src/lib/libc/rpc/svc.c
2023-05-15 03:54:51 +00:00

627 lines
16 KiB
C

/* $OpenBSD: svc.c,v 1.29 2015/10/05 01:23:17 deraadt Exp $ */
/*
* Copyright (c) 2010, Oracle America, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the "Oracle America, Inc." nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* svc.c, Server-side remote procedure call interface.
*
* There are two sets of procedures here. The xprt routines are
* for handling transport handles. The svc routines handle the
* list of service routines.
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <rpc/rpc.h>
#include <rpc/pmap_clnt.h>
static SVCXPRT **xports;
static int xportssize;
#define RQCRED_SIZE 400 /* this size is excessive */
#define max(a, b) (a > b ? a : b)
/*
* The services list
* Each entry represents a set of procedures (an rpc program).
* The dispatch routine takes request structs and runs the
* appropriate procedure.
*/
static struct svc_callout {
struct svc_callout *sc_next;
u_long sc_prog;
u_long sc_vers;
void (*sc_dispatch)();
} *svc_head;
static struct svc_callout *svc_find(u_long, u_long, struct svc_callout **);
static int svc_fd_insert(int);
static int svc_fd_remove(int);
int __svc_fdsetsize = FD_SETSIZE;
fd_set *__svc_fdset = &svc_fdset;
static int svc_pollfd_size; /* number of slots in svc_pollfd */
static int svc_used_pollfd; /* number of used slots in svc_pollfd */
static int *svc_pollfd_freelist; /* svc_pollfd free list */
static int svc_max_free; /* number of used slots in free list */
/* *************** SVCXPRT related stuff **************** */
/*
* Activate a transport handle.
*/
void
xprt_register(SVCXPRT *xprt)
{
/* ignore failure conditions */
(void) __xprt_register(xprt);
}
/*
* Activate a transport handle.
*/
int
__xprt_register(SVCXPRT *xprt)
{
int sock = xprt->xp_sock;
if (xports == NULL || sock + 1 > xportssize) {
SVCXPRT **xp;
int size = FD_SETSIZE;
while (sock + 1 > size)
size += FD_SETSIZE;
xp = calloc(size, sizeof(SVCXPRT *));
if (xp == NULL)
return (0);
if (xports) {
memcpy(xp, xports, xportssize * sizeof(SVCXPRT *));
free(xports);
}
xportssize = size;
xports = xp;
}
if (!svc_fd_insert(sock))
return (0);
xports[sock] = xprt;
return (1);
}
/*
* Insert a socket into svc_pollfd, svc_fdset and __svc_fdset.
* If we are out of space, we allocate ~128 more slots than we
* need now for future expansion.
* We try to keep svc_pollfd well packed (no holes) as possible
* so that poll(2) is efficient.
*/
static int
svc_fd_insert(int sock)
{
int slot;
/*
* Find a slot for sock in svc_pollfd; four possible cases:
* 1) need to allocate more space for svc_pollfd
* 2) there is an entry on the free list
* 3) the free list is empty (svc_used_pollfd is the next slot)
*/
if (svc_pollfd == NULL || svc_used_pollfd == svc_pollfd_size) {
struct pollfd *pfd;
int new_size, *new_freelist;
new_size = svc_pollfd ? svc_pollfd_size + 128 : FD_SETSIZE;
pfd = reallocarray(svc_pollfd, new_size, sizeof(*svc_pollfd));
if (pfd == NULL)
return (0); /* no changes */
new_freelist = realloc(svc_pollfd_freelist, new_size / 2);
if (new_freelist == NULL) {
free(pfd);
return (0); /* no changes */
}
svc_pollfd = pfd;
svc_pollfd_size = new_size;
svc_pollfd_freelist = new_freelist;
for (slot = svc_used_pollfd; slot < svc_pollfd_size; slot++) {
svc_pollfd[slot].fd = -1;
svc_pollfd[slot].events = svc_pollfd[slot].revents = 0;
}
slot = svc_used_pollfd;
} else if (svc_max_free != 0) {
/* there is an entry on the free list, use it */
slot = svc_pollfd_freelist[--svc_max_free];
} else {
/* nothing on the free list but we have room to grow */
slot = svc_used_pollfd;
}
if (sock + 1 > __svc_fdsetsize) {
fd_set *fds;
size_t bytes;
bytes = howmany(sock + 128, NFDBITS) * sizeof(fd_mask);
/* realloc() would be nicer but it gets tricky... */
if ((fds = (fd_set *)mem_alloc(bytes)) != NULL) {
memset(fds, 0, bytes);
memcpy(fds, __svc_fdset,
howmany(__svc_fdsetsize, NFDBITS) * sizeof(fd_mask));
if (__svc_fdset != &svc_fdset)
free(__svc_fdset);
__svc_fdset = fds;
__svc_fdsetsize = bytes / sizeof(fd_mask) * NFDBITS;
}
}
svc_pollfd[slot].fd = sock;
svc_pollfd[slot].events = POLLIN;
svc_used_pollfd++;
if (svc_max_pollfd < slot + 1)
svc_max_pollfd = slot + 1;
if (sock < FD_SETSIZE)
FD_SET(sock, &svc_fdset);
if (sock < __svc_fdsetsize && __svc_fdset != &svc_fdset)
FD_SET(sock, __svc_fdset);
svc_maxfd = max(svc_maxfd, sock);
return (1);
}
/*
* Remove a socket from svc_pollfd, svc_fdset and __svc_fdset.
* Freed slots are placed on the free list. If the free list fills
* up, we compact svc_pollfd (free list size == svc_pollfd_size /2).
*/
static int
svc_fd_remove(int sock)
{
int slot;
if (svc_pollfd == NULL)
return (0);
for (slot = 0; slot < svc_max_pollfd; slot++) {
if (svc_pollfd[slot].fd == sock) {
svc_pollfd[slot].fd = -1;
svc_pollfd[slot].events = svc_pollfd[slot].revents = 0;
svc_used_pollfd--;
if (sock < FD_SETSIZE)
FD_CLR(sock, &svc_fdset);
if (sock < __svc_fdsetsize && __svc_fdset != &svc_fdset)
FD_CLR(sock, __svc_fdset);
if (sock == svc_maxfd) {
for (svc_maxfd--; svc_maxfd >= 0; svc_maxfd--)
if (xports[svc_maxfd])
break;
}
if (svc_max_free == svc_pollfd_size / 2) {
int i, j;
/*
* Out of space in the free list; this means
* that svc_pollfd is half full. Pack things
* such that svc_max_pollfd == svc_used_pollfd
* and svc_pollfd_freelist is empty.
*/
for (i = svc_used_pollfd, j = 0;
i < svc_max_pollfd && j < svc_max_free; i++) {
if (svc_pollfd[i].fd == -1)
continue;
/* be sure to use a low-numbered slot */
while (svc_pollfd_freelist[j] >=
svc_used_pollfd)
j++;
svc_pollfd[svc_pollfd_freelist[j++]] =
svc_pollfd[i];
svc_pollfd[i].fd = -1;
svc_pollfd[i].events =
svc_pollfd[i].revents = 0;
}
svc_max_pollfd = svc_used_pollfd;
svc_max_free = 0;
/* could realloc if svc_pollfd_size is big */
} else {
/* trim svc_max_pollfd from the end */
while (svc_max_pollfd > 0 &&
svc_pollfd[svc_max_pollfd - 1].fd == -1)
svc_max_pollfd--;
}
svc_pollfd_freelist[svc_max_free++] = slot;
return (1);
}
}
return (0); /* not found, shouldn't happen */
}
/*
* De-activate a transport handle.
*/
void
xprt_unregister(SVCXPRT *xprt)
{
int sock = xprt->xp_sock;
if (xports[sock] == xprt) {
xports[sock] = NULL;
svc_fd_remove(sock);
}
}
DEF_WEAK(xprt_unregister);
/* ********************** CALLOUT list related stuff ************* */
/*
* Add a service program to the callout list.
* The dispatch routine will be called when a rpc request for this
* program number comes in.
*/
bool_t
svc_register(SVCXPRT *xprt, u_long prog, u_long vers, void (*dispatch)(),
int protocol)
{
struct svc_callout *prev;
struct svc_callout *s;
if ((s = svc_find(prog, vers, &prev)) != NULL) {
if (s->sc_dispatch == dispatch)
goto pmap_it; /* he is registering another xptr */
return (FALSE);
}
s = (struct svc_callout *)mem_alloc(sizeof(struct svc_callout));
if (s == NULL) {
return (FALSE);
}
s->sc_prog = prog;
s->sc_vers = vers;
s->sc_dispatch = dispatch;
s->sc_next = svc_head;
svc_head = s;
pmap_it:
/* now register the information with the local binder service */
if (protocol) {
return (pmap_set(prog, vers, protocol, xprt->xp_port));
}
return (TRUE);
}
DEF_WEAK(svc_register);
/*
* Remove a service program from the callout list.
*/
void
svc_unregister(u_long prog, u_long vers)
{
struct svc_callout *prev;
struct svc_callout *s;
if ((s = svc_find(prog, vers, &prev)) == NULL)
return;
if (prev == NULL) {
svc_head = s->sc_next;
} else {
prev->sc_next = s->sc_next;
}
s->sc_next = NULL;
mem_free((char *) s, (u_int) sizeof(struct svc_callout));
/* now unregister the information with the local binder service */
(void)pmap_unset(prog, vers);
}
/*
* Search the callout list for a program number, return the callout
* struct.
*/
static struct svc_callout *
svc_find(u_long prog, u_long vers, struct svc_callout **prev)
{
struct svc_callout *s, *p;
p = NULL;
for (s = svc_head; s != NULL; s = s->sc_next) {
if ((s->sc_prog == prog) && (s->sc_vers == vers))
goto done;
p = s;
}
done:
*prev = p;
return (s);
}
/* ******************* REPLY GENERATION ROUTINES ************ */
/*
* Send a reply to an rpc request
*/
bool_t
svc_sendreply(SVCXPRT *xprt, xdrproc_t xdr_results, caddr_t xdr_location)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = SUCCESS;
rply.acpted_rply.ar_results.where = xdr_location;
rply.acpted_rply.ar_results.proc = xdr_results;
return (SVC_REPLY(xprt, &rply));
}
DEF_WEAK(svc_sendreply);
/*
* No procedure error reply
*/
void
svcerr_noproc(SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = PROC_UNAVAIL;
SVC_REPLY(xprt, &rply);
}
/*
* Can't decode args error reply
*/
void
svcerr_decode(SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = GARBAGE_ARGS;
SVC_REPLY(xprt, &rply);
}
DEF_WEAK(svcerr_decode);
/*
* Some system error
*/
void
svcerr_systemerr(SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = SYSTEM_ERR;
SVC_REPLY(xprt, &rply);
}
/*
* Authentication error reply
*/
void
svcerr_auth(SVCXPRT *xprt, enum auth_stat why)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_DENIED;
rply.rjcted_rply.rj_stat = AUTH_ERROR;
rply.rjcted_rply.rj_why = why;
SVC_REPLY(xprt, &rply);
}
DEF_WEAK(svcerr_auth);
/*
* Auth too weak error reply
*/
void
svcerr_weakauth(SVCXPRT *xprt)
{
svcerr_auth(xprt, AUTH_TOOWEAK);
}
/*
* Program unavailable error reply
*/
void
svcerr_noprog(SVCXPRT *xprt)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = PROG_UNAVAIL;
SVC_REPLY(xprt, &rply);
}
DEF_WEAK(svcerr_noprog);
/*
* Program version mismatch error reply
*/
void
svcerr_progvers(SVCXPRT *xprt, u_long low_vers, u_long high_vers)
{
struct rpc_msg rply;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = xprt->xp_verf;
rply.acpted_rply.ar_stat = PROG_MISMATCH;
rply.acpted_rply.ar_vers.low = low_vers;
rply.acpted_rply.ar_vers.high = high_vers;
SVC_REPLY(xprt, &rply);
}
DEF_WEAK(svcerr_progvers);
/* ******************* SERVER INPUT STUFF ******************* */
/*
* Get server side input from some transport.
*
* Statement of authentication parameters management:
* This function owns and manages all authentication parameters, specifically
* the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
* the "cooked" credentials (rqst->rq_clntcred).
* However, this function does not know the structure of the cooked
* credentials, so it make the following assumptions:
* a) the structure is contiguous (no pointers), and
* b) the cred structure size does not exceed RQCRED_SIZE bytes.
* In all events, all three parameters are freed upon exit from this routine.
* The storage is trivially management on the call stack in userland, but
* is mallocated in kernel land.
*/
void
svc_getreq(int rdfds)
{
int bit;
for (; (bit = ffs(rdfds)); rdfds ^= (1 << (bit - 1)))
svc_getreq_common(bit - 1);
}
DEF_WEAK(svc_getreq);
void
svc_getreqset(fd_set *readfds)
{
svc_getreqset2(readfds, FD_SETSIZE);
}
void
svc_getreqset2(fd_set *readfds, int width)
{
fd_mask mask, *maskp;
int bit, sock;
maskp = readfds->fds_bits;
for (sock = 0; sock < width; sock += NFDBITS) {
for (mask = *maskp++; (bit = ffs(mask));
mask ^= (1 << (bit - 1)))
svc_getreq_common(sock + bit - 1);
}
}
DEF_WEAK(svc_getreqset2);
void
svc_getreq_poll(struct pollfd *pfd, const int nready)
{
int i, n;
for (n = nready, i = 0; n > 0; i++) {
if (pfd[i].fd == -1)
continue;
if (pfd[i].revents != 0)
n--;
if ((pfd[i].revents & (POLLIN | POLLHUP)) == 0)
continue;
svc_getreq_common(pfd[i].fd);
}
}
DEF_WEAK(svc_getreq_poll);
void
svc_getreq_common(int fd)
{
enum xprt_stat stat;
struct rpc_msg msg;
int prog_found;
u_long low_vers;
u_long high_vers;
struct svc_req r;
SVCXPRT *xprt;
char cred_area[2*MAX_AUTH_BYTES + RQCRED_SIZE];
msg.rm_call.cb_cred.oa_base = cred_area;
msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
r.rq_clntcred = &(cred_area[2*MAX_AUTH_BYTES]);
/* sock has input waiting */
xprt = xports[fd];
if (xprt == NULL)
/* But do we control the fd? */
return;
/* now receive msgs from xprtprt (support batch calls) */
do {
if (SVC_RECV(xprt, &msg)) {
/* find the exported program and call it */
struct svc_callout *s;
enum auth_stat why;
r.rq_xprt = xprt;
r.rq_prog = msg.rm_call.cb_prog;
r.rq_vers = msg.rm_call.cb_vers;
r.rq_proc = msg.rm_call.cb_proc;
r.rq_cred = msg.rm_call.cb_cred;
/* first authenticate the message */
if ((why= _authenticate(&r, &msg)) != AUTH_OK) {
svcerr_auth(xprt, why);
goto call_done;
}
/* now match message with a registered service*/
prog_found = FALSE;
low_vers = (u_long) -1;
high_vers = 0;
for (s = svc_head; s != NULL; s = s->sc_next) {
if (s->sc_prog == r.rq_prog) {
if (s->sc_vers == r.rq_vers) {
(*s->sc_dispatch)(&r, xprt);
goto call_done;
} /* found correct version */
prog_found = TRUE;
if (s->sc_vers < low_vers)
low_vers = s->sc_vers;
if (s->sc_vers > high_vers)
high_vers = s->sc_vers;
} /* found correct program */
}
/*
* if we got here, the program or version
* is not served ...
*/
if (prog_found)
svcerr_progvers(xprt, low_vers, high_vers);
else
svcerr_noprog(xprt);
/* Fall through to ... */
}
call_done:
if ((stat = SVC_STAT(xprt)) == XPRT_DIED){
SVC_DESTROY(xprt);
break;
}
} while (stat == XPRT_MOREREQS);
}
DEF_WEAK(svc_getreq_common);