe->pipe_buffer.cnt > 0) {
|
|
size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
|
|
if (size > rpipe->pipe_buffer.cnt)
|
|
size = rpipe->pipe_buffer.cnt;
|
|
if (size > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
rw_exit_write(rpipe->pipe_lock);
|
|
error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
|
|
size, uio);
|
|
rw_enter_write(rpipe->pipe_lock);
|
|
if (error) {
|
|
break;
|
|
}
|
|
rpipe->pipe_buffer.out += size;
|
|
if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
|
|
rpipe->pipe_buffer.out = 0;
|
|
|
|
rpipe->pipe_buffer.cnt -= size;
|
|
/*
|
|
* If there is no more to read in the pipe, reset
|
|
* its pointers to the beginning. This improves
|
|
* cache hit stats.
|
|
*/
|
|
if (rpipe->pipe_buffer.cnt == 0) {
|
|
rpipe->pipe_buffer.in = 0;
|
|
rpipe->pipe_buffer.out = 0;
|
|
}
|
|
nread += size;
|
|
} else {
|
|
/*
|
|
* detect EOF condition
|
|
* read returns 0 on EOF, no need to set error
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_EOF)
|
|
break;
|
|
|
|
/* If the "write-side" has been blocked, wake it up. */
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
|
|
/* Break if some data was read. */
|
|
if (nread > 0)
|
|
break;
|
|
|
|
/* Handle non-blocking mode operation. */
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/* Wait for more data. */
|
|
rpipe->pipe_state |= PIPE_WANTR;
|
|
error = pipe_iosleep(rpipe, "piperd");
|
|
if (error)
|
|
goto unlocked_error;
|
|
}
|
|
}
|
|
pipe_iounlock(rpipe);
|
|
|
|
if (error == 0)
|
|
getnanotime(&rpipe->pipe_atime);
|
|
unlocked_error:
|
|
--rpipe->pipe_busy;
|
|
|
|
if (pipe_rundown(rpipe) == 0 && rpipe->pipe_buffer.cnt < MINPIPESIZE) {
|
|
/* Handle write blocking hysteresis. */
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
}
|
|
|
|
if (rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
|
|
pipe_wakeup(rpipe);
|
|
|
|
rw_exit_write(rpipe->pipe_lock);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
pipe_write(struct file *fp, struct uio *uio, int fflags)
|
|
{
|
|
struct pipe *rpipe = fp->f_data, *wpipe;
|
|
struct rwlock *lock = rpipe->pipe_lock;
|
|
size_t orig_resid;
|
|
int error;
|
|
|
|
rw_enter_write(lock);
|
|
wpipe = pipe_peer(rpipe);
|
|
|
|
/* Detect loss of pipe read side, issue SIGPIPE if lost. */
|
|
if (wpipe == NULL) {
|
|
rw_exit_write(lock);
|
|
return (EPIPE);
|
|
}
|
|
|
|
++wpipe->pipe_busy;
|
|
error = pipe_iolock(wpipe);
|
|
if (error) {
|
|
--wpipe->pipe_busy;
|
|
pipe_rundown(wpipe);
|
|
rw_exit_write(lock);
|
|
return (error);
|
|
}
|
|
|
|
|
|
/* If it is advantageous to resize the pipe buffer, do so. */
|
|
if (uio->uio_resid > PIPE_SIZE &&
|
|
wpipe->pipe_buffer.size <= PIPE_SIZE &&
|
|
wpipe->pipe_buffer.cnt == 0) {
|
|
unsigned int npipe;
|
|
|
|
npipe = atomic_inc_int_nv(&nbigpipe);
|
|
if (npipe > LIMITBIGPIPES ||
|
|
pipe_buffer_realloc(wpipe, BIG_PIPE_SIZE) != 0)
|
|
atomic_dec_int(&nbigpipe);
|
|
}
|
|
|
|
orig_resid = uio->uio_resid;
|
|
|
|
while (uio->uio_resid) {
|
|
size_t space;
|
|
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
|
|
space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
|
|
/* Writes of size <= PIPE_BUF must be atomic. */
|
|
if (space < uio->uio_resid && orig_resid <= PIPE_BUF)
|
|
space = 0;
|
|
|
|
if (space > 0) {
|
|
size_t size; /* Transfer size */
|
|
size_t segsize; /* first segment to transfer */
|
|
|
|
/*
|
|
* Transfer size is minimum of uio transfer
|
|
* and free space in pipe buffer.
|
|
*/
|
|
if (space > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
else
|
|
size = space;
|
|
/*
|
|
* First segment to transfer is minimum of
|
|
* transfer size and contiguous space in
|
|
* pipe buffer. If first segment to transfer
|
|
* is less than the transfer size, we've got
|
|
* a wraparound in the buffer.
|
|
*/
|
|
segsize = wpipe->pipe_buffer.size -
|
|
wpipe->pipe_buffer.in;
|
|
if (segsize > size)
|
|
segsize = size;
|
|
|
|
/* Transfer first segment */
|
|
|
|
rw_exit_write(lock);
|
|
error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
|
|
segsize, uio);
|
|
rw_enter_write(lock);
|
|
|
|
if (error == 0 && segsize < size) {
|
|
/*
|
|
* Transfer remaining part now, to
|
|
* support atomic writes. Wraparound
|
|
* happened.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (wpipe->pipe_buffer.in + segsize !=
|
|
wpipe->pipe_buffer.size)
|
|
panic("Expected pipe buffer wraparound disappeared");
|
|
#endif
|
|
|
|
rw_exit_write(lock);
|
|
error = uiomove(&wpipe->pipe_buffer.buffer[0],
|
|
size - segsize, uio);
|
|
rw_enter_write(lock);
|
|
}
|
|
if (error == 0) {
|
|
wpipe->pipe_buffer.in += size;
|
|
if (wpipe->pipe_buffer.in >=
|
|
wpipe->pipe_buffer.size) {
|
|
#ifdef DIAGNOSTIC
|
|
if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
|
|
panic("Expected wraparound bad");
|
|
#endif
|
|
wpipe->pipe_buffer.in = size - segsize;
|
|
}
|
|
|
|
wpipe->pipe_buffer.cnt += size;
|
|
#ifdef DIAGNOSTIC
|
|
if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
|
|
panic("Pipe buffer overflow");
|
|
#endif
|
|
}
|
|
if (error)
|
|
break;
|
|
} else {
|
|
/* If the "read-side" has been blocked, wake it up. */
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
|
|
/* Don't block on non-blocking I/O. */
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have no more space and have something to offer,
|
|
* wake up select/poll.
|
|
*/
|
|
pipe_wakeup(wpipe);
|
|
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = pipe_iosleep(wpipe, "pipewr");
|
|
if (error)
|
|
goto unlocked_error;
|
|
|
|
/*
|
|
* If read side wants to go away, we just issue a
|
|
* signal to ourselves.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
pipe_iounlock(wpipe);
|
|
|
|
unlocked_error:
|
|
--wpipe->pipe_busy;
|
|
|
|
if (pipe_rundown(wpipe) == 0 && wpipe->pipe_buffer.cnt > 0) {
|
|
/*
|
|
* If we have put any characters in the buffer, we wake up
|
|
* the reader.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
}
|
|
|
|
/* Don't return EPIPE if I/O was successful. */
|
|
if (wpipe->pipe_buffer.cnt == 0 &&
|
|
uio->uio_resid == 0 &&
|
|
error == EPIPE) {
|
|
error = 0;
|
|
}
|
|
|
|
if (error == 0)
|
|
getnanotime(&wpipe->pipe_mtime);
|
|
/* We have something to offer, wake up select/poll. */
|
|
if (wpipe->pipe_buffer.cnt)
|
|
pipe_wakeup(wpipe);
|
|
|
|
rw_exit_write(lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* we implement a very minimal set of ioctls for compatibility with sockets.
|
|
*/
|
|
int
|
|
pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct proc *p)
|
|
{
|
|
struct pipe *mpipe = fp->f_data;
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case FIONBIO:
|
|
break;
|
|
|
|
case FIOASYNC:
|
|
rw_enter_write(mpipe->pipe_lock);
|
|
if (*(int *)data) {
|
|
mpipe->pipe_state |= PIPE_ASYNC;
|
|
} else {
|
|
mpipe->pipe_state &= ~PIPE_ASYNC;
|
|
}
|
|
rw_exit_write(mpipe->pipe_lock);
|
|
break;
|
|
|
|
case FIONREAD:
|
|
rw_enter_read(mpipe->pipe_lock);
|
|
*(int *)data = mpipe->pipe_buffer.cnt;
|
|
rw_exit_read(mpipe->pipe_lock);
|
|
break;
|
|
|
|
case FIOSETOWN:
|
|
case SIOCSPGRP:
|
|
case TIOCSPGRP:
|
|
error = sigio_setown(&mpipe->pipe_sigio, cmd, data);
|
|
break;
|
|
|
|
case FIOGETOWN:
|
|
case SIOCGPGRP:
|
|
case TIOCGPGRP:
|
|
sigio_getown(&mpipe->pipe_sigio, cmd, data);
|
|
break;
|
|
|
|
default:
|
|
error = ENOTTY;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
pipe_stat(struct file *fp, struct stat *ub, struct proc *p)
|
|
{
|
|
struct pipe *pipe = fp->f_data;
|
|
|
|
memset(ub, 0, sizeof(*ub));
|
|
|
|
rw_enter_read(pipe->pipe_lock);
|
|
ub->st_mode = S_IFIFO;
|
|
ub->st_blksize = pipe->pipe_buffer.size;
|
|
ub->st_size = pipe->pipe_buffer.cnt;
|
|
ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
|
|
ub->st_atim.tv_sec = pipe->pipe_atime.tv_sec;
|
|
ub->st_atim.tv_nsec = pipe->pipe_atime.tv_nsec;
|
|
ub->st_mtim.tv_sec = pipe->pipe_mtime.tv_sec;
|
|
ub->st_mtim.tv_nsec = pipe->pipe_mtime.tv_nsec;
|
|
ub->st_ctim.tv_sec = pipe->pipe_ctime.tv_sec;
|
|
ub->st_ctim.tv_nsec = pipe->pipe_ctime.tv_nsec;
|
|
ub->st_uid = fp->f_cred->cr_uid;
|
|
ub->st_gid = fp->f_cred->cr_gid;
|
|
rw_exit_read(pipe->pipe_lock);
|
|
/*
|
|
* Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
|
|
* XXX (st_dev, st_ino) should be unique.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pipe_close(struct file *fp, struct proc *p)
|
|
{
|
|
struct pipe *cpipe = fp->f_data;
|
|
|
|
fp->f_ops = NULL;
|
|
fp->f_data = NULL;
|
|
pipe_destroy(cpipe);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free kva for pipe circular buffer.
|
|
* No pipe lock check as only called from pipe_buffer_realloc() and pipeclose()
|
|
*/
|
|
void
|
|
pipe_buffer_free(struct pipe *cpipe)
|
|
{
|
|
u_int size;
|
|
|
|
if (cpipe->pipe_buffer.buffer == NULL)
|
|
return;
|
|
|
|
size = cpipe->pipe_buffer.size;
|
|
|
|
KERNEL_LOCK();
|
|
km_free(cpipe->pipe_buffer.buffer, size, &kv_any, &kp_pageable);
|
|
KERNEL_UNLOCK();
|
|
|
|
cpipe->pipe_buffer.buffer = NULL;
|
|
|
|
atomic_sub_int(&amountpipekva, size);
|
|
if (size > PIPE_SIZE)
|
|
atomic_dec_int(&nbigpipe);
|
|
}
|
|
|
|
/*
|
|
* shutdown the pipe, and free resources.
|
|
*/
|
|
void
|
|
pipe_destroy(struct pipe *cpipe)
|
|
{
|
|
struct pipe *ppipe;
|
|
|
|
if (cpipe == NULL)
|
|
return;
|
|
|
|
rw_enter_write(cpipe->pipe_lock);
|
|
|
|
pipe_wakeup(cpipe);
|
|
sigio_free(&cpipe->pipe_sigio);
|
|
|
|
/*
|
|
* If the other side is blocked, wake it up saying that
|
|
* we want to close it down.
|
|
*/
|
|
cpipe->pipe_state |= PIPE_EOF;
|
|
while (cpipe->pipe_busy) {
|
|
wakeup(cpipe);
|
|
cpipe->pipe_state |= PIPE_WANTD;
|
|
rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO, "pipecl", INFSLP);
|
|
}
|
|
|
|
/* Disconnect from peer. */
|
|
if ((ppipe = cpipe->pipe_peer) != NULL) {
|
|
pipe_wakeup(ppipe);
|
|
|
|
ppipe->pipe_state |= PIPE_EOF;
|
|
wakeup(ppipe);
|
|
ppipe->pipe_peer = NULL;
|
|
}
|
|
|
|
pipe_buffer_free(cpipe);
|
|
|
|
rw_exit_write(cpipe->pipe_lock);
|
|
|
|
if (ppipe == NULL)
|
|
pipe_pair_destroy(cpipe->pipe_pair);
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if a rundown is currently ongoing.
|
|
*/
|
|
int
|
|
pipe_rundown(struct pipe *cpipe)
|
|
{
|
|
rw_assert_wrlock(cpipe->pipe_lock);
|
|
|
|
if (cpipe->pipe_busy > 0 || (cpipe->pipe_state & PIPE_WANTD) == 0)
|
|
return (0);
|
|
|
|
/* Only wakeup pipe_destroy() once the pipe is no longer busy. */
|
|
cpipe->pipe_state &= ~(PIPE_WANTD | PIPE_WANTR | PIPE_WANTW);
|
|
wakeup(cpipe);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
pipe_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
|
|
struct rwlock *lock = rpipe->pipe_lock;
|
|
int error = 0;
|
|
|
|
rw_enter_write(lock);
|
|
wpipe = pipe_peer(rpipe);
|
|
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
kn->kn_fop = &pipe_rfiltops;
|
|
kn->kn_hook = rpipe;
|
|
klist_insert_locked(&rpipe->pipe_klist, kn);
|
|
break;
|
|
case EVFILT_WRITE:
|
|
if (wpipe == NULL) {
|
|
/*
|
|
* The other end of the pipe has been closed.
|
|
* Since the filter now always indicates a pending
|
|
* event, attach the knote to the current side
|
|
* to proceed with the registration.
|
|
*/
|
|
wpipe = rpipe;
|
|
}
|
|
kn->kn_fop = &pipe_wfiltops;
|
|
kn->kn_hook = wpipe;
|
|
klist_insert_locked(&wpipe->pipe_klist, kn);
|
|
break;
|
|
case EVFILT_EXCEPT:
|
|
if (kn->kn_flags & __EV_SELECT) {
|
|
/* Prevent triggering exceptfds. */
|
|
error = EPERM;
|
|
break;
|
|
}
|
|
if ((kn->kn_flags & __EV_POLL) == 0) {
|
|
/* Disallow usage through kevent(2). */
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
kn->kn_fop = &pipe_efiltops;
|
|
kn->kn_hook = rpipe;
|
|
klist_insert_locked(&rpipe->pipe_klist, kn);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
|
|
rw_exit_write(lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
filt_pipedetach(struct knote *kn)
|
|
{
|
|
struct pipe *cpipe = kn->kn_hook;
|
|
|
|
klist_remove(&cpipe->pipe_klist, kn);
|
|
}
|
|
|
|
int
|
|
filt_piperead(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
|
|
|
|
rw_assert_wrlock(rpipe->pipe_lock);
|
|
|
|
wpipe = pipe_peer(rpipe);
|
|
|
|
kn->kn_data = rpipe->pipe_buffer.cnt;
|
|
|
|
if ((rpipe->pipe_state & PIPE_EOF) || wpipe == NULL) {
|
|
kn->kn_flags |= EV_EOF;
|
|
if (kn->kn_flags & __EV_POLL)
|
|
kn->kn_flags |= __EV_HUP;
|
|
return (1);
|
|
}
|
|
|
|
return (kn->kn_data > 0);
|
|
}
|
|
|
|
int
|
|
filt_pipewrite(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
|
|
|
|
rw_assert_wrlock(rpipe->pipe_lock);
|
|
|
|
wpipe = pipe_peer(rpipe);
|
|
|
|
if (wpipe == NULL) {
|
|
kn->kn_data = 0;
|
|
kn->kn_flags |= EV_EOF;
|
|
if (kn->kn_flags & __EV_POLL)
|
|
kn->kn_flags |= __EV_HUP;
|
|
return (1);
|
|
}
|
|
kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
|
|
return (kn->kn_data >= PIPE_BUF);
|
|
}
|
|
|
|
int
|
|
filt_pipeexcept(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
|
|
int active = 0;
|
|
|
|
rw_assert_wrlock(rpipe->pipe_lock);
|
|
|
|
wpipe = pipe_peer(rpipe);
|
|
|
|
if (kn->kn_flags & __EV_POLL) {
|
|
if ((rpipe->pipe_state & PIPE_EOF) || wpipe == NULL) {
|
|
kn->kn_flags |= __EV_HUP;
|
|
active = 1;
|
|
}
|
|
}
|
|
|
|
return (active);
|
|
}
|
|
|
|
int
|
|
filt_pipemodify(struct kevent *kev, struct knote *kn)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data;
|
|
int active;
|
|
|
|
rw_enter_write(rpipe->pipe_lock);
|
|
active = knote_modify(kev, kn);
|
|
rw_exit_write(rpipe->pipe_lock);
|
|
|
|
return (active);
|
|
}
|
|
|
|
int
|
|
filt_pipeprocess(struct knote *kn, struct kevent *kev)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data;
|
|
int active;
|
|
|
|
rw_enter_write(rpipe->pipe_lock);
|
|
active = knote_process(kn, kev);
|
|
rw_exit_write(rpipe->pipe_lock);
|
|
|
|
return (active);
|
|
}
|
|
|
|
void
|
|
pipe_init(void)
|
|
{
|
|
pool_init(&pipe_pair_pool, sizeof(struct pipe_pair), 0, IPL_MPFLOOR,
|
|
PR_WAITOK, "pipepl", NULL);
|
|
}
|
|
|
|
struct pipe_pair *
|
|
pipe_pair_create(void)
|
|
{
|
|
struct pipe_pair *pp;
|
|
|
|
pp = pool_get(&pipe_pair_pool, PR_WAITOK | PR_ZERO);
|
|
pp->pp_wpipe.pipe_pair = pp;
|
|
pp->pp_rpipe.pipe_pair = pp;
|
|
pp->pp_wpipe.pipe_peer = &pp->pp_rpipe;
|
|
pp->pp_rpipe.pipe_peer = &pp->pp_wpipe;
|
|
/*
|
|
* One lock is used per pipe pair in order to obtain exclusive access to
|
|
* the pipe pair.
|
|
*/
|
|
rw_init(&pp->pp_lock, "pipelk");
|
|
pp->pp_wpipe.pipe_lock = &pp->pp_lock;
|
|
pp->pp_rpipe.pipe_lock = &pp->pp_lock;
|
|
|
|
klist_init_rwlock(&pp->pp_wpipe.pipe_klist, &pp->pp_lock);
|
|
klist_init_rwlock(&pp->pp_rpipe.pipe_klist, &pp->pp_lock);
|
|
|
|
if (pipe_create(&pp->pp_wpipe) || pipe_create(&pp->pp_rpipe))
|
|
goto err;
|
|
return (pp);
|
|
err:
|
|
pipe_destroy(&pp->pp_wpipe);
|
|
pipe_destroy(&pp->pp_rpipe);
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
pipe_pair_destroy(struct pipe_pair *pp)
|
|
{
|
|
klist_free(&pp->pp_wpipe.pipe_klist);
|
|
klist_free(&pp->pp_rpipe.pipe_klist);
|
|
pool_put(&pipe_pair_pool, pp);
|
|
}
|