3309 lines
89 KiB
C
3309 lines
89 KiB
C
/* $OpenBSD: if_wpi.c,v 1.158 2024/05/24 06:02:57 jsg Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006-2008
|
|
* Damien Bergamini <damien.bergamini@free.fr>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/device.h>
|
|
#include <sys/task.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_amrr.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
|
|
#include <dev/pci/if_wpireg.h>
|
|
#include <dev/pci/if_wpivar.h>
|
|
|
|
static const struct pci_matchid wpi_devices[] = {
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 }
|
|
};
|
|
|
|
int wpi_match(struct device *, void *, void *);
|
|
void wpi_attach(struct device *, struct device *, void *);
|
|
#if NBPFILTER > 0
|
|
void wpi_radiotap_attach(struct wpi_softc *);
|
|
#endif
|
|
int wpi_detach(struct device *, int);
|
|
int wpi_activate(struct device *, int);
|
|
void wpi_wakeup(struct wpi_softc *);
|
|
void wpi_init_task(void *);
|
|
int wpi_nic_lock(struct wpi_softc *);
|
|
int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
|
|
int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
|
|
void **, bus_size_t, bus_size_t);
|
|
void wpi_dma_contig_free(struct wpi_dma_info *);
|
|
int wpi_alloc_shared(struct wpi_softc *);
|
|
void wpi_free_shared(struct wpi_softc *);
|
|
int wpi_alloc_fwmem(struct wpi_softc *);
|
|
void wpi_free_fwmem(struct wpi_softc *);
|
|
int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
|
|
void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
|
|
void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
|
|
int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
|
|
int);
|
|
void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
|
|
void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
|
|
int wpi_read_eeprom(struct wpi_softc *);
|
|
void wpi_read_eeprom_channels(struct wpi_softc *, int);
|
|
void wpi_read_eeprom_group(struct wpi_softc *, int);
|
|
struct ieee80211_node *wpi_node_alloc(struct ieee80211com *);
|
|
void wpi_newassoc(struct ieee80211com *, struct ieee80211_node *,
|
|
int);
|
|
int wpi_media_change(struct ifnet *);
|
|
int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
|
void wpi_iter_func(void *, struct ieee80211_node *);
|
|
void wpi_calib_timeout(void *);
|
|
int wpi_ccmp_decap(struct wpi_softc *, struct mbuf *,
|
|
struct ieee80211_key *);
|
|
void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
|
|
struct wpi_rx_data *, struct mbuf_list *);
|
|
void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
|
|
void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
|
|
void wpi_notif_intr(struct wpi_softc *);
|
|
void wpi_fatal_intr(struct wpi_softc *);
|
|
int wpi_intr(void *);
|
|
int wpi_tx(struct wpi_softc *, struct mbuf *,
|
|
struct ieee80211_node *);
|
|
void wpi_start(struct ifnet *);
|
|
void wpi_watchdog(struct ifnet *);
|
|
int wpi_ioctl(struct ifnet *, u_long, caddr_t);
|
|
int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
|
|
int wpi_mrr_setup(struct wpi_softc *);
|
|
void wpi_updateedca(struct ieee80211com *);
|
|
void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
|
|
int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
|
|
void wpi_power_calibration(struct wpi_softc *);
|
|
int wpi_set_txpower(struct wpi_softc *, int);
|
|
int wpi_get_power_index(struct wpi_softc *,
|
|
struct wpi_power_group *, struct ieee80211_channel *, int);
|
|
int wpi_set_pslevel(struct wpi_softc *, int, int, int);
|
|
int wpi_config(struct wpi_softc *);
|
|
int wpi_scan(struct wpi_softc *, uint16_t);
|
|
int wpi_auth(struct wpi_softc *);
|
|
int wpi_run(struct wpi_softc *);
|
|
int wpi_set_key(struct ieee80211com *, struct ieee80211_node *,
|
|
struct ieee80211_key *);
|
|
void wpi_delete_key(struct ieee80211com *, struct ieee80211_node *,
|
|
struct ieee80211_key *);
|
|
int wpi_post_alive(struct wpi_softc *);
|
|
int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
|
|
int wpi_load_firmware(struct wpi_softc *);
|
|
int wpi_read_firmware(struct wpi_softc *);
|
|
int wpi_clock_wait(struct wpi_softc *);
|
|
int wpi_apm_init(struct wpi_softc *);
|
|
void wpi_apm_stop_master(struct wpi_softc *);
|
|
void wpi_apm_stop(struct wpi_softc *);
|
|
void wpi_nic_config(struct wpi_softc *);
|
|
int wpi_hw_init(struct wpi_softc *);
|
|
void wpi_hw_stop(struct wpi_softc *);
|
|
int wpi_init(struct ifnet *);
|
|
void wpi_stop(struct ifnet *, int);
|
|
|
|
#ifdef WPI_DEBUG
|
|
#define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
|
|
#define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
|
|
int wpi_debug = 0;
|
|
#else
|
|
#define DPRINTF(x)
|
|
#define DPRINTFN(n, x)
|
|
#endif
|
|
|
|
struct cfdriver wpi_cd = {
|
|
NULL, "wpi", DV_IFNET
|
|
};
|
|
|
|
const struct cfattach wpi_ca = {
|
|
sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach,
|
|
wpi_activate
|
|
};
|
|
|
|
int
|
|
wpi_match(struct device *parent, void *match, void *aux)
|
|
{
|
|
return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices,
|
|
nitems(wpi_devices));
|
|
}
|
|
|
|
void
|
|
wpi_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct wpi_softc *sc = (struct wpi_softc *)self;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct pci_attach_args *pa = aux;
|
|
const char *intrstr;
|
|
pci_intr_handle_t ih;
|
|
pcireg_t memtype, reg;
|
|
int i, error;
|
|
|
|
sc->sc_pct = pa->pa_pc;
|
|
sc->sc_pcitag = pa->pa_tag;
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
/*
|
|
* Get the offset of the PCI Express Capability Structure in PCI
|
|
* Configuration Space (the vendor driver hard-codes it as E0h.)
|
|
*/
|
|
error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
|
|
PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
|
|
if (error == 0) {
|
|
printf(": PCIe capability structure not found!\n");
|
|
return;
|
|
}
|
|
|
|
/* Clear device-specific "PCI retry timeout" register (41h). */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
|
|
reg &= ~0xff00;
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
|
|
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0);
|
|
error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st,
|
|
&sc->sc_sh, NULL, &sc->sc_sz, 0);
|
|
if (error != 0) {
|
|
printf(": can't map mem space\n");
|
|
return;
|
|
}
|
|
|
|
/* Install interrupt handler. */
|
|
if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
|
|
printf(": can't map interrupt\n");
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(sc->sc_pct, ih);
|
|
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc,
|
|
sc->sc_dev.dv_xname);
|
|
if (sc->sc_ih == NULL) {
|
|
printf(": can't establish interrupt");
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
return;
|
|
}
|
|
printf(": %s", intrstr);
|
|
|
|
/* Power ON adapter. */
|
|
if ((error = wpi_apm_init(sc)) != 0) {
|
|
printf(": could not power ON adapter\n");
|
|
return;
|
|
}
|
|
|
|
/* Read MAC address, channels, etc from EEPROM. */
|
|
if ((error = wpi_read_eeprom(sc)) != 0) {
|
|
printf(": could not read EEPROM\n");
|
|
return;
|
|
}
|
|
|
|
/* Allocate DMA memory for firmware transfers. */
|
|
if ((error = wpi_alloc_fwmem(sc)) != 0) {
|
|
printf(": could not allocate memory for firmware\n");
|
|
return;
|
|
}
|
|
|
|
/* Allocate shared area. */
|
|
if ((error = wpi_alloc_shared(sc)) != 0) {
|
|
printf(": could not allocate shared area\n");
|
|
goto fail1;
|
|
}
|
|
|
|
/* Allocate TX rings. */
|
|
for (i = 0; i < WPI_NTXQUEUES; i++) {
|
|
if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
|
|
printf(": could not allocate TX ring %d\n", i);
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
/* Allocate RX ring. */
|
|
if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) {
|
|
printf(": could not allocate Rx ring\n");
|
|
goto fail2;
|
|
}
|
|
|
|
/* Power OFF adapter. */
|
|
wpi_apm_stop(sc);
|
|
/* Clear pending interrupts. */
|
|
WPI_WRITE(sc, WPI_INT, 0xffffffff);
|
|
|
|
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
|
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/* Set device capabilities. */
|
|
ic->ic_caps =
|
|
IEEE80211_C_WEP | /* WEP */
|
|
IEEE80211_C_RSN | /* WPA/RSN */
|
|
IEEE80211_C_SCANALL | /* device scans all channels at once */
|
|
IEEE80211_C_SCANALLBAND | /* driver scans all bands at once */
|
|
IEEE80211_C_MONITOR | /* monitor mode supported */
|
|
IEEE80211_C_SHSLOT | /* short slot time supported */
|
|
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
|
|
IEEE80211_C_PMGT; /* power saving supported */
|
|
|
|
/* Set supported rates. */
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
|
|
if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) {
|
|
ic->ic_sup_rates[IEEE80211_MODE_11A] =
|
|
ieee80211_std_rateset_11a;
|
|
}
|
|
|
|
/* IBSS channel undefined for now. */
|
|
ic->ic_ibss_chan = &ic->ic_channels[0];
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = wpi_ioctl;
|
|
ifp->if_start = wpi_start;
|
|
ifp->if_watchdog = wpi_watchdog;
|
|
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
|
|
|
|
if_attach(ifp);
|
|
ieee80211_ifattach(ifp);
|
|
ic->ic_node_alloc = wpi_node_alloc;
|
|
ic->ic_newassoc = wpi_newassoc;
|
|
ic->ic_updateedca = wpi_updateedca;
|
|
ic->ic_set_key = wpi_set_key;
|
|
ic->ic_delete_key = wpi_delete_key;
|
|
|
|
/* Override 802.11 state transition machine. */
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = wpi_newstate;
|
|
ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status);
|
|
|
|
sc->amrr.amrr_min_success_threshold = 1;
|
|
sc->amrr.amrr_max_success_threshold = 15;
|
|
|
|
#if NBPFILTER > 0
|
|
wpi_radiotap_attach(sc);
|
|
#endif
|
|
timeout_set(&sc->calib_to, wpi_calib_timeout, sc);
|
|
rw_init(&sc->sc_rwlock, "wpilock");
|
|
task_set(&sc->init_task, wpi_init_task, sc);
|
|
return;
|
|
|
|
/* Free allocated memory if something failed during attachment. */
|
|
fail2: while (--i >= 0)
|
|
wpi_free_tx_ring(sc, &sc->txq[i]);
|
|
wpi_free_shared(sc);
|
|
fail1: wpi_free_fwmem(sc);
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Attach the interface to 802.11 radiotap.
|
|
*/
|
|
void
|
|
wpi_radiotap_attach(struct wpi_softc *sc)
|
|
{
|
|
bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
|
|
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
|
|
|
|
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
|
|
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_txtap_len = sizeof sc->sc_txtapu;
|
|
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
wpi_detach(struct device *self, int flags)
|
|
{
|
|
struct wpi_softc *sc = (struct wpi_softc *)self;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int qid;
|
|
|
|
timeout_del(&sc->calib_to);
|
|
task_del(systq, &sc->init_task);
|
|
|
|
/* Uninstall interrupt handler. */
|
|
if (sc->sc_ih != NULL)
|
|
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
|
|
|
|
/* Free DMA resources. */
|
|
wpi_free_rx_ring(sc, &sc->rxq);
|
|
for (qid = 0; qid < WPI_NTXQUEUES; qid++)
|
|
wpi_free_tx_ring(sc, &sc->txq[qid]);
|
|
wpi_free_shared(sc);
|
|
wpi_free_fwmem(sc);
|
|
|
|
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
|
|
|
|
ieee80211_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wpi_activate(struct device *self, int act)
|
|
{
|
|
struct wpi_softc *sc = (struct wpi_softc *)self;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
switch (act) {
|
|
case DVACT_SUSPEND:
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
wpi_stop(ifp, 0);
|
|
break;
|
|
case DVACT_WAKEUP:
|
|
wpi_wakeup(sc);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
wpi_wakeup(struct wpi_softc *sc)
|
|
{
|
|
pcireg_t reg;
|
|
|
|
/* Clear device-specific "PCI retry timeout" register (41h). */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
|
|
reg &= ~0xff00;
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
|
|
|
|
wpi_init_task(sc);
|
|
}
|
|
|
|
void
|
|
wpi_init_task(void *arg1)
|
|
{
|
|
struct wpi_softc *sc = arg1;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int s;
|
|
|
|
rw_enter_write(&sc->sc_rwlock);
|
|
s = splnet();
|
|
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
|
|
wpi_init(ifp);
|
|
|
|
splx(s);
|
|
rw_exit_write(&sc->sc_rwlock);
|
|
}
|
|
|
|
int
|
|
wpi_nic_lock(struct wpi_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Request exclusive access to NIC. */
|
|
WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
|
|
|
|
/* Spin until we actually get the lock. */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if ((WPI_READ(sc, WPI_GP_CNTRL) &
|
|
(WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
|
|
WPI_GP_CNTRL_MAC_ACCESS_ENA)
|
|
return 0;
|
|
DELAY(10);
|
|
}
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
static __inline void
|
|
wpi_nic_unlock(struct wpi_softc *sc)
|
|
{
|
|
WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
|
|
}
|
|
|
|
static __inline uint32_t
|
|
wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
|
|
{
|
|
WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
|
|
WPI_BARRIER_READ_WRITE(sc);
|
|
return WPI_READ(sc, WPI_PRPH_RDATA);
|
|
}
|
|
|
|
static __inline void
|
|
wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
|
|
{
|
|
WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
|
|
WPI_BARRIER_WRITE(sc);
|
|
WPI_WRITE(sc, WPI_PRPH_WDATA, data);
|
|
}
|
|
|
|
static __inline void
|
|
wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
|
|
{
|
|
wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
|
|
}
|
|
|
|
static __inline void
|
|
wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
|
|
{
|
|
wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
|
|
}
|
|
|
|
static __inline void
|
|
wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
|
|
const uint32_t *data, int count)
|
|
{
|
|
for (; count > 0; count--, data++, addr += 4)
|
|
wpi_prph_write(sc, addr, *data);
|
|
}
|
|
|
|
#ifdef WPI_DEBUG
|
|
|
|
static __inline uint32_t
|
|
wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
|
|
{
|
|
WPI_WRITE(sc, WPI_MEM_RADDR, addr);
|
|
WPI_BARRIER_READ_WRITE(sc);
|
|
return WPI_READ(sc, WPI_MEM_RDATA);
|
|
}
|
|
|
|
static __inline void
|
|
wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
|
|
{
|
|
WPI_WRITE(sc, WPI_MEM_WADDR, addr);
|
|
WPI_BARRIER_WRITE(sc);
|
|
WPI_WRITE(sc, WPI_MEM_WDATA, data);
|
|
}
|
|
|
|
static __inline void
|
|
wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
|
|
int count)
|
|
{
|
|
for (; count > 0; count--, addr += 4)
|
|
*data++ = wpi_mem_read(sc, addr);
|
|
}
|
|
|
|
#endif
|
|
|
|
int
|
|
wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
|
|
{
|
|
uint8_t *out = data;
|
|
uint32_t val;
|
|
int error, ntries;
|
|
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
|
|
for (; count > 0; count -= 2, addr++) {
|
|
WPI_WRITE(sc, WPI_EEPROM, addr << 2);
|
|
WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD);
|
|
|
|
for (ntries = 0; ntries < 10; ntries++) {
|
|
val = WPI_READ(sc, WPI_EEPROM);
|
|
if (val & WPI_EEPROM_READ_VALID)
|
|
break;
|
|
DELAY(5);
|
|
}
|
|
if (ntries == 10) {
|
|
printf("%s: could not read EEPROM\n",
|
|
sc->sc_dev.dv_xname);
|
|
return ETIMEDOUT;
|
|
}
|
|
*out++ = val >> 16;
|
|
if (count > 1)
|
|
*out++ = val >> 24;
|
|
}
|
|
|
|
wpi_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
|
|
bus_size_t size, bus_size_t alignment)
|
|
{
|
|
int nsegs, error;
|
|
|
|
dma->tag = tag;
|
|
dma->size = size;
|
|
|
|
error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
|
|
&dma->map);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
|
|
BUS_DMA_NOWAIT | BUS_DMA_ZERO);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
|
|
|
|
dma->paddr = dma->map->dm_segs[0].ds_addr;
|
|
if (kvap != NULL)
|
|
*kvap = dma->vaddr;
|
|
|
|
return 0;
|
|
|
|
fail: wpi_dma_contig_free(dma);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
wpi_dma_contig_free(struct wpi_dma_info *dma)
|
|
{
|
|
if (dma->map != NULL) {
|
|
if (dma->vaddr != NULL) {
|
|
bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->tag, dma->map);
|
|
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
|
|
bus_dmamem_free(dma->tag, &dma->seg, 1);
|
|
dma->vaddr = NULL;
|
|
}
|
|
bus_dmamap_destroy(dma->tag, dma->map);
|
|
dma->map = NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
wpi_alloc_shared(struct wpi_softc *sc)
|
|
{
|
|
/* Shared buffer must be aligned on a 4KB boundary. */
|
|
return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
|
|
(void **)&sc->shared, sizeof (struct wpi_shared), 4096);
|
|
}
|
|
|
|
void
|
|
wpi_free_shared(struct wpi_softc *sc)
|
|
{
|
|
wpi_dma_contig_free(&sc->shared_dma);
|
|
}
|
|
|
|
int
|
|
wpi_alloc_fwmem(struct wpi_softc *sc)
|
|
{
|
|
/* Allocate enough contiguous space to store text and data. */
|
|
return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
|
|
WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
|
|
}
|
|
|
|
void
|
|
wpi_free_fwmem(struct wpi_softc *sc)
|
|
{
|
|
wpi_dma_contig_free(&sc->fw_dma);
|
|
}
|
|
|
|
int
|
|
wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
|
|
{
|
|
bus_size_t size;
|
|
int i, error;
|
|
|
|
ring->cur = 0;
|
|
|
|
/* Allocate RX descriptors (16KB aligned.) */
|
|
size = WPI_RX_RING_COUNT * sizeof (uint32_t);
|
|
error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
|
|
(void **)&ring->desc, size, 16 * 1024);
|
|
if (error != 0) {
|
|
printf("%s: could not allocate RX ring DMA memory\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate and map RX buffers.
|
|
*/
|
|
for (i = 0; i < WPI_RX_RING_COUNT; i++) {
|
|
struct wpi_rx_data *data = &ring->data[i];
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
|
|
WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
|
|
if (error != 0) {
|
|
printf("%s: could not create RX buf DMA map\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
|
|
data->m = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE);
|
|
if (data->m == NULL) {
|
|
printf("%s: could not allocate RX mbuf\n",
|
|
sc->sc_dev.dv_xname);
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
|
|
BUS_DMA_NOWAIT | BUS_DMA_READ);
|
|
if (error != 0) {
|
|
printf("%s: can't map mbuf (error %d)\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Set physical address of RX buffer. */
|
|
ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return 0;
|
|
|
|
fail: wpi_free_rx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
|
|
{
|
|
int ntries;
|
|
|
|
if (wpi_nic_lock(sc) == 0) {
|
|
WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (WPI_READ(sc, WPI_FH_RX_STATUS) &
|
|
WPI_FH_RX_STATUS_IDLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
wpi_nic_unlock(sc);
|
|
}
|
|
ring->cur = 0;
|
|
}
|
|
|
|
void
|
|
wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
wpi_dma_contig_free(&ring->desc_dma);
|
|
|
|
for (i = 0; i < WPI_RX_RING_COUNT; i++) {
|
|
struct wpi_rx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
}
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
}
|
|
|
|
int
|
|
wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
|
|
{
|
|
bus_addr_t paddr;
|
|
bus_size_t size;
|
|
int i, error;
|
|
|
|
ring->qid = qid;
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
|
|
/* Allocate TX descriptors (16KB aligned.) */
|
|
size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
|
|
error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
|
|
(void **)&ring->desc, size, 16 * 1024);
|
|
if (error != 0) {
|
|
printf("%s: could not allocate TX ring DMA memory\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
|
|
/* Update shared area with ring physical address. */
|
|
sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
|
|
sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
|
|
* to allocate commands space for other rings.
|
|
* XXX Do we really need to allocate descriptors for other rings?
|
|
*/
|
|
if (qid > 4)
|
|
return 0;
|
|
|
|
size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
|
|
error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
|
|
(void **)&ring->cmd, size, 4);
|
|
if (error != 0) {
|
|
printf("%s: could not allocate TX cmd DMA memory\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
|
|
paddr = ring->cmd_dma.paddr;
|
|
for (i = 0; i < WPI_TX_RING_COUNT; i++) {
|
|
struct wpi_tx_data *data = &ring->data[i];
|
|
|
|
data->cmd_paddr = paddr;
|
|
paddr += sizeof (struct wpi_tx_cmd);
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&data->map);
|
|
if (error != 0) {
|
|
printf("%s: could not create TX buf DMA map\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
fail: wpi_free_tx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < WPI_TX_RING_COUNT; i++) {
|
|
struct wpi_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
/* Clear TX descriptors. */
|
|
memset(ring->desc, 0, ring->desc_dma.size);
|
|
sc->qfullmsk &= ~(1 << ring->qid);
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
}
|
|
|
|
void
|
|
wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
wpi_dma_contig_free(&ring->desc_dma);
|
|
wpi_dma_contig_free(&ring->cmd_dma);
|
|
|
|
for (i = 0; i < WPI_TX_RING_COUNT; i++) {
|
|
struct wpi_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
}
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
}
|
|
|
|
int
|
|
wpi_read_eeprom(struct wpi_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
char domain[4];
|
|
int i;
|
|
|
|
if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
|
|
printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname);
|
|
return EIO;
|
|
}
|
|
/* Clear HW ownership of EEPROM. */
|
|
WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
|
|
|
|
wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
|
|
wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
|
|
wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
|
|
|
|
DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev),
|
|
sc->type));
|
|
|
|
/* Read and print regulatory domain (4 ASCII characters.) */
|
|
wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
|
|
printf(", %.4s", domain);
|
|
|
|
/* Read and print MAC address. */
|
|
wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
|
|
printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
|
|
|
|
/* Read the list of authorized channels. */
|
|
for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
|
|
wpi_read_eeprom_channels(sc, i);
|
|
|
|
/* Read the list of TX power groups. */
|
|
for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
|
|
wpi_read_eeprom_group(sc, i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const struct wpi_chan_band *band = &wpi_bands[n];
|
|
struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
|
|
int chan, i;
|
|
|
|
wpi_read_prom_data(sc, band->addr, channels,
|
|
band->nchan * sizeof (struct wpi_eeprom_chan));
|
|
|
|
for (i = 0; i < band->nchan; i++) {
|
|
if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
|
|
continue;
|
|
|
|
chan = band->chan[i];
|
|
|
|
if (n == 0) { /* 2GHz band */
|
|
ic->ic_channels[chan].ic_freq =
|
|
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
|
|
ic->ic_channels[chan].ic_flags =
|
|
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
|
|
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
|
|
|
|
} else { /* 5GHz band */
|
|
/*
|
|
* Some adapters support channels 7, 8, 11 and 12
|
|
* both in the 2GHz and 4.9GHz bands.
|
|
* Because of limitations in our net80211 layer,
|
|
* we don't support them in the 4.9GHz band.
|
|
*/
|
|
if (chan <= 14)
|
|
continue;
|
|
|
|
ic->ic_channels[chan].ic_freq =
|
|
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
|
|
/* We have at least one valid 5GHz channel. */
|
|
sc->sc_flags |= WPI_FLAG_HAS_5GHZ;
|
|
}
|
|
|
|
/* Is active scan allowed on this channel? */
|
|
if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
|
|
ic->ic_channels[chan].ic_flags |=
|
|
IEEE80211_CHAN_PASSIVE;
|
|
}
|
|
|
|
/* Save maximum allowed TX power for this channel. */
|
|
sc->maxpwr[chan] = channels[i].maxpwr;
|
|
|
|
DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
|
|
chan, channels[i].flags, sc->maxpwr[chan]));
|
|
}
|
|
}
|
|
|
|
void
|
|
wpi_read_eeprom_group(struct wpi_softc *sc, int n)
|
|
{
|
|
struct wpi_power_group *group = &sc->groups[n];
|
|
struct wpi_eeprom_group rgroup;
|
|
int i;
|
|
|
|
wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
|
|
sizeof rgroup);
|
|
|
|
/* Save TX power group information. */
|
|
group->chan = rgroup.chan;
|
|
group->maxpwr = rgroup.maxpwr;
|
|
/* Retrieve temperature at which the samples were taken. */
|
|
group->temp = (int16_t)letoh16(rgroup.temp);
|
|
|
|
DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
|
|
group->chan, group->maxpwr, group->temp));
|
|
|
|
for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
|
|
group->samples[i].index = rgroup.samples[i].index;
|
|
group->samples[i].power = rgroup.samples[i].power;
|
|
|
|
DPRINTF(("\tsample %d: index=%d power=%d\n", i,
|
|
group->samples[i].index, group->samples[i].power));
|
|
}
|
|
}
|
|
|
|
struct ieee80211_node *
|
|
wpi_node_alloc(struct ieee80211com *ic)
|
|
{
|
|
return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
}
|
|
|
|
void
|
|
wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
|
|
{
|
|
struct wpi_softc *sc = ic->ic_if.if_softc;
|
|
struct wpi_node *wn = (void *)ni;
|
|
uint8_t rate;
|
|
int ridx, i;
|
|
|
|
ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
|
|
/* Start at lowest available bit-rate, AMRR will raise. */
|
|
ni->ni_txrate = 0;
|
|
|
|
for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
|
|
rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
|
|
/* Map 802.11 rate to HW rate index. */
|
|
for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
|
|
if (wpi_rates[ridx].rate == rate)
|
|
break;
|
|
wn->ridx[i] = ridx;
|
|
}
|
|
}
|
|
|
|
int
|
|
wpi_media_change(struct ifnet *ifp)
|
|
{
|
|
struct wpi_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t rate, ridx;
|
|
int error;
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error != ENETRESET)
|
|
return error;
|
|
|
|
if (ic->ic_fixed_rate != -1) {
|
|
rate = ic->ic_sup_rates[ic->ic_curmode].
|
|
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
|
|
/* Map 802.11 rate to HW rate index. */
|
|
for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
|
|
if (wpi_rates[ridx].rate == rate)
|
|
break;
|
|
sc->fixed_ridx = ridx;
|
|
}
|
|
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
wpi_stop(ifp, 0);
|
|
error = wpi_init(ifp);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
int
|
|
wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct wpi_softc *sc = ifp->if_softc;
|
|
int error;
|
|
|
|
timeout_del(&sc->calib_to);
|
|
|
|
switch (nstate) {
|
|
case IEEE80211_S_SCAN:
|
|
/* Make the link LED blink while we're scanning. */
|
|
wpi_set_led(sc, WPI_LED_LINK, 20, 2);
|
|
|
|
if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
|
|
printf("%s: could not initiate scan\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: %s -> %s\n", ifp->if_xname,
|
|
ieee80211_state_name[ic->ic_state],
|
|
ieee80211_state_name[nstate]);
|
|
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
|
|
ieee80211_node_cleanup(ic, ic->ic_bss);
|
|
ic->ic_state = nstate;
|
|
return 0;
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
break;
|
|
/* FALLTHROUGH */
|
|
case IEEE80211_S_AUTH:
|
|
/* Reset state to handle reassociations correctly. */
|
|
sc->rxon.associd = 0;
|
|
sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
|
|
|
|
if ((error = wpi_auth(sc)) != 0) {
|
|
printf("%s: could not move to auth state\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
|
if ((error = wpi_run(sc)) != 0) {
|
|
printf("%s: could not move to run state\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
break;
|
|
|
|
case IEEE80211_S_INIT:
|
|
break;
|
|
}
|
|
|
|
return sc->sc_newstate(ic, nstate, arg);
|
|
}
|
|
|
|
void
|
|
wpi_iter_func(void *arg, struct ieee80211_node *ni)
|
|
{
|
|
struct wpi_softc *sc = arg;
|
|
struct wpi_node *wn = (struct wpi_node *)ni;
|
|
|
|
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
|
|
}
|
|
|
|
void
|
|
wpi_calib_timeout(void *arg)
|
|
{
|
|
struct wpi_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s;
|
|
|
|
s = splnet();
|
|
/* Automatic rate control triggered every 500ms. */
|
|
if (ic->ic_fixed_rate == -1) {
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
wpi_iter_func(sc, ic->ic_bss);
|
|
else
|
|
ieee80211_iterate_nodes(ic, wpi_iter_func, sc);
|
|
}
|
|
|
|
/* Force automatic TX power calibration every 60 secs. */
|
|
if (++sc->calib_cnt >= 120) {
|
|
wpi_power_calibration(sc);
|
|
sc->calib_cnt = 0;
|
|
}
|
|
splx(s);
|
|
|
|
/* Automatic rate control triggered every 500ms. */
|
|
timeout_add_msec(&sc->calib_to, 500);
|
|
}
|
|
|
|
int
|
|
wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_frame *wh;
|
|
uint64_t pn, *prsc;
|
|
uint8_t *ivp;
|
|
uint8_t tid;
|
|
int hdrlen;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hdrlen = ieee80211_get_hdrlen(wh);
|
|
ivp = (uint8_t *)wh + hdrlen;
|
|
|
|
/* Check that ExtIV bit is set. */
|
|
if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
|
|
DPRINTF(("CCMP decap ExtIV not set\n"));
|
|
return 1;
|
|
}
|
|
tid = ieee80211_has_qos(wh) ?
|
|
ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
|
|
prsc = &k->k_rsc[tid];
|
|
|
|
/* Extract the 48-bit PN from the CCMP header. */
|
|
pn = (uint64_t)ivp[0] |
|
|
(uint64_t)ivp[1] << 8 |
|
|
(uint64_t)ivp[4] << 16 |
|
|
(uint64_t)ivp[5] << 24 |
|
|
(uint64_t)ivp[6] << 32 |
|
|
(uint64_t)ivp[7] << 40;
|
|
if (pn <= *prsc) {
|
|
DPRINTF(("CCMP replayed\n"));
|
|
ic->ic_stats.is_ccmp_replays++;
|
|
return 1;
|
|
}
|
|
/* Last seen packet number is updated in ieee80211_inputm(). */
|
|
|
|
/* Strip MIC. IV will be stripped by ieee80211_inputm(). */
|
|
m_adj(m, -IEEE80211_CCMP_MICLEN);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
|
|
struct wpi_rx_data *data, struct mbuf_list *ml)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct wpi_rx_ring *ring = &sc->rxq;
|
|
struct wpi_rx_stat *stat;
|
|
struct wpi_rx_head *head;
|
|
struct wpi_rx_tail *tail;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_rxinfo rxi;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *m, *m1;
|
|
uint32_t flags;
|
|
int error;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
stat = (struct wpi_rx_stat *)(desc + 1);
|
|
|
|
if (stat->len > WPI_STAT_MAXLEN) {
|
|
printf("%s: invalid RX statistic header\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
|
|
tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len));
|
|
flags = letoh32(tail->flags);
|
|
|
|
/* Discard frames with a bad FCS early. */
|
|
if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
|
|
DPRINTFN(2, ("rx tail flags error %x\n", flags));
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
/* Discard frames that are too short. */
|
|
if (letoh16(head->len) < sizeof (*wh)) {
|
|
DPRINTF(("frame too short: %d\n", letoh16(head->len)));
|
|
ic->ic_stats.is_rx_tooshort++;
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
|
|
m1 = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE);
|
|
if (m1 == NULL) {
|
|
ic->ic_stats.is_rx_nombuf++;
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
|
|
WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
|
|
if (error != 0) {
|
|
m_freem(m1);
|
|
|
|
/* Try to reload the old mbuf. */
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
|
|
BUS_DMA_NOWAIT | BUS_DMA_READ);
|
|
if (error != 0) {
|
|
panic("%s: could not load old RX mbuf",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
/* Physical address may have changed. */
|
|
ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
ring->cur * sizeof (uint32_t), sizeof (uint32_t),
|
|
BUS_DMASYNC_PREWRITE);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
|
|
m = data->m;
|
|
data->m = m1;
|
|
/* Update RX descriptor. */
|
|
ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
ring->cur * sizeof (uint32_t), sizeof (uint32_t),
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Finalize mbuf. */
|
|
m->m_data = (caddr_t)(head + 1);
|
|
m->m_pkthdr.len = m->m_len = letoh16(head->len);
|
|
|
|
/* Grab a reference to the source node. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
ni = ieee80211_find_rxnode(ic, wh);
|
|
|
|
memset(&rxi, 0, sizeof(rxi));
|
|
if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
|
|
(ni->ni_flags & IEEE80211_NODE_RXPROT) &&
|
|
ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
|
|
if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) {
|
|
ic->ic_stats.is_ccmp_dec_errs++;
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
ieee80211_release_node(ic, ni);
|
|
return;
|
|
}
|
|
/* Check whether decryption was successful or not. */
|
|
if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
|
|
DPRINTF(("CCMP decryption failed 0x%x\n", flags));
|
|
ic->ic_stats.is_ccmp_dec_errs++;
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
ieee80211_release_node(ic, ni);
|
|
return;
|
|
}
|
|
if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
ieee80211_release_node(ic, ni);
|
|
return;
|
|
}
|
|
rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
|
|
tap->wr_flags = 0;
|
|
if (letoh16(head->flags) & 0x4)
|
|
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
tap->wr_chan_freq =
|
|
htole16(ic->ic_channels[head->chan].ic_freq);
|
|
tap->wr_chan_flags =
|
|
htole16(ic->ic_channels[head->chan].ic_flags);
|
|
tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
|
|
tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise);
|
|
tap->wr_tsft = tail->tstamp;
|
|
tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf;
|
|
switch (head->rate) {
|
|
/* CCK rates. */
|
|
case 10: tap->wr_rate = 2; break;
|
|
case 20: tap->wr_rate = 4; break;
|
|
case 55: tap->wr_rate = 11; break;
|
|
case 110: tap->wr_rate = 22; break;
|
|
/* OFDM rates. */
|
|
case 0xd: tap->wr_rate = 12; break;
|
|
case 0xf: tap->wr_rate = 18; break;
|
|
case 0x5: tap->wr_rate = 24; break;
|
|
case 0x7: tap->wr_rate = 36; break;
|
|
case 0x9: tap->wr_rate = 48; break;
|
|
case 0xb: tap->wr_rate = 72; break;
|
|
case 0x1: tap->wr_rate = 96; break;
|
|
case 0x3: tap->wr_rate = 108; break;
|
|
/* Unknown rate: should not happen. */
|
|
default: tap->wr_rate = 0;
|
|
}
|
|
|
|
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
|
|
m, BPF_DIRECTION_IN);
|
|
}
|
|
#endif
|
|
|
|
/* Send the frame to the 802.11 layer. */
|
|
rxi.rxi_rssi = stat->rssi;
|
|
ieee80211_inputm(ifp, m, ni, &rxi, ml);
|
|
|
|
/* Node is no longer needed. */
|
|
ieee80211_release_node(ic, ni);
|
|
}
|
|
|
|
void
|
|
wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
|
|
struct wpi_tx_data *data = &ring->data[desc->idx];
|
|
struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
|
|
struct wpi_node *wn = (struct wpi_node *)data->ni;
|
|
|
|
/* Update rate control statistics. */
|
|
wn->amn.amn_txcnt++;
|
|
if (stat->retrycnt > 0)
|
|
wn->amn.amn_retrycnt++;
|
|
|
|
if ((letoh32(stat->status) & 0xff) != 1)
|
|
ifp->if_oerrors++;
|
|
|
|
/* Unmap and free mbuf. */
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
ieee80211_release_node(ic, data->ni);
|
|
data->ni = NULL;
|
|
|
|
sc->sc_tx_timer = 0;
|
|
if (--ring->queued < WPI_TX_RING_LOMARK) {
|
|
sc->qfullmsk &= ~(1 << ring->qid);
|
|
if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
(*ifp->if_start)(ifp);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
|
|
{
|
|
struct wpi_tx_ring *ring = &sc->txq[4];
|
|
struct wpi_tx_data *data;
|
|
|
|
if ((desc->qid & 7) != 4)
|
|
return; /* Not a command ack. */
|
|
|
|
data = &ring->data[desc->idx];
|
|
|
|
/* If the command was mapped in an mbuf, free it. */
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
wakeup(&ring->cmd[desc->idx]);
|
|
}
|
|
|
|
void
|
|
wpi_notif_intr(struct wpi_softc *sc)
|
|
{
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
uint32_t hw;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
|
|
sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD);
|
|
|
|
hw = letoh32(sc->shared->next);
|
|
while (sc->rxq.cur != hw) {
|
|
struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
|
|
struct wpi_rx_desc *desc;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
|
|
BUS_DMASYNC_POSTREAD);
|
|
desc = mtod(data->m, struct wpi_rx_desc *);
|
|
|
|
DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
|
|
"len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
|
|
letoh32(desc->len)));
|
|
|
|
if (!(desc->qid & 0x80)) /* Reply to a command. */
|
|
wpi_cmd_done(sc, desc);
|
|
|
|
switch (desc->type) {
|
|
case WPI_RX_DONE:
|
|
/* An 802.11 frame has been received. */
|
|
wpi_rx_done(sc, desc, data, &ml);
|
|
break;
|
|
|
|
case WPI_TX_DONE:
|
|
/* An 802.11 frame has been transmitted. */
|
|
wpi_tx_done(sc, desc);
|
|
break;
|
|
|
|
case WPI_UC_READY:
|
|
{
|
|
struct wpi_ucode_info *uc =
|
|
(struct wpi_ucode_info *)(desc + 1);
|
|
|
|
/* The microcontroller is ready. */
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
|
|
sizeof (*uc), BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(("microcode alive notification version %x "
|
|
"alive %x\n", letoh32(uc->version),
|
|
letoh32(uc->valid)));
|
|
|
|
if (letoh32(uc->valid) != 1) {
|
|
printf("%s: microcontroller initialization "
|
|
"failed\n", sc->sc_dev.dv_xname);
|
|
}
|
|
if (uc->subtype != WPI_UCODE_INIT) {
|
|
/* Save the address of the error log. */
|
|
sc->errptr = letoh32(uc->errptr);
|
|
}
|
|
break;
|
|
}
|
|
case WPI_STATE_CHANGED:
|
|
{
|
|
uint32_t *status = (uint32_t *)(desc + 1);
|
|
|
|
/* Enabled/disabled notification. */
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
|
|
sizeof (*status), BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(("state changed to %x\n", letoh32(*status)));
|
|
|
|
if (letoh32(*status) & 1) {
|
|
/* The radio button has to be pushed. */
|
|
printf("%s: Radio transmitter is off\n",
|
|
sc->sc_dev.dv_xname);
|
|
/* Turn the interface down. */
|
|
wpi_stop(ifp, 1);
|
|
return; /* No further processing. */
|
|
}
|
|
break;
|
|
}
|
|
case WPI_START_SCAN:
|
|
{
|
|
struct wpi_start_scan *scan =
|
|
(struct wpi_start_scan *)(desc + 1);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
|
|
sizeof (*scan), BUS_DMASYNC_POSTREAD);
|
|
DPRINTFN(2, ("scanning channel %d status %x\n",
|
|
scan->chan, letoh32(scan->status)));
|
|
|
|
/* Fix current channel. */
|
|
ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
|
|
break;
|
|
}
|
|
case WPI_STOP_SCAN:
|
|
{
|
|
struct wpi_stop_scan *scan =
|
|
(struct wpi_stop_scan *)(desc + 1);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
|
|
sizeof (*scan), BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
|
|
scan->nchan, scan->status, scan->chan));
|
|
|
|
if (scan->status == 1 && scan->chan <= 14 &&
|
|
(sc->sc_flags & WPI_FLAG_HAS_5GHZ)) {
|
|
/*
|
|
* We just finished scanning 2GHz channels,
|
|
* start scanning 5GHz ones.
|
|
*/
|
|
if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
|
|
break;
|
|
}
|
|
ieee80211_end_scan(ifp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
|
|
}
|
|
if_input(&ic->ic_if, &ml);
|
|
|
|
/* Tell the firmware what we have processed. */
|
|
hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
|
|
WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7);
|
|
}
|
|
|
|
#ifdef WPI_DEBUG
|
|
/*
|
|
* Dump the error log of the firmware when a firmware panic occurs. Although
|
|
* we can't debug the firmware because it is neither open source nor free, it
|
|
* can help us to identify certain classes of problems.
|
|
*/
|
|
void
|
|
wpi_fatal_intr(struct wpi_softc *sc)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof ((a)[0]))
|
|
struct wpi_fwdump dump;
|
|
uint32_t i, offset, count;
|
|
|
|
/* Check that the error log address is valid. */
|
|
if (sc->errptr < WPI_FW_DATA_BASE ||
|
|
sc->errptr + sizeof (dump) >
|
|
WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
|
|
printf("%s: bad firmware error log address 0x%08x\n",
|
|
sc->sc_dev.dv_xname, sc->errptr);
|
|
return;
|
|
}
|
|
|
|
if (wpi_nic_lock(sc) != 0) {
|
|
printf("%s: could not read firmware error log\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
/* Read number of entries in the log. */
|
|
count = wpi_mem_read(sc, sc->errptr);
|
|
if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
|
|
printf("%s: invalid count field (count=%u)\n",
|
|
sc->sc_dev.dv_xname, count);
|
|
wpi_nic_unlock(sc);
|
|
return;
|
|
}
|
|
/* Skip "count" field. */
|
|
offset = sc->errptr + sizeof (uint32_t);
|
|
printf("firmware error log (count=%u):\n", count);
|
|
for (i = 0; i < count; i++) {
|
|
wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
|
|
sizeof (dump) / sizeof (uint32_t));
|
|
|
|
printf(" error type = \"%s\" (0x%08X)\n",
|
|
(dump.desc < N(wpi_fw_errmsg)) ?
|
|
wpi_fw_errmsg[dump.desc] : "UNKNOWN",
|
|
dump.desc);
|
|
printf(" error data = 0x%08X\n",
|
|
dump.data);
|
|
printf(" branch link = 0x%08X%08X\n",
|
|
dump.blink[0], dump.blink[1]);
|
|
printf(" interrupt link = 0x%08X%08X\n",
|
|
dump.ilink[0], dump.ilink[1]);
|
|
printf(" time = %u\n", dump.time);
|
|
|
|
offset += sizeof (dump);
|
|
}
|
|
wpi_nic_unlock(sc);
|
|
/* Dump driver status (TX and RX rings) while we're here. */
|
|
printf("driver status:\n");
|
|
for (i = 0; i < 6; i++) {
|
|
struct wpi_tx_ring *ring = &sc->txq[i];
|
|
printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
|
|
i, ring->qid, ring->cur, ring->queued);
|
|
}
|
|
printf(" rx ring: cur=%d\n", sc->rxq.cur);
|
|
printf(" 802.11 state %d\n", sc->sc_ic.ic_state);
|
|
#undef N
|
|
}
|
|
#endif
|
|
|
|
int
|
|
wpi_intr(void *arg)
|
|
{
|
|
struct wpi_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
uint32_t r1, r2;
|
|
|
|
/* Disable interrupts. */
|
|
WPI_WRITE(sc, WPI_MASK, 0);
|
|
|
|
r1 = WPI_READ(sc, WPI_INT);
|
|
r2 = WPI_READ(sc, WPI_FH_INT);
|
|
|
|
if (r1 == 0 && r2 == 0) {
|
|
if (ifp->if_flags & IFF_UP)
|
|
WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
|
|
return 0; /* Interrupt not for us. */
|
|
}
|
|
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
|
|
return 0; /* Hardware gone! */
|
|
|
|
/* Acknowledge interrupts. */
|
|
WPI_WRITE(sc, WPI_INT, r1);
|
|
WPI_WRITE(sc, WPI_FH_INT, r2);
|
|
|
|
if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
|
|
printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
|
|
/* Dump firmware error log and stop. */
|
|
#ifdef WPI_DEBUG
|
|
wpi_fatal_intr(sc);
|
|
#endif
|
|
wpi_stop(ifp, 1);
|
|
task_add(systq, &sc->init_task);
|
|
return 1;
|
|
}
|
|
if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
|
|
(r2 & WPI_FH_INT_RX))
|
|
wpi_notif_intr(sc);
|
|
|
|
if (r1 & WPI_INT_ALIVE)
|
|
wakeup(sc); /* Firmware is alive. */
|
|
|
|
/* Re-enable interrupts. */
|
|
if (ifp->if_flags & IFF_UP)
|
|
WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct wpi_node *wn = (void *)ni;
|
|
struct wpi_tx_ring *ring;
|
|
struct wpi_tx_desc *desc;
|
|
struct wpi_tx_data *data;
|
|
struct wpi_tx_cmd *cmd;
|
|
struct wpi_cmd_data *tx;
|
|
const struct wpi_rate *rinfo;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_key *k = NULL;
|
|
enum ieee80211_edca_ac ac;
|
|
uint32_t flags;
|
|
uint16_t qos;
|
|
u_int hdrlen;
|
|
uint8_t *ivp, tid, ridx, type;
|
|
int i, totlen, hasqos, error;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hdrlen = ieee80211_get_hdrlen(wh);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
|
|
/* Select EDCA Access Category and TX ring for this frame. */
|
|
if ((hasqos = ieee80211_has_qos(wh))) {
|
|
qos = ieee80211_get_qos(wh);
|
|
tid = qos & IEEE80211_QOS_TID;
|
|
ac = ieee80211_up_to_ac(ic, tid);
|
|
} else {
|
|
tid = 0;
|
|
ac = EDCA_AC_BE;
|
|
}
|
|
|
|
ring = &sc->txq[ac];
|
|
desc = &ring->desc[ring->cur];
|
|
data = &ring->data[ring->cur];
|
|
|
|
/* Choose a TX rate index. */
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
type != IEEE80211_FC0_TYPE_DATA) {
|
|
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
|
|
WPI_RIDX_OFDM6 : WPI_RIDX_CCK1;
|
|
} else if (ic->ic_fixed_rate != -1) {
|
|
ridx = sc->fixed_ridx;
|
|
} else
|
|
ridx = wn->ridx[ni->ni_txrate];
|
|
rinfo = &wpi_rates[ridx];
|
|
|
|
#if NBPFILTER > 0
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
|
|
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
|
|
tap->wt_rate = rinfo->rate;
|
|
if ((ic->ic_flags & IEEE80211_F_WEPON) &&
|
|
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
|
|
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
|
|
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
|
|
m, BPF_DIRECTION_OUT);
|
|
}
|
|
#endif
|
|
|
|
totlen = m->m_pkthdr.len;
|
|
|
|
/* Encrypt the frame if need be. */
|
|
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
|
|
/* Retrieve key for TX. */
|
|
k = ieee80211_get_txkey(ic, wh, ni);
|
|
if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
|
|
/* Do software encryption. */
|
|
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
|
|
return ENOBUFS;
|
|
/* 802.11 header may have moved. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
totlen = m->m_pkthdr.len;
|
|
|
|
} else /* HW appends CCMP MIC. */
|
|
totlen += IEEE80211_CCMP_HDRLEN;
|
|
}
|
|
|
|
/* Prepare TX firmware command. */
|
|
cmd = &ring->cmd[ring->cur];
|
|
cmd->code = WPI_CMD_TX_DATA;
|
|
cmd->flags = 0;
|
|
cmd->qid = ring->qid;
|
|
cmd->idx = ring->cur;
|
|
|
|
tx = (struct wpi_cmd_data *)cmd->data;
|
|
/* NB: No need to clear tx, all fields are reinitialized here. */
|
|
|
|
flags = 0;
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
/* Unicast frame, check if an ACK is expected. */
|
|
if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
|
|
IEEE80211_QOS_ACK_POLICY_NOACK)
|
|
flags |= WPI_TX_NEED_ACK;
|
|
}
|
|
|
|
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
/* NB: Group frames are sent using CCK in 802.11b/g. */
|
|
if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
|
|
flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
|
|
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
|
|
ridx <= WPI_RIDX_OFDM54) {
|
|
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
|
|
flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP;
|
|
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
|
|
flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
|
|
}
|
|
}
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
type != IEEE80211_FC0_TYPE_DATA)
|
|
tx->id = WPI_ID_BROADCAST;
|
|
else
|
|
tx->id = wn->id;
|
|
|
|
if (type == IEEE80211_FC0_TYPE_MGT) {
|
|
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
/* Tell HW to set timestamp in probe responses. */
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
flags |= WPI_TX_INSERT_TSTAMP;
|
|
#endif
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
|
|
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
|
|
tx->timeout = htole16(3);
|
|
else
|
|
tx->timeout = htole16(2);
|
|
} else
|
|
tx->timeout = htole16(0);
|
|
|
|
tx->len = htole16(totlen);
|
|
tx->tid = tid;
|
|
tx->rts_ntries = 7;
|
|
tx->data_ntries = 15;
|
|
tx->ofdm_mask = 0xff;
|
|
tx->cck_mask = 0x0f;
|
|
tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
|
|
tx->plcp = rinfo->plcp;
|
|
|
|
/* Copy 802.11 header in TX command. */
|
|
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
|
|
|
|
if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
|
|
/* Trim 802.11 header and prepend CCMP IV. */
|
|
m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
|
|
ivp = mtod(m, uint8_t *);
|
|
k->k_tsc++;
|
|
ivp[0] = k->k_tsc;
|
|
ivp[1] = k->k_tsc >> 8;
|
|
ivp[2] = 0;
|
|
ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
|
|
ivp[4] = k->k_tsc >> 16;
|
|
ivp[5] = k->k_tsc >> 24;
|
|
ivp[6] = k->k_tsc >> 32;
|
|
ivp[7] = k->k_tsc >> 40;
|
|
|
|
tx->security = WPI_CIPHER_CCMP;
|
|
memcpy(tx->key, k->k_key, k->k_len);
|
|
} else {
|
|
/* Trim 802.11 header. */
|
|
m_adj(m, hdrlen);
|
|
tx->security = 0;
|
|
}
|
|
tx->flags = htole32(flags);
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (error != 0 && error != EFBIG) {
|
|
printf("%s: can't map mbuf (error %d)\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
if (error != 0) {
|
|
/* Too many DMA segments, linearize mbuf. */
|
|
if (m_defrag(m, M_DONTWAIT)) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (error != 0) {
|
|
printf("%s: can't map mbuf (error %d)\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
data->m = m;
|
|
data->ni = ni;
|
|
|
|
DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
|
|
ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
|
|
|
|
/* Fill TX descriptor. */
|
|
desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 |
|
|
(1 + data->map->dm_nsegs) << 24);
|
|
/* First DMA segment is used by the TX command. */
|
|
desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
|
|
ring->cur * sizeof (struct wpi_tx_cmd));
|
|
desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
|
|
((hdrlen + 3) & ~3));
|
|
/* Other DMA segments are for data payload. */
|
|
for (i = 1; i <= data->map->dm_nsegs; i++) {
|
|
desc->segs[i].addr =
|
|
htole32(data->map->dm_segs[i - 1].ds_addr);
|
|
desc->segs[i].len =
|
|
htole32(data->map->dm_segs[i - 1].ds_len);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
|
|
(caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
(caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Kick TX ring. */
|
|
ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
|
|
WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
/* Mark TX ring as full if we reach a certain threshold. */
|
|
if (++ring->queued > WPI_TX_RING_HIMARK)
|
|
sc->qfullmsk |= 1 << ring->qid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
wpi_start(struct ifnet *ifp)
|
|
{
|
|
struct wpi_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *m;
|
|
|
|
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
|
|
return;
|
|
|
|
for (;;) {
|
|
if (sc->qfullmsk != 0) {
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
break;
|
|
}
|
|
/* Send pending management frames first. */
|
|
m = mq_dequeue(&ic->ic_mgtq);
|
|
if (m != NULL) {
|
|
ni = m->m_pkthdr.ph_cookie;
|
|
goto sendit;
|
|
}
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
break;
|
|
|
|
/* Encapsulate and send data frames. */
|
|
m = ifq_dequeue(&ifp->if_snd);
|
|
if (m == NULL)
|
|
break;
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf != NULL)
|
|
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
|
|
#endif
|
|
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
|
|
continue;
|
|
sendit:
|
|
#if NBPFILTER > 0
|
|
if (ic->ic_rawbpf != NULL)
|
|
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
|
|
#endif
|
|
if (wpi_tx(sc, m, ni) != 0) {
|
|
ieee80211_release_node(ic, ni);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
wpi_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct wpi_softc *sc = ifp->if_softc;
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
if (sc->sc_tx_timer > 0) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
wpi_stop(ifp, 1);
|
|
ifp->if_oerrors++;
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
ieee80211_watchdog(ifp);
|
|
}
|
|
|
|
int
|
|
wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct wpi_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s, error = 0;
|
|
|
|
error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
|
|
if (error)
|
|
return error;
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
error = wpi_init(ifp);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
wpi_stop(ifp, 1);
|
|
}
|
|
break;
|
|
|
|
case SIOCS80211POWER:
|
|
error = ieee80211_ioctl(ifp, cmd, data);
|
|
if (error != ENETRESET)
|
|
break;
|
|
if (ic->ic_state == IEEE80211_S_RUN) {
|
|
if (ic->ic_flags & IEEE80211_F_PMGTON)
|
|
error = wpi_set_pslevel(sc, 0, 3, 0);
|
|
else /* back to CAM */
|
|
error = wpi_set_pslevel(sc, 0, 0, 0);
|
|
} else {
|
|
/* Defer until transition to IEEE80211_S_RUN. */
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = ieee80211_ioctl(ifp, cmd, data);
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
error = 0;
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
wpi_stop(ifp, 0);
|
|
error = wpi_init(ifp);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
rw_exit_write(&sc->sc_rwlock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Send a command to the firmware.
|
|
*/
|
|
int
|
|
wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
|
|
{
|
|
struct wpi_tx_ring *ring = &sc->txq[4];
|
|
struct wpi_tx_desc *desc;
|
|
struct wpi_tx_data *data;
|
|
struct wpi_tx_cmd *cmd;
|
|
struct mbuf *m;
|
|
bus_addr_t paddr;
|
|
int totlen, error;
|
|
|
|
desc = &ring->desc[ring->cur];
|
|
data = &ring->data[ring->cur];
|
|
totlen = 4 + size;
|
|
|
|
if (size > sizeof cmd->data) {
|
|
/* Command is too large to fit in a descriptor. */
|
|
if (totlen > MCLBYTES)
|
|
return EINVAL;
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return ENOMEM;
|
|
if (totlen > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (!(m->m_flags & M_EXT)) {
|
|
m_freem(m);
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
cmd = mtod(m, struct wpi_tx_cmd *);
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
|
|
NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
data->m = m;
|
|
paddr = data->map->dm_segs[0].ds_addr;
|
|
} else {
|
|
cmd = &ring->cmd[ring->cur];
|
|
paddr = data->cmd_paddr;
|
|
}
|
|
|
|
cmd->code = code;
|
|
cmd->flags = 0;
|
|
cmd->qid = ring->qid;
|
|
cmd->idx = ring->cur;
|
|
memcpy(cmd->data, buf, size);
|
|
|
|
desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
|
|
desc->segs[0].addr = htole32(paddr);
|
|
desc->segs[0].len = htole32(totlen);
|
|
|
|
if (size > sizeof cmd->data) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
|
|
BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
|
|
(caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
(caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Kick command ring. */
|
|
ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
|
|
WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
return async ? 0 : tsleep_nsec(cmd, PCATCH, "wpicmd", SEC_TO_NSEC(1));
|
|
}
|
|
|
|
/*
|
|
* Configure HW multi-rate retries.
|
|
*/
|
|
int
|
|
wpi_mrr_setup(struct wpi_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct wpi_mrr_setup mrr;
|
|
int i, error;
|
|
|
|
/* CCK rates (not used with 802.11a). */
|
|
for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
|
|
mrr.rates[i].flags = 0;
|
|
mrr.rates[i].plcp = wpi_rates[i].plcp;
|
|
/* Fallback to the immediate lower CCK rate (if any.) */
|
|
mrr.rates[i].next =
|
|
(i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
|
|
/* Try one time at this rate before falling back to "next". */
|
|
mrr.rates[i].ntries = 1;
|
|
}
|
|
/* OFDM rates (not used with 802.11b). */
|
|
for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
|
|
mrr.rates[i].flags = 0;
|
|
mrr.rates[i].plcp = wpi_rates[i].plcp;
|
|
/* Fallback to the immediate lower rate (if any.) */
|
|
/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
|
|
mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
|
|
((ic->ic_curmode == IEEE80211_MODE_11A) ?
|
|
WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
|
|
i - 1;
|
|
/* Try one time at this rate before falling back to "next". */
|
|
mrr.rates[i].ntries = 1;
|
|
}
|
|
/* Setup MRR for control frames. */
|
|
mrr.which = htole32(WPI_MRR_CTL);
|
|
error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
|
|
if (error != 0) {
|
|
printf("%s: could not setup MRR for control frames\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
/* Setup MRR for data frames. */
|
|
mrr.which = htole32(WPI_MRR_DATA);
|
|
error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
|
|
if (error != 0) {
|
|
printf("%s: could not setup MRR for data frames\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
wpi_updateedca(struct ieee80211com *ic)
|
|
{
|
|
#define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
|
|
struct wpi_softc *sc = ic->ic_softc;
|
|
struct wpi_edca_params cmd;
|
|
int aci;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.flags = htole32(WPI_EDCA_UPDATE);
|
|
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
|
|
const struct ieee80211_edca_ac_params *ac =
|
|
&ic->ic_edca_ac[aci];
|
|
cmd.ac[aci].aifsn = ac->ac_aifsn;
|
|
cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin));
|
|
cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax));
|
|
cmd.ac[aci].txoplimit =
|
|
htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
|
|
}
|
|
(void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
|
|
#undef WPI_EXP2
|
|
}
|
|
|
|
void
|
|
wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
|
|
{
|
|
struct wpi_cmd_led led;
|
|
|
|
led.which = which;
|
|
led.unit = htole32(100000); /* on/off in unit of 100ms */
|
|
led.off = off;
|
|
led.on = on;
|
|
(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
|
|
}
|
|
|
|
int
|
|
wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct wpi_cmd_timing cmd;
|
|
uint64_t val, mod;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
|
|
cmd.bintval = htole16(ni->ni_intval);
|
|
cmd.lintval = htole16(10);
|
|
|
|
/* Compute remaining time until next beacon. */
|
|
val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
|
|
mod = letoh64(cmd.tstamp) % val;
|
|
cmd.binitval = htole32((uint32_t)(val - mod));
|
|
|
|
DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
|
|
ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
|
|
|
|
return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
|
|
}
|
|
|
|
/*
|
|
* This function is called periodically (every minute) to adjust TX power
|
|
* based on temperature variation.
|
|
*/
|
|
void
|
|
wpi_power_calibration(struct wpi_softc *sc)
|
|
{
|
|
int temp;
|
|
|
|
temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
|
|
/* Sanity-check temperature. */
|
|
if (temp < -260 || temp > 25) {
|
|
/* This can't be correct, ignore. */
|
|
DPRINTF(("out-of-range temperature reported: %d\n", temp));
|
|
return;
|
|
}
|
|
DPRINTF(("temperature %d->%d\n", sc->temp, temp));
|
|
/* Adjust TX power if need be (delta > 6). */
|
|
if (abs(temp - sc->temp) > 6) {
|
|
/* Record temperature of last calibration. */
|
|
sc->temp = temp;
|
|
(void)wpi_set_txpower(sc, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set TX power for current channel (each rate has its own power settings).
|
|
*/
|
|
int
|
|
wpi_set_txpower(struct wpi_softc *sc, int async)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *ch;
|
|
struct wpi_power_group *group;
|
|
struct wpi_cmd_txpower cmd;
|
|
u_int chan;
|
|
int idx, i;
|
|
|
|
/* Retrieve current channel from last RXON. */
|
|
chan = sc->rxon.chan;
|
|
DPRINTF(("setting TX power for channel %d\n", chan));
|
|
ch = &ic->ic_channels[chan];
|
|
|
|
/* Find the TX power group to which this channel belongs. */
|
|
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
|
|
for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
|
|
if (chan <= group->chan)
|
|
break;
|
|
} else
|
|
group = &sc->groups[0];
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
|
|
cmd.chan = htole16(chan);
|
|
|
|
/* Set TX power for all OFDM and CCK rates. */
|
|
for (i = 0; i <= WPI_RIDX_MAX ; i++) {
|
|
/* Retrieve TX power for this channel/rate. */
|
|
idx = wpi_get_power_index(sc, group, ch, i);
|
|
|
|
cmd.rates[i].plcp = wpi_rates[i].plcp;
|
|
|
|
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
|
|
cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
|
|
cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
|
|
} else {
|
|
cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
|
|
cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
|
|
}
|
|
DPRINTF(("chan %d/rate %d: power index %d\n", chan,
|
|
wpi_rates[i].rate, idx));
|
|
}
|
|
return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
|
|
}
|
|
|
|
/*
|
|
* Determine TX power index for a given channel/rate combination.
|
|
* This takes into account the regulatory information from EEPROM and the
|
|
* current temperature.
|
|
*/
|
|
int
|
|
wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
|
|
struct ieee80211_channel *c, int ridx)
|
|
{
|
|
/* Fixed-point arithmetic division using a n-bit fractional part. */
|
|
#define fdivround(a, b, n) \
|
|
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
|
|
|
|
/* Linear interpolation. */
|
|
#define interpolate(x, x1, y1, x2, y2, n) \
|
|
((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
|
|
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct wpi_power_sample *sample;
|
|
int pwr, idx;
|
|
u_int chan;
|
|
|
|
/* Get channel number. */
|
|
chan = ieee80211_chan2ieee(ic, c);
|
|
|
|
/* Default TX power is group maximum TX power minus 3dB. */
|
|
pwr = group->maxpwr / 2;
|
|
|
|
/* Decrease TX power for highest OFDM rates to reduce distortion. */
|
|
switch (ridx) {
|
|
case WPI_RIDX_OFDM36:
|
|
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
|
|
break;
|
|
case WPI_RIDX_OFDM48:
|
|
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
|
|
break;
|
|
case WPI_RIDX_OFDM54:
|
|
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
|
|
break;
|
|
}
|
|
|
|
/* Never exceed the channel maximum allowed TX power. */
|
|
pwr = MIN(pwr, sc->maxpwr[chan]);
|
|
|
|
/* Retrieve TX power index into gain tables from samples. */
|
|
for (sample = group->samples; sample < &group->samples[3]; sample++)
|
|
if (pwr > sample[1].power)
|
|
break;
|
|
/* Fixed-point linear interpolation using a 19-bit fractional part. */
|
|
idx = interpolate(pwr, sample[0].power, sample[0].index,
|
|
sample[1].power, sample[1].index, 19);
|
|
|
|
/*-
|
|
* Adjust power index based on current temperature:
|
|
* - if cooler than factory-calibrated: decrease output power
|
|
* - if warmer than factory-calibrated: increase output power
|
|
*/
|
|
idx -= (sc->temp - group->temp) * 11 / 100;
|
|
|
|
/* Decrease TX power for CCK rates (-5dB). */
|
|
if (ridx >= WPI_RIDX_CCK1)
|
|
idx += 10;
|
|
|
|
/* Make sure idx stays in a valid range. */
|
|
if (idx < 0)
|
|
idx = 0;
|
|
else if (idx > WPI_MAX_PWR_INDEX)
|
|
idx = WPI_MAX_PWR_INDEX;
|
|
return idx;
|
|
|
|
#undef interpolate
|
|
#undef fdivround
|
|
}
|
|
|
|
/*
|
|
* Set STA mode power saving level (between 0 and 5).
|
|
* Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
|
|
*/
|
|
int
|
|
wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async)
|
|
{
|
|
struct wpi_pmgt_cmd cmd;
|
|
const struct wpi_pmgt *pmgt;
|
|
uint32_t max, skip_dtim;
|
|
pcireg_t reg;
|
|
int i;
|
|
|
|
/* Select which PS parameters to use. */
|
|
if (dtim <= 10)
|
|
pmgt = &wpi_pmgt[0][level];
|
|
else
|
|
pmgt = &wpi_pmgt[1][level];
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
if (level != 0) /* not CAM */
|
|
cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
|
|
/* Retrieve PCIe Active State Power Management (ASPM). */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
|
|
sc->sc_cap_off + PCI_PCIE_LCSR);
|
|
if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
|
|
cmd.flags |= htole16(WPI_PS_PCI_PMGT);
|
|
cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
|
|
cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
|
|
|
|
if (dtim == 0) {
|
|
dtim = 1;
|
|
skip_dtim = 0;
|
|
} else
|
|
skip_dtim = pmgt->skip_dtim;
|
|
if (skip_dtim != 0) {
|
|
cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
|
|
max = pmgt->intval[4];
|
|
if (max == (uint32_t)-1)
|
|
max = dtim * (skip_dtim + 1);
|
|
else if (max > dtim)
|
|
max = (max / dtim) * dtim;
|
|
} else
|
|
max = dtim;
|
|
for (i = 0; i < 5; i++)
|
|
cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
|
|
|
|
DPRINTF(("setting power saving level to %d\n", level));
|
|
return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
|
|
}
|
|
|
|
int
|
|
wpi_config(struct wpi_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct wpi_bluetooth bluetooth;
|
|
struct wpi_node_info node;
|
|
int error;
|
|
|
|
/* Set power saving level to CAM during initialization. */
|
|
if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
|
|
printf("%s: could not set power saving level\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Configure bluetooth coexistence. */
|
|
memset(&bluetooth, 0, sizeof bluetooth);
|
|
bluetooth.flags = WPI_BT_COEX_MODE_4WIRE;
|
|
bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF;
|
|
bluetooth.max_kill = WPI_BT_MAX_KILL_DEF;
|
|
error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
|
|
if (error != 0) {
|
|
printf("%s: could not configure bluetooth coexistence\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Configure adapter. */
|
|
memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
|
|
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
|
|
IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
|
|
/* Set default channel. */
|
|
sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
|
|
sc->rxon.flags = htole32(WPI_RXON_TSF);
|
|
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
|
|
sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
|
|
switch (ic->ic_opmode) {
|
|
case IEEE80211_M_STA:
|
|
sc->rxon.mode = WPI_MODE_STA;
|
|
sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
|
|
break;
|
|
case IEEE80211_M_MONITOR:
|
|
sc->rxon.mode = WPI_MODE_MONITOR;
|
|
sc->rxon.filter = htole32(WPI_FILTER_MULTICAST |
|
|
WPI_FILTER_CTL | WPI_FILTER_PROMISC);
|
|
break;
|
|
default:
|
|
/* Should not get there. */
|
|
break;
|
|
}
|
|
sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
|
|
sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
|
|
DPRINTF(("setting configuration\n"));
|
|
error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
|
|
0);
|
|
if (error != 0) {
|
|
printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Configuration has changed, set TX power accordingly. */
|
|
if ((error = wpi_set_txpower(sc, 0)) != 0) {
|
|
printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Add broadcast node. */
|
|
memset(&node, 0, sizeof node);
|
|
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
|
|
node.id = WPI_ID_BROADCAST;
|
|
node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
|
|
node.action = htole32(WPI_ACTION_SET_RATE);
|
|
node.antenna = WPI_ANTENNA_BOTH;
|
|
error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
|
|
if (error != 0) {
|
|
printf("%s: could not add broadcast node\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
if ((error = wpi_mrr_setup(sc)) != 0) {
|
|
printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wpi_scan(struct wpi_softc *sc, uint16_t flags)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct wpi_scan_hdr *hdr;
|
|
struct wpi_cmd_data *tx;
|
|
struct wpi_scan_essid *essid;
|
|
struct wpi_scan_chan *chan;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_rateset *rs;
|
|
struct ieee80211_channel *c;
|
|
uint8_t *buf, *frm;
|
|
int buflen, error;
|
|
|
|
buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (buf == NULL) {
|
|
printf("%s: could not allocate buffer for scan command\n",
|
|
sc->sc_dev.dv_xname);
|
|
return ENOMEM;
|
|
}
|
|
hdr = (struct wpi_scan_hdr *)buf;
|
|
/*
|
|
* Move to the next channel if no frames are received within 10ms
|
|
* after sending the probe request.
|
|
*/
|
|
hdr->quiet_time = htole16(10); /* timeout in milliseconds */
|
|
hdr->quiet_threshold = htole16(1); /* min # of packets */
|
|
|
|
tx = (struct wpi_cmd_data *)(hdr + 1);
|
|
tx->flags = htole32(WPI_TX_AUTO_SEQ);
|
|
tx->id = WPI_ID_BROADCAST;
|
|
tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
|
|
|
|
if (flags & IEEE80211_CHAN_5GHZ) {
|
|
hdr->crc_threshold = htole16(1);
|
|
/* Send probe requests at 6Mbps. */
|
|
tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp;
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
|
|
} else {
|
|
hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
|
|
/* Send probe requests at 1Mbps. */
|
|
tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
|
|
}
|
|
|
|
essid = (struct wpi_scan_essid *)(tx + 1);
|
|
if (ic->ic_des_esslen != 0) {
|
|
essid[0].id = IEEE80211_ELEMID_SSID;
|
|
essid[0].len = ic->ic_des_esslen;
|
|
memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
|
|
}
|
|
/*
|
|
* Build a probe request frame. Most of the following code is a
|
|
* copy & paste of what is done in net80211.
|
|
*/
|
|
wh = (struct ieee80211_frame *)(essid + 4);
|
|
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
|
|
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
|
|
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
|
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
|
|
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
|
|
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
|
|
|
|
frm = (uint8_t *)(wh + 1);
|
|
frm = ieee80211_add_ssid(frm, NULL, 0);
|
|
frm = ieee80211_add_rates(frm, rs);
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
|
|
frm = ieee80211_add_xrates(frm, rs);
|
|
|
|
/* Set length of probe request. */
|
|
tx->len = htole16(frm - (uint8_t *)wh);
|
|
|
|
chan = (struct wpi_scan_chan *)frm;
|
|
for (c = &ic->ic_channels[1];
|
|
c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
|
|
if ((c->ic_flags & flags) != flags)
|
|
continue;
|
|
|
|
chan->chan = ieee80211_chan2ieee(ic, c);
|
|
DPRINTFN(2, ("adding channel %d\n", chan->chan));
|
|
chan->flags = 0;
|
|
if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
|
|
chan->flags |= WPI_CHAN_ACTIVE;
|
|
if (ic->ic_des_esslen != 0)
|
|
chan->flags |= WPI_CHAN_NPBREQS(1);
|
|
chan->dsp_gain = 0x6e;
|
|
if (IEEE80211_IS_CHAN_5GHZ(c)) {
|
|
chan->rf_gain = 0x3b;
|
|
chan->active = htole16(24);
|
|
chan->passive = htole16(110);
|
|
} else {
|
|
chan->rf_gain = 0x28;
|
|
chan->active = htole16(36);
|
|
chan->passive = htole16(120);
|
|
}
|
|
hdr->nchan++;
|
|
chan++;
|
|
}
|
|
|
|
buflen = (uint8_t *)chan - buf;
|
|
hdr->len = htole16(buflen);
|
|
|
|
DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
|
|
error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
|
|
free(buf, M_DEVBUF, WPI_SCAN_MAXSZ);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
wpi_auth(struct wpi_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
struct wpi_node_info node;
|
|
int error;
|
|
|
|
/* Update adapter configuration. */
|
|
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
|
|
sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
|
|
sc->rxon.flags = htole32(WPI_RXON_TSF);
|
|
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
|
|
sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
|
|
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
|
|
switch (ic->ic_curmode) {
|
|
case IEEE80211_MODE_11A:
|
|
sc->rxon.cck_mask = 0;
|
|
sc->rxon.ofdm_mask = 0x15;
|
|
break;
|
|
case IEEE80211_MODE_11B:
|
|
sc->rxon.cck_mask = 0x03;
|
|
sc->rxon.ofdm_mask = 0;
|
|
break;
|
|
default: /* Assume 802.11b/g. */
|
|
sc->rxon.cck_mask = 0x0f;
|
|
sc->rxon.ofdm_mask = 0x15;
|
|
}
|
|
DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
|
|
sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
|
|
error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
|
|
1);
|
|
if (error != 0) {
|
|
printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Configuration has changed, set TX power accordingly. */
|
|
if ((error = wpi_set_txpower(sc, 1)) != 0) {
|
|
printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
/*
|
|
* Reconfiguring RXON clears the firmware nodes table so we must
|
|
* add the broadcast node again.
|
|
*/
|
|
memset(&node, 0, sizeof node);
|
|
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
|
|
node.id = WPI_ID_BROADCAST;
|
|
node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
|
|
wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
|
|
node.action = htole32(WPI_ACTION_SET_RATE);
|
|
node.antenna = WPI_ANTENNA_BOTH;
|
|
error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
|
|
if (error != 0) {
|
|
printf("%s: could not add broadcast node\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wpi_run(struct wpi_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
struct wpi_node_info node;
|
|
int error;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
/* Link LED blinks while monitoring. */
|
|
wpi_set_led(sc, WPI_LED_LINK, 5, 5);
|
|
return 0;
|
|
}
|
|
if ((error = wpi_set_timing(sc, ni)) != 0) {
|
|
printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Update adapter configuration. */
|
|
sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
|
|
/* Short preamble and slot time are negotiated when associating. */
|
|
sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
|
|
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
|
|
sc->rxon.filter |= htole32(WPI_FILTER_BSS);
|
|
DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
|
|
error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
|
|
1);
|
|
if (error != 0) {
|
|
printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Configuration has changed, set TX power accordingly. */
|
|
if ((error = wpi_set_txpower(sc, 1)) != 0) {
|
|
printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Fake a join to init the TX rate. */
|
|
((struct wpi_node *)ni)->id = WPI_ID_BSS;
|
|
wpi_newassoc(ic, ni, 1);
|
|
|
|
/* Add BSS node. */
|
|
memset(&node, 0, sizeof node);
|
|
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
|
|
node.id = WPI_ID_BSS;
|
|
node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
|
|
wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
|
|
node.action = htole32(WPI_ACTION_SET_RATE);
|
|
node.antenna = WPI_ANTENNA_BOTH;
|
|
DPRINTF(("adding BSS node\n"));
|
|
error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
|
|
if (error != 0) {
|
|
printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Start periodic calibration timer. */
|
|
sc->calib_cnt = 0;
|
|
timeout_add_msec(&sc->calib_to, 500);
|
|
|
|
/* Link LED always on while associated. */
|
|
wpi_set_led(sc, WPI_LED_LINK, 0, 1);
|
|
|
|
/* Enable power-saving mode if requested by user. */
|
|
if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
|
|
(void)wpi_set_pslevel(sc, 0, 3, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We support CCMP hardware encryption/decryption of unicast frames only.
|
|
* HW support for TKIP really sucks. We should let TKIP die anyway.
|
|
*/
|
|
int
|
|
wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct wpi_softc *sc = ic->ic_softc;
|
|
struct wpi_node *wn = (void *)ni;
|
|
struct wpi_node_info node;
|
|
uint16_t kflags;
|
|
|
|
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
|
|
k->k_cipher != IEEE80211_CIPHER_CCMP)
|
|
return ieee80211_set_key(ic, ni, k);
|
|
|
|
kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id);
|
|
memset(&node, 0, sizeof node);
|
|
node.id = wn->id;
|
|
node.control = WPI_NODE_UPDATE;
|
|
node.flags = WPI_FLAG_SET_KEY;
|
|
node.kflags = htole16(kflags);
|
|
memcpy(node.key, k->k_key, k->k_len);
|
|
DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
|
|
return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
|
|
}
|
|
|
|
void
|
|
wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct wpi_softc *sc = ic->ic_softc;
|
|
struct wpi_node *wn = (void *)ni;
|
|
struct wpi_node_info node;
|
|
|
|
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
|
|
k->k_cipher != IEEE80211_CIPHER_CCMP) {
|
|
/* See comment about other ciphers above. */
|
|
ieee80211_delete_key(ic, ni, k);
|
|
return;
|
|
}
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
return; /* Nothing to do. */
|
|
memset(&node, 0, sizeof node);
|
|
node.id = wn->id;
|
|
node.control = WPI_NODE_UPDATE;
|
|
node.flags = WPI_FLAG_SET_KEY;
|
|
node.kflags = 0;
|
|
DPRINTF(("delete keys for node %d\n", node.id));
|
|
(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
|
|
}
|
|
|
|
int
|
|
wpi_post_alive(struct wpi_softc *sc)
|
|
{
|
|
int ntries, error;
|
|
|
|
/* Check (again) that the radio is not disabled. */
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
/* NB: Runtime firmware must be up and running. */
|
|
if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
|
|
printf("%s: radio is disabled by hardware switch\n",
|
|
sc->sc_dev.dv_xname);
|
|
wpi_nic_unlock(sc);
|
|
return EPERM; /* :-) */
|
|
}
|
|
wpi_nic_unlock(sc);
|
|
|
|
/* Wait for thermal sensor to calibrate. */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 1000) {
|
|
printf("%s: timeout waiting for thermal sensor calibration\n",
|
|
sc->sc_dev.dv_xname);
|
|
return ETIMEDOUT;
|
|
}
|
|
DPRINTF(("temperature %d\n", sc->temp));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The firmware boot code is small and is intended to be copied directly into
|
|
* the NIC internal memory (no DMA transfer.)
|
|
*/
|
|
int
|
|
wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
|
|
{
|
|
int error, ntries;
|
|
|
|
size /= sizeof (uint32_t);
|
|
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
|
|
/* Copy microcode image into NIC memory. */
|
|
wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
|
|
(const uint32_t *)ucode, size);
|
|
|
|
wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
|
|
wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
|
|
wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
|
|
|
|
/* Start boot load now. */
|
|
wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
|
|
|
|
/* Wait for transfer to complete. */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) &
|
|
WPI_BSM_WR_CTRL_START))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 1000) {
|
|
printf("%s: could not load boot firmware\n",
|
|
sc->sc_dev.dv_xname);
|
|
wpi_nic_unlock(sc);
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
/* Enable boot after power up. */
|
|
wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
|
|
|
|
wpi_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wpi_load_firmware(struct wpi_softc *sc)
|
|
{
|
|
struct wpi_fw_info *fw = &sc->fw;
|
|
struct wpi_dma_info *dma = &sc->fw_dma;
|
|
int error;
|
|
|
|
/* Copy initialization sections into pre-allocated DMA-safe memory. */
|
|
memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
|
|
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
|
|
BUS_DMASYNC_PREWRITE);
|
|
memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
|
|
fw->init.text, fw->init.textsz);
|
|
bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
|
|
fw->init.textsz, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Tell adapter where to find initialization sections. */
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
|
|
dma->paddr + WPI_FW_DATA_MAXSZ);
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
|
|
wpi_nic_unlock(sc);
|
|
|
|
/* Load firmware boot code. */
|
|
error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
|
|
if (error != 0) {
|
|
printf("%s: could not load boot firmware\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
/* Now press "execute". */
|
|
WPI_WRITE(sc, WPI_RESET, 0);
|
|
|
|
/* Wait at most one second for first alive notification. */
|
|
if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
|
|
printf("%s: timeout waiting for adapter to initialize\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Copy runtime sections into pre-allocated DMA-safe memory. */
|
|
memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
|
|
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
|
|
BUS_DMASYNC_PREWRITE);
|
|
memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
|
|
fw->main.text, fw->main.textsz);
|
|
bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
|
|
fw->main.textsz, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Tell adapter where to find runtime sections. */
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
|
|
dma->paddr + WPI_FW_DATA_MAXSZ);
|
|
wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
|
|
WPI_FW_UPDATED | fw->main.textsz);
|
|
wpi_nic_unlock(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wpi_read_firmware(struct wpi_softc *sc)
|
|
{
|
|
struct wpi_fw_info *fw = &sc->fw;
|
|
const struct wpi_firmware_hdr *hdr;
|
|
int error;
|
|
|
|
/* Read firmware image from filesystem. */
|
|
if ((error = loadfirmware("wpi-3945abg", &fw->data, &fw->datalen)) != 0) {
|
|
printf("%s: error, %d, could not read firmware %s\n",
|
|
sc->sc_dev.dv_xname, error, "wpi-3945abg");
|
|
return error;
|
|
}
|
|
if (fw->datalen < sizeof (*hdr)) {
|
|
printf("%s: truncated firmware header: %zu bytes\n",
|
|
sc->sc_dev.dv_xname, fw->datalen);
|
|
free(fw->data, M_DEVBUF, fw->datalen);
|
|
return EINVAL;
|
|
}
|
|
/* Extract firmware header information. */
|
|
hdr = (struct wpi_firmware_hdr *)fw->data;
|
|
fw->main.textsz = letoh32(hdr->main_textsz);
|
|
fw->main.datasz = letoh32(hdr->main_datasz);
|
|
fw->init.textsz = letoh32(hdr->init_textsz);
|
|
fw->init.datasz = letoh32(hdr->init_datasz);
|
|
fw->boot.textsz = letoh32(hdr->boot_textsz);
|
|
fw->boot.datasz = 0;
|
|
|
|
/* Sanity-check firmware header. */
|
|
if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
|
|
fw->main.datasz > WPI_FW_DATA_MAXSZ ||
|
|
fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
|
|
fw->init.datasz > WPI_FW_DATA_MAXSZ ||
|
|
fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
|
|
(fw->boot.textsz & 3) != 0) {
|
|
printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
|
|
free(fw->data, M_DEVBUF, fw->datalen);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Check that all firmware sections fit. */
|
|
if (fw->datalen < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
|
|
fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
|
|
printf("%s: firmware file too short: %zu bytes\n",
|
|
sc->sc_dev.dv_xname, fw->datalen);
|
|
free(fw->data, M_DEVBUF, fw->datalen);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Get pointers to firmware sections. */
|
|
fw->main.text = (const uint8_t *)(hdr + 1);
|
|
fw->main.data = fw->main.text + fw->main.textsz;
|
|
fw->init.text = fw->main.data + fw->main.datasz;
|
|
fw->init.data = fw->init.text + fw->init.textsz;
|
|
fw->boot.text = fw->init.data + fw->init.datasz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wpi_clock_wait(struct wpi_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Set "initialization complete" bit. */
|
|
WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
|
|
|
|
/* Wait for clock stabilization. */
|
|
for (ntries = 0; ntries < 25000; ntries++) {
|
|
if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
|
|
return 0;
|
|
DELAY(100);
|
|
}
|
|
printf("%s: timeout waiting for clock stabilization\n",
|
|
sc->sc_dev.dv_xname);
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
int
|
|
wpi_apm_init(struct wpi_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
|
|
/* Disable L0s. */
|
|
WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
|
|
|
|
if ((error = wpi_clock_wait(sc)) != 0)
|
|
return error;
|
|
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
/* Enable DMA. */
|
|
wpi_prph_write(sc, WPI_APMG_CLK_ENA,
|
|
WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT);
|
|
DELAY(20);
|
|
/* Disable L1. */
|
|
wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
|
|
wpi_nic_unlock(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
wpi_apm_stop_master(struct wpi_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
|
|
|
|
if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
|
|
WPI_GP_CNTRL_MAC_PS)
|
|
return; /* Already asleep. */
|
|
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
|
|
return;
|
|
DELAY(10);
|
|
}
|
|
printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
void
|
|
wpi_apm_stop(struct wpi_softc *sc)
|
|
{
|
|
wpi_apm_stop_master(sc);
|
|
WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
|
|
}
|
|
|
|
void
|
|
wpi_nic_config(struct wpi_softc *sc)
|
|
{
|
|
pcireg_t reg;
|
|
uint8_t rev;
|
|
|
|
/* Voodoo from the reference driver. */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
|
|
rev = PCI_REVISION(reg);
|
|
if ((rev & 0xc0) == 0x40)
|
|
WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
|
|
else if (!(rev & 0x80))
|
|
WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
|
|
|
|
if (sc->cap == 0x80)
|
|
WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
|
|
|
|
if ((letoh16(sc->rev) & 0xf0) == 0xd0)
|
|
WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
|
|
else
|
|
WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
|
|
|
|
if (sc->type > 1)
|
|
WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
|
|
}
|
|
|
|
int
|
|
wpi_hw_init(struct wpi_softc *sc)
|
|
{
|
|
int chnl, ntries, error;
|
|
|
|
/* Clear pending interrupts. */
|
|
WPI_WRITE(sc, WPI_INT, 0xffffffff);
|
|
|
|
if ((error = wpi_apm_init(sc)) != 0) {
|
|
printf("%s: could not power ON adapter\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
|
|
/* Select VMAIN power source. */
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
|
|
wpi_nic_unlock(sc);
|
|
/* Spin until VMAIN gets selected. */
|
|
for (ntries = 0; ntries < 5000; ntries++) {
|
|
if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 5000) {
|
|
printf("%s: timeout selecting power source\n",
|
|
sc->sc_dev.dv_xname);
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
/* Perform adapter initialization. */
|
|
(void)wpi_nic_config(sc);
|
|
|
|
/* Initialize RX ring. */
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
/* Set physical address of RX ring. */
|
|
WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
|
|
/* Set physical address of RX read pointer. */
|
|
WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
|
|
offsetof(struct wpi_shared, next));
|
|
WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
|
|
/* Enable RX. */
|
|
WPI_WRITE(sc, WPI_FH_RX_CONFIG,
|
|
WPI_FH_RX_CONFIG_DMA_ENA |
|
|
WPI_FH_RX_CONFIG_RDRBD_ENA |
|
|
WPI_FH_RX_CONFIG_WRSTATUS_ENA |
|
|
WPI_FH_RX_CONFIG_MAXFRAG |
|
|
WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
|
|
WPI_FH_RX_CONFIG_IRQ_DST_HOST |
|
|
WPI_FH_RX_CONFIG_IRQ_RBTH(1));
|
|
(void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */
|
|
WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
|
|
wpi_nic_unlock(sc);
|
|
|
|
/* Initialize TX rings. */
|
|
if ((error = wpi_nic_lock(sc)) != 0)
|
|
return error;
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */
|
|
/* Enable all 6 TX rings. */
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
|
|
/* Set physical address of TX rings. */
|
|
WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
|
|
WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
|
|
|
|
/* Enable all DMA channels. */
|
|
for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
|
|
WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
|
|
WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
|
|
WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
|
|
}
|
|
wpi_nic_unlock(sc);
|
|
(void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */
|
|
|
|
/* Clear "radio off" and "commands blocked" bits. */
|
|
WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
|
|
WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
|
|
|
|
/* Clear pending interrupts. */
|
|
WPI_WRITE(sc, WPI_INT, 0xffffffff);
|
|
/* Enable interrupts. */
|
|
WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
|
|
|
|
/* _Really_ make sure "radio off" bit is cleared! */
|
|
WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
|
|
WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
|
|
|
|
if ((error = wpi_load_firmware(sc)) != 0) {
|
|
printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
/* Wait at most one second for firmware alive notification. */
|
|
if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
|
|
printf("%s: timeout waiting for adapter to initialize\n",
|
|
sc->sc_dev.dv_xname);
|
|
return error;
|
|
}
|
|
/* Do post-firmware initialization. */
|
|
return wpi_post_alive(sc);
|
|
}
|
|
|
|
void
|
|
wpi_hw_stop(struct wpi_softc *sc)
|
|
{
|
|
int chnl, qid, ntries;
|
|
uint32_t tmp;
|
|
|
|
WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
|
|
|
|
/* Disable interrupts. */
|
|
WPI_WRITE(sc, WPI_MASK, 0);
|
|
WPI_WRITE(sc, WPI_INT, 0xffffffff);
|
|
WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
|
|
|
|
/* Make sure we no longer hold the NIC lock. */
|
|
wpi_nic_unlock(sc);
|
|
|
|
if (wpi_nic_lock(sc) == 0) {
|
|
/* Stop TX scheduler. */
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
|
|
wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
|
|
|
|
/* Stop all DMA channels. */
|
|
for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
|
|
WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
tmp = WPI_READ(sc, WPI_FH_TX_STATUS);
|
|
if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) ==
|
|
WPI_FH_TX_STATUS_IDLE(chnl))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
wpi_nic_unlock(sc);
|
|
}
|
|
|
|
/* Stop RX ring. */
|
|
wpi_reset_rx_ring(sc, &sc->rxq);
|
|
|
|
/* Reset all TX rings. */
|
|
for (qid = 0; qid < WPI_NTXQUEUES; qid++)
|
|
wpi_reset_tx_ring(sc, &sc->txq[qid]);
|
|
|
|
if (wpi_nic_lock(sc) == 0) {
|
|
wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT);
|
|
wpi_nic_unlock(sc);
|
|
}
|
|
DELAY(5);
|
|
/* Power OFF adapter. */
|
|
wpi_apm_stop(sc);
|
|
}
|
|
|
|
int
|
|
wpi_init(struct ifnet *ifp)
|
|
{
|
|
struct wpi_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int error;
|
|
|
|
#ifdef notyet
|
|
/* Check that the radio is not disabled by hardware switch. */
|
|
if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
|
|
printf("%s: radio is disabled by hardware switch\n",
|
|
sc->sc_dev.dv_xname);
|
|
error = EPERM; /* :-) */
|
|
goto fail;
|
|
}
|
|
#endif
|
|
/* Read firmware images from the filesystem. */
|
|
if ((error = wpi_read_firmware(sc)) != 0) {
|
|
printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
|
|
/* Initialize hardware and upload firmware. */
|
|
error = wpi_hw_init(sc);
|
|
free(sc->fw.data, M_DEVBUF, sc->fw.datalen);
|
|
if (error != 0) {
|
|
printf("%s: could not initialize hardware\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
|
|
/* Configure adapter now that it is ready. */
|
|
if ((error = wpi_config(sc)) != 0) {
|
|
printf("%s: could not configure device\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
ieee80211_begin_scan(ifp);
|
|
else
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
|
|
return 0;
|
|
|
|
fail: wpi_stop(ifp, 1);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
wpi_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct wpi_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
ifp->if_timer = sc->sc_tx_timer = 0;
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
|
|
/* Power OFF hardware. */
|
|
wpi_hw_stop(sc);
|
|
}
|