src/sys/dev/pci/if_igc.c

2455 lines
62 KiB
C

/* $OpenBSD: if_igc.c,v 1.18 2024/02/23 01:06:18 kevlo Exp $ */
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
* All rights reserved.
* Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/intrmap.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/toeplitz.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_igc.h>
#include <dev/pci/igc_hw.h>
const struct pci_matchid igc_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V }
};
/*********************************************************************
* Function Prototypes
*********************************************************************/
int igc_match(struct device *, void *, void *);
void igc_attach(struct device *, struct device *, void *);
int igc_detach(struct device *, int);
void igc_identify_hardware(struct igc_softc *);
int igc_allocate_pci_resources(struct igc_softc *);
int igc_allocate_queues(struct igc_softc *);
void igc_free_pci_resources(struct igc_softc *);
void igc_reset(struct igc_softc *);
void igc_init_dmac(struct igc_softc *, uint32_t);
int igc_allocate_msix(struct igc_softc *);
void igc_setup_msix(struct igc_softc *);
int igc_dma_malloc(struct igc_softc *, bus_size_t, struct igc_dma_alloc *);
void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
void igc_setup_interface(struct igc_softc *);
void igc_init(void *);
void igc_start(struct ifqueue *);
int igc_txeof(struct tx_ring *);
void igc_stop(struct igc_softc *);
int igc_ioctl(struct ifnet *, u_long, caddr_t);
int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
int igc_rxfill(struct rx_ring *);
void igc_rxrefill(void *);
int igc_rxeof(struct rx_ring *);
void igc_rx_checksum(uint32_t, struct mbuf *, uint32_t);
void igc_watchdog(struct ifnet *);
void igc_media_status(struct ifnet *, struct ifmediareq *);
int igc_media_change(struct ifnet *);
void igc_iff(struct igc_softc *);
void igc_update_link_status(struct igc_softc *);
int igc_get_buf(struct rx_ring *, int);
int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int, uint32_t *);
void igc_configure_queues(struct igc_softc *);
void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
void igc_enable_queue(struct igc_softc *, uint32_t);
void igc_enable_intr(struct igc_softc *);
void igc_disable_intr(struct igc_softc *);
int igc_intr_link(void *);
int igc_intr_queue(void *);
int igc_allocate_transmit_buffers(struct tx_ring *);
int igc_setup_transmit_structures(struct igc_softc *);
int igc_setup_transmit_ring(struct tx_ring *);
void igc_initialize_transmit_unit(struct igc_softc *);
void igc_free_transmit_structures(struct igc_softc *);
void igc_free_transmit_buffers(struct tx_ring *);
int igc_allocate_receive_buffers(struct rx_ring *);
int igc_setup_receive_structures(struct igc_softc *);
int igc_setup_receive_ring(struct rx_ring *);
void igc_initialize_receive_unit(struct igc_softc *);
void igc_free_receive_structures(struct igc_softc *);
void igc_free_receive_buffers(struct rx_ring *);
void igc_initialize_rss_mapping(struct igc_softc *);
void igc_get_hw_control(struct igc_softc *);
void igc_release_hw_control(struct igc_softc *);
int igc_is_valid_ether_addr(uint8_t *);
/*********************************************************************
* OpenBSD Device Interface Entry Points
*********************************************************************/
struct cfdriver igc_cd = {
NULL, "igc", DV_IFNET
};
const struct cfattach igc_ca = {
sizeof(struct igc_softc), igc_match, igc_attach, igc_detach
};
/*********************************************************************
* Device identification routine
*
* igc_match determines if the driver should be loaded on
* adapter based on PCI vendor/device id of the adapter.
*
* return 0 on success, positive on failure
*********************************************************************/
int
igc_match(struct device *parent, void *match, void *aux)
{
return pci_matchbyid((struct pci_attach_args *)aux, igc_devices,
nitems(igc_devices));
}
/*********************************************************************
* Device initialization routine
*
* The attach entry point is called when the driver is being loaded.
* This routine identifies the type of hardware, allocates all resources
* and initializes the hardware.
*
* return 0 on success, positive on failure
*********************************************************************/
void
igc_attach(struct device *parent, struct device *self, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
struct igc_softc *sc = (struct igc_softc *)self;
struct igc_hw *hw = &sc->hw;
sc->osdep.os_sc = sc;
sc->osdep.os_pa = *pa;
/* Determine hardware and mac info */
igc_identify_hardware(sc);
sc->num_tx_desc = IGC_DEFAULT_TXD;
sc->num_rx_desc = IGC_DEFAULT_RXD;
/* Setup PCI resources */
if (igc_allocate_pci_resources(sc))
goto err_pci;
/* Allocate TX/RX queues */
if (igc_allocate_queues(sc))
goto err_pci;
/* Do shared code initialization */
if (igc_setup_init_funcs(hw, true)) {
printf(": Setup of shared code failed\n");
goto err_pci;
}
hw->mac.autoneg = DO_AUTO_NEG;
hw->phy.autoneg_wait_to_complete = false;
hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
/* Copper options. */
if (hw->phy.media_type == igc_media_type_copper)
hw->phy.mdix = AUTO_ALL_MODES;
/* Set the max frame size. */
sc->hw.mac.max_frame_size = 9234;
/* Allocate multicast array memory. */
sc->mta = mallocarray(ETHER_ADDR_LEN, MAX_NUM_MULTICAST_ADDRESSES,
M_DEVBUF, M_NOWAIT);
if (sc->mta == NULL) {
printf(": Can not allocate multicast setup array\n");
goto err_late;
}
/* Check SOL/IDER usage. */
if (igc_check_reset_block(hw))
printf(": PHY reset is blocked due to SOL/IDER session\n");
/* Disable Energy Efficient Ethernet. */
sc->hw.dev_spec._i225.eee_disable = true;
igc_reset_hw(hw);
/* Make sure we have a good EEPROM before we read from it. */
if (igc_validate_nvm_checksum(hw) < 0) {
/*
* Some PCI-E parts fail the first check due to
* the link being in sleep state, call it again,
* if it fails a second time its a real issue.
*/
if (igc_validate_nvm_checksum(hw) < 0) {
printf(": The EEPROM checksum is not valid\n");
goto err_late;
}
}
/* Copy the permanent MAC address out of the EEPROM. */
if (igc_read_mac_addr(hw) < 0) {
printf(": EEPROM read error while reading MAC address\n");
goto err_late;
}
if (!igc_is_valid_ether_addr(hw->mac.addr)) {
printf(": Invalid MAC address\n");
goto err_late;
}
memcpy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
if (igc_allocate_msix(sc))
goto err_late;
/* Setup OS specific network interface. */
igc_setup_interface(sc);
igc_reset(sc);
hw->mac.get_link_status = true;
igc_update_link_status(sc);
/* The driver can now take control from firmware. */
igc_get_hw_control(sc);
printf(", address %s\n", ether_sprintf(sc->hw.mac.addr));
return;
err_late:
igc_release_hw_control(sc);
err_pci:
igc_free_pci_resources(sc);
free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
}
/*********************************************************************
* Device removal routine
*
* The detach entry point is called when the driver is being removed.
* This routine stops the adapter and deallocates all the resources
* that were allocated for driver operation.
*
* return 0 on success, positive on failure
*********************************************************************/
int
igc_detach(struct device *self, int flags)
{
struct igc_softc *sc = (struct igc_softc *)self;
struct ifnet *ifp = &sc->sc_ac.ac_if;
igc_stop(sc);
igc_phy_hw_reset(&sc->hw);
igc_release_hw_control(sc);
ether_ifdetach(ifp);
if_detach(ifp);
igc_free_pci_resources(sc);
igc_free_transmit_structures(sc);
igc_free_receive_structures(sc);
free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
return 0;
}
void
igc_identify_hardware(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
struct pci_attach_args *pa = &os->os_pa;
/* Save off the information about this board. */
sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
/* Do shared code init and setup. */
if (igc_set_mac_type(&sc->hw)) {
printf(": Setup init failure\n");
return;
}
}
int
igc_allocate_pci_resources(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
struct pci_attach_args *pa = &os->os_pa;
pcireg_t memtype;
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
&os->os_memh, &os->os_membase, &os->os_memsize, 0)) {
printf(": unable to map registers\n");
return ENXIO;
}
sc->hw.hw_addr = (uint8_t *)os->os_membase;
sc->hw.back = os;
igc_setup_msix(sc);
return 0;
}
int
igc_allocate_queues(struct igc_softc *sc)
{
struct igc_queue *iq;
struct tx_ring *txr;
struct rx_ring *rxr;
int i, rsize, rxconf, tsize, txconf;
/* Allocate the top level queue structs. */
sc->queues = mallocarray(sc->sc_nqueues, sizeof(struct igc_queue),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->queues == NULL) {
printf("%s: unable to allocate queue\n", DEVNAME(sc));
goto fail;
}
/* Allocate the TX ring. */
sc->tx_rings = mallocarray(sc->sc_nqueues, sizeof(struct tx_ring),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->tx_rings == NULL) {
printf("%s: unable to allocate TX ring\n", DEVNAME(sc));
goto fail;
}
/* Allocate the RX ring. */
sc->rx_rings = mallocarray(sc->sc_nqueues, sizeof(struct rx_ring),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->rx_rings == NULL) {
printf("%s: unable to allocate RX ring\n", DEVNAME(sc));
goto rx_fail;
}
txconf = rxconf = 0;
/* Set up the TX queues. */
tsize = roundup2(sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
IGC_DBA_ALIGN);
for (i = 0; i < sc->sc_nqueues; i++, txconf++) {
txr = &sc->tx_rings[i];
txr->sc = sc;
txr->me = i;
if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
printf("%s: unable to allocate TX descriptor\n",
DEVNAME(sc));
goto err_tx_desc;
}
txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
bzero((void *)txr->tx_base, tsize);
}
/* Set up the RX queues. */
rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
IGC_DBA_ALIGN);
for (i = 0; i < sc->sc_nqueues; i++, rxconf++) {
rxr = &sc->rx_rings[i];
rxr->sc = sc;
rxr->me = i;
timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
printf("%s: unable to allocate RX descriptor\n",
DEVNAME(sc));
goto err_rx_desc;
}
rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
bzero((void *)rxr->rx_base, rsize);
}
/* Set up the queue holding structs. */
for (i = 0; i < sc->sc_nqueues; i++) {
iq = &sc->queues[i];
iq->sc = sc;
iq->txr = &sc->tx_rings[i];
iq->rxr = &sc->rx_rings[i];
snprintf(iq->name, sizeof(iq->name), "%s:%d", DEVNAME(sc), i);
}
return 0;
err_rx_desc:
for (rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
igc_dma_free(sc, &rxr->rxdma);
err_tx_desc:
for (txr = sc->tx_rings; txconf > 0; txr++, txconf--)
igc_dma_free(sc, &txr->txdma);
free(sc->rx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct rx_ring));
sc->rx_rings = NULL;
rx_fail:
free(sc->tx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct tx_ring));
sc->tx_rings = NULL;
fail:
return ENOMEM;
}
void
igc_free_pci_resources(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
struct pci_attach_args *pa = &os->os_pa;
struct igc_queue *iq = sc->queues;
int i;
/* Release all msix queue resources. */
for (i = 0; i < sc->sc_nqueues; i++, iq++) {
if (iq->tag)
pci_intr_disestablish(pa->pa_pc, iq->tag);
iq->tag = NULL;
}
if (sc->tag)
pci_intr_disestablish(pa->pa_pc, sc->tag);
sc->tag = NULL;
if (os->os_membase != 0)
bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
os->os_membase = 0;
}
/*********************************************************************
*
* Initialize the hardware to a configuration as specified by the
* adapter structure.
*
**********************************************************************/
void
igc_reset(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
uint32_t pba;
uint16_t rx_buffer_size;
/* Let the firmware know the OS is in control */
igc_get_hw_control(sc);
/*
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
*/
pba = IGC_PBA_34K;
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two frames to be
* received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buffer_size = (pba & 0xffff) << 10;
hw->fc.high_water = rx_buffer_size -
roundup2(sc->hw.mac.max_frame_size, 1024);
/* 16-byte granularity */
hw->fc.low_water = hw->fc.high_water - 16;
if (sc->fc) /* locally set flow control value? */
hw->fc.requested_mode = sc->fc;
else
hw->fc.requested_mode = igc_fc_full;
hw->fc.pause_time = IGC_FC_PAUSE_TIME;
hw->fc.send_xon = true;
/* Issue a global reset */
igc_reset_hw(hw);
IGC_WRITE_REG(hw, IGC_WUC, 0);
/* and a re-init */
if (igc_init_hw(hw) < 0) {
printf(": Hardware Initialization Failed\n");
return;
}
/* Setup DMA Coalescing */
igc_init_dmac(sc, pba);
IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
igc_get_phy_info(hw);
igc_check_for_link(hw);
}
/*********************************************************************
*
* Initialize the DMA Coalescing feature
*
**********************************************************************/
void
igc_init_dmac(struct igc_softc *sc, uint32_t pba)
{
struct igc_hw *hw = &sc->hw;
uint32_t dmac, reg = ~IGC_DMACR_DMAC_EN;
uint16_t hwm, max_frame_size;
int status;
max_frame_size = sc->hw.mac.max_frame_size;
if (sc->dmac == 0) { /* Disabling it */
IGC_WRITE_REG(hw, IGC_DMACR, reg);
return;
} else
printf(": DMA Coalescing enabled\n");
/* Set starting threshold */
IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
hwm = 64 * pba - max_frame_size / 16;
if (hwm < 64 * (pba - 6))
hwm = 64 * (pba - 6);
reg = IGC_READ_REG(hw, IGC_FCRTC);
reg &= ~IGC_FCRTC_RTH_COAL_MASK;
reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
& IGC_FCRTC_RTH_COAL_MASK);
IGC_WRITE_REG(hw, IGC_FCRTC, reg);
dmac = pba - max_frame_size / 512;
if (dmac < pba - 10)
dmac = pba - 10;
reg = IGC_READ_REG(hw, IGC_DMACR);
reg &= ~IGC_DMACR_DMACTHR_MASK;
reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
& IGC_DMACR_DMACTHR_MASK);
/* transition to L0x or L1 if available..*/
reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
/* Check if status is 2.5Gb backplane connection
* before configuration of watchdog timer, which is
* in msec values in 12.8usec intervals
* watchdog timer= msec values in 32usec intervals
* for non 2.5Gb connection
*/
status = IGC_READ_REG(hw, IGC_STATUS);
if ((status & IGC_STATUS_2P5_SKU) &&
(!(status & IGC_STATUS_2P5_SKU_OVER)))
reg |= ((sc->dmac * 5) >> 6);
else
reg |= (sc->dmac >> 5);
IGC_WRITE_REG(hw, IGC_DMACR, reg);
IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
/* Set the interval before transition */
reg = IGC_READ_REG(hw, IGC_DMCTLX);
reg |= IGC_DMCTLX_DCFLUSH_DIS;
/*
** in 2.5Gb connection, TTLX unit is 0.4 usec
** which is 0x4*2 = 0xA. But delay is still 4 usec
*/
status = IGC_READ_REG(hw, IGC_STATUS);
if ((status & IGC_STATUS_2P5_SKU) &&
(!(status & IGC_STATUS_2P5_SKU_OVER)))
reg |= 0xA;
else
reg |= 0x4;
IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
/* free space in tx packet buffer to wake from DMA coal */
IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
(2 * max_frame_size)) >> 6);
/* make low power state decision controlled by DMA coal */
reg = IGC_READ_REG(hw, IGC_PCIEMISC);
reg &= ~IGC_PCIEMISC_LX_DECISION;
IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
}
int
igc_allocate_msix(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
struct pci_attach_args *pa = &os->os_pa;
struct igc_queue *iq;
pci_intr_handle_t ih;
int i, error = 0;
for (i = 0, iq = sc->queues; i < sc->sc_nqueues; i++, iq++) {
if (pci_intr_map_msix(pa, i, &ih)) {
printf("%s: unable to map msi-x vector %d\n",
DEVNAME(sc), i);
error = ENOMEM;
goto fail;
}
iq->tag = pci_intr_establish_cpu(pa->pa_pc, ih,
IPL_NET | IPL_MPSAFE, intrmap_cpu(sc->sc_intrmap, i),
igc_intr_queue, iq, iq->name);
if (iq->tag == NULL) {
printf("%s: unable to establish interrupt %d\n",
DEVNAME(sc), i);
error = ENOMEM;
goto fail;
}
iq->msix = i;
iq->eims = 1 << i;
}
/* Now the link status/control last MSI-X vector. */
if (pci_intr_map_msix(pa, i, &ih)) {
printf("%s: unable to map link vector\n", DEVNAME(sc));
error = ENOMEM;
goto fail;
}
sc->tag = pci_intr_establish(pa->pa_pc, ih, IPL_NET | IPL_MPSAFE,
igc_intr_link, sc, sc->sc_dev.dv_xname);
if (sc->tag == NULL) {
printf("%s: unable to establish link interrupt\n", DEVNAME(sc));
error = ENOMEM;
goto fail;
}
sc->linkvec = i;
printf(", %s, %d queue%s", pci_intr_string(pa->pa_pc, ih),
i, (i > 1) ? "s" : "");
return 0;
fail:
for (iq = sc->queues; i > 0; i--, iq++) {
if (iq->tag == NULL)
continue;
pci_intr_disestablish(pa->pa_pc, iq->tag);
iq->tag = NULL;
}
return error;
}
void
igc_setup_msix(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
struct pci_attach_args *pa = &os->os_pa;
int nmsix;
nmsix = pci_intr_msix_count(pa);
if (nmsix <= 1)
printf(": not enough msi-x vectors\n");
/* Give one vector to events. */
nmsix--;
sc->sc_intrmap = intrmap_create(&sc->sc_dev, nmsix, IGC_MAX_VECTORS,
INTRMAP_POWEROF2);
sc->sc_nqueues = intrmap_count(sc->sc_intrmap);
}
int
igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
{
struct igc_osdep *os = &sc->osdep;
dma->dma_tag = os->os_pa.pa_dmat;
if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT,
&dma->dma_map))
return 1;
if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1, &dma->dma_nseg, BUS_DMA_NOWAIT))
goto destroy;
if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
&dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))
goto free;
if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
NULL, BUS_DMA_NOWAIT))
goto unmap;
dma->dma_size = size;
return 0;
unmap:
bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
free:
bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
destroy:
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
dma->dma_map = NULL;
dma->dma_tag = NULL;
return 1;
}
void
igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
{
if (dma->dma_tag == NULL)
return;
if (dma->dma_map != NULL) {
bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
dma->dma_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
dma->dma_map = NULL;
}
}
/*********************************************************************
*
* Setup networking device structure and register an interface.
*
**********************************************************************/
void
igc_setup_interface(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
int i;
ifp->if_softc = sc;
strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_xflags = IFXF_MPSAFE;
ifp->if_ioctl = igc_ioctl;
ifp->if_qstart = igc_start;
ifp->if_watchdog = igc_watchdog;
ifp->if_hardmtu = sc->hw.mac.max_frame_size - ETHER_HDR_LEN -
ETHER_CRC_LEN;
ifq_init_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
ifp->if_capabilities = IFCAP_VLAN_MTU;
#ifdef notyet
#if NVLAN > 0
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif
#endif
ifp->if_capabilities |= IFCAP_CSUM_IPv4;
ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
ifp->if_capabilities |= IFCAP_CSUM_TCPv6 | IFCAP_CSUM_UDPv6;
/* Initialize ifmedia structures. */
ifmedia_init(&sc->media, IFM_IMASK, igc_media_change, igc_media_status);
ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp);
if_attach_queues(ifp, sc->sc_nqueues);
if_attach_iqueues(ifp, sc->sc_nqueues);
for (i = 0; i < sc->sc_nqueues; i++) {
struct ifqueue *ifq = ifp->if_ifqs[i];
struct ifiqueue *ifiq = ifp->if_iqs[i];
struct tx_ring *txr = &sc->tx_rings[i];
struct rx_ring *rxr = &sc->rx_rings[i];
ifq->ifq_softc = txr;
txr->ifq = ifq;
ifiq->ifiq_softc = rxr;
rxr->ifiq = ifiq;
}
}
void
igc_init(void *arg)
{
struct igc_softc *sc = (struct igc_softc *)arg;
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct rx_ring *rxr;
uint32_t ctrl = 0;
int i, s;
s = splnet();
igc_stop(sc);
/* Get the latest mac address, user can use a LAA. */
bcopy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
/* Put the address into the receive address array. */
igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
/* Initialize the hardware. */
igc_reset(sc);
igc_update_link_status(sc);
/* Setup VLAN support, basic and offload if available. */
IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
/* Prepare transmit descriptors and buffers. */
if (igc_setup_transmit_structures(sc)) {
printf("%s: Could not setup transmit structures\n",
DEVNAME(sc));
igc_stop(sc);
splx(s);
return;
}
igc_initialize_transmit_unit(sc);
sc->rx_mbuf_sz = MCLBYTES + ETHER_ALIGN;
/* Prepare receive descriptors and buffers. */
if (igc_setup_receive_structures(sc)) {
printf("%s: Could not setup receive structures\n",
DEVNAME(sc));
igc_stop(sc);
splx(s);
return;
}
igc_initialize_receive_unit(sc);
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
ctrl |= IGC_CTRL_VME;
IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
}
/* Setup multicast table. */
igc_iff(sc);
igc_clear_hw_cntrs_base_generic(&sc->hw);
igc_configure_queues(sc);
/* This clears any pending interrupts */
IGC_READ_REG(&sc->hw, IGC_ICR);
IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
/* The driver can now take control from firmware. */
igc_get_hw_control(sc);
/* Set Energy Efficient Ethernet. */
igc_set_eee_i225(&sc->hw, true, true, true);
for (i = 0; i < sc->sc_nqueues; i++) {
rxr = &sc->rx_rings[i];
igc_rxfill(rxr);
if (if_rxr_inuse(&rxr->rx_ring) == 0) {
printf("%s: Unable to fill any rx descriptors\n",
DEVNAME(sc));
igc_stop(sc);
splx(s);
}
IGC_WRITE_REG(&sc->hw, IGC_RDT(i),
(rxr->last_desc_filled + 1) % sc->num_rx_desc);
}
igc_enable_intr(sc);
ifp->if_flags |= IFF_RUNNING;
for (i = 0; i < sc->sc_nqueues; i++)
ifq_clr_oactive(ifp->if_ifqs[i]);
splx(s);
}
static inline int
igc_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m)
{
int error;
error = bus_dmamap_load_mbuf(dmat, map, m,
BUS_DMA_STREAMING | BUS_DMA_NOWAIT);
if (error != EFBIG)
return (error);
error = m_defrag(m, M_DONTWAIT);
if (error != 0)
return (error);
return (bus_dmamap_load_mbuf(dmat, map, m,
BUS_DMA_STREAMING | BUS_DMA_NOWAIT));
}
void
igc_start(struct ifqueue *ifq)
{
struct ifnet *ifp = ifq->ifq_if;
struct igc_softc *sc = ifp->if_softc;
struct tx_ring *txr = ifq->ifq_softc;
union igc_adv_tx_desc *txdesc;
struct igc_tx_buf *txbuf;
bus_dmamap_t map;
struct mbuf *m;
unsigned int prod, free, last, i;
unsigned int mask;
uint32_t cmd_type_len;
uint32_t olinfo_status;
int post = 0;
#if NBPFILTER > 0
caddr_t if_bpf;
#endif
if (!sc->link_active) {
ifq_purge(ifq);
return;
}
prod = txr->next_avail_desc;
free = txr->next_to_clean;
if (free <= prod)
free += sc->num_tx_desc;
free -= prod;
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
mask = sc->num_tx_desc - 1;
for (;;) {
if (free <= IGC_MAX_SCATTER + 1) {
ifq_set_oactive(ifq);
break;
}
m = ifq_dequeue(ifq);
if (m == NULL)
break;
txbuf = &txr->tx_buffers[prod];
map = txbuf->map;
if (igc_load_mbuf(txr->txdma.dma_tag, map, m) != 0) {
ifq->ifq_errors++;
m_freem(m);
continue;
}
olinfo_status = m->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (igc_tx_ctx_setup(txr, m, prod, &olinfo_status)) {
/* Consume the first descriptor */
prod++;
prod &= mask;
free--;
}
for (i = 0; i < map->dm_nsegs; i++) {
txdesc = &txr->tx_base[prod];
cmd_type_len = IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
if (i == map->dm_nsegs - 1)
cmd_type_len |= IGC_ADVTXD_DCMD_EOP |
IGC_ADVTXD_DCMD_RS;
htolem64(&txdesc->read.buffer_addr, map->dm_segs[i].ds_addr);
htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
htolem32(&txdesc->read.olinfo_status, olinfo_status);
last = prod;
prod++;
prod &= mask;
}
txbuf->m_head = m;
txbuf->eop_index = last;
#if NBPFILTER > 0
if_bpf = ifp->if_bpf;
if (if_bpf)
bpf_mtap_ether(if_bpf, m, BPF_DIRECTION_OUT);
#endif
free -= i;
post = 1;
}
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (post) {
txr->next_avail_desc = prod;
IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
}
}
int
igc_txeof(struct tx_ring *txr)
{
struct igc_softc *sc = txr->sc;
struct ifqueue *ifq = txr->ifq;
union igc_adv_tx_desc *txdesc;
struct igc_tx_buf *txbuf;
bus_dmamap_t map;
unsigned int cons, prod, last;
unsigned int mask;
int done = 0;
prod = txr->next_avail_desc;
cons = txr->next_to_clean;
if (cons == prod)
return (0);
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
mask = sc->num_tx_desc - 1;
do {
txbuf = &txr->tx_buffers[cons];
last = txbuf->eop_index;
txdesc = &txr->tx_base[last];
if (!(txdesc->wb.status & htole32(IGC_TXD_STAT_DD)))
break;
map = txbuf->map;
bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->txdma.dma_tag, map);
m_freem(txbuf->m_head);
txbuf->m_head = NULL;
txbuf->eop_index = -1;
cons = last + 1;
cons &= mask;
done = 1;
} while (cons != prod);
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
txr->next_to_clean = cons;
if (ifq_is_oactive(ifq))
ifq_restart(ifq);
return (done);
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*
**********************************************************************/
void
igc_stop(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
int i;
/* Tell the stack that the interface is no longer active. */
ifp->if_flags &= ~IFF_RUNNING;
igc_disable_intr(sc);
igc_reset_hw(&sc->hw);
IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
intr_barrier(sc->tag);
for (i = 0; i < sc->sc_nqueues; i++) {
struct ifqueue *ifq = ifp->if_ifqs[i];
ifq_barrier(ifq);
ifq_clr_oactive(ifq);
if (sc->queues[i].tag != NULL)
intr_barrier(sc->queues[i].tag);
timeout_del(&sc->rx_rings[i].rx_refill);
}
igc_free_transmit_structures(sc);
igc_free_receive_structures(sc);
igc_update_link_status(sc);
}
/*********************************************************************
* Ioctl entry point
*
* igc_ioctl is called when the user wants to configure the
* interface.
*
* return 0 on success, positive on failure
**********************************************************************/
int
igc_ioctl(struct ifnet * ifp, u_long cmd, caddr_t data)
{
struct igc_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
igc_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
igc_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
igc_stop(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
break;
case SIOCGIFRXR:
error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
break;
default:
error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
igc_disable_intr(sc);
igc_iff(sc);
igc_enable_intr(sc);
}
error = 0;
}
splx(s);
return error;
}
int
igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
{
struct if_rxring_info *ifr;
struct rx_ring *rxr;
int error, i, n = 0;
ifr = mallocarray(sc->sc_nqueues, sizeof(*ifr), M_DEVBUF,
M_WAITOK | M_ZERO);
for (i = 0; i < sc->sc_nqueues; i++) {
rxr = &sc->rx_rings[i];
ifr[n].ifr_size = MCLBYTES;
snprintf(ifr[n].ifr_name, sizeof(ifr[n].ifr_name), "%d", i);
ifr[n].ifr_info = rxr->rx_ring;
n++;
}
error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
free(ifr, M_DEVBUF, sc->sc_nqueues * sizeof(*ifr));
return error;
}
int
igc_rxfill(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
int i, post = 0;
u_int slots;
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
i = rxr->last_desc_filled;
for (slots = if_rxr_get(&rxr->rx_ring, sc->num_rx_desc); slots > 0;
slots--) {
if (++i == sc->num_rx_desc)
i = 0;
if (igc_get_buf(rxr, i) != 0)
break;
rxr->last_desc_filled = i;
post = 1;
}
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if_rxr_put(&rxr->rx_ring, slots);
return post;
}
void
igc_rxrefill(void *xrxr)
{
struct rx_ring *rxr = xrxr;
struct igc_softc *sc = rxr->sc;
if (igc_rxfill(rxr)) {
IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me),
(rxr->last_desc_filled + 1) % sc->num_rx_desc);
}
else if (if_rxr_inuse(&rxr->rx_ring) == 0)
timeout_add(&rxr->rx_refill, 1);
}
/*********************************************************************
*
* This routine executes in interrupt context. It replenishes
* the mbufs in the descriptor and sends data which has been
* dma'ed into host memory to upper layer.
*
*********************************************************************/
int
igc_rxeof(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct mbuf *mp, *m;
struct igc_rx_buf *rxbuf, *nxbuf;
union igc_adv_rx_desc *rxdesc;
uint32_t ptype, staterr = 0;
uint16_t len, vtag;
uint8_t eop = 0;
int i, nextp;
if (!ISSET(ifp->if_flags, IFF_RUNNING))
return 0;
i = rxr->next_to_check;
while (if_rxr_inuse(&rxr->rx_ring) > 0) {
uint32_t hash;
uint16_t hashtype;
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
i * sizeof(union igc_adv_rx_desc),
sizeof(union igc_adv_rx_desc), BUS_DMASYNC_POSTREAD);
rxdesc = &rxr->rx_base[i];
staterr = letoh32(rxdesc->wb.upper.status_error);
if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
i * sizeof(union igc_adv_rx_desc),
sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
break;
}
/* Zero out the receive descriptors status. */
rxdesc->wb.upper.status_error = 0;
rxbuf = &rxr->rx_buffers[i];
/* Pull the mbuf off the ring. */
bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
rxbuf->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rxr->rxdma.dma_tag, rxbuf->map);
mp = rxbuf->buf;
len = letoh16(rxdesc->wb.upper.length);
vtag = letoh16(rxdesc->wb.upper.vlan);
eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
ptype = letoh32(rxdesc->wb.lower.lo_dword.data) &
IGC_PKTTYPE_MASK;
hash = letoh32(rxdesc->wb.lower.hi_dword.rss);
hashtype = le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
IGC_RXDADV_RSSTYPE_MASK;
if (staterr & IGC_RXDEXT_STATERR_RXE) {
if (rxbuf->fmp) {
m_freem(rxbuf->fmp);
rxbuf->fmp = NULL;
}
m_freem(mp);
rxbuf->buf = NULL;
goto next_desc;
}
if (mp == NULL) {
panic("%s: igc_rxeof: NULL mbuf in slot %d "
"(nrx %d, filled %d)", DEVNAME(sc), i,
if_rxr_inuse(&rxr->rx_ring), rxr->last_desc_filled);
}
if (!eop) {
/*
* Figure out the next descriptor of this frame.
*/
nextp = i + 1;
if (nextp == sc->num_rx_desc)
nextp = 0;
nxbuf = &rxr->rx_buffers[nextp];
/* prefetch(nxbuf); */
}
mp->m_len = len;
m = rxbuf->fmp;
rxbuf->buf = rxbuf->fmp = NULL;
if (m != NULL)
m->m_pkthdr.len += mp->m_len;
else {
m = mp;
m->m_pkthdr.len = mp->m_len;
#if NVLAN > 0
if (staterr & IGC_RXD_STAT_VP) {
m->m_pkthdr.ether_vtag = vtag;
m->m_flags |= M_VLANTAG;
}
#endif
}
/* Pass the head pointer on */
if (eop == 0) {
nxbuf->fmp = m;
m = NULL;
mp->m_next = nxbuf->buf;
} else {
igc_rx_checksum(staterr, m, ptype);
if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
m->m_pkthdr.ph_flowid = hash;
SET(m->m_pkthdr.csum_flags, M_FLOWID);
}
ml_enqueue(&ml, m);
}
next_desc:
if_rxr_put(&rxr->rx_ring, 1);
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
i * sizeof(union igc_adv_rx_desc),
sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
/* Advance our pointers to the next descriptor. */
if (++i == sc->num_rx_desc)
i = 0;
}
rxr->next_to_check = i;
if (ifiq_input(rxr->ifiq, &ml))
if_rxr_livelocked(&rxr->rx_ring);
if (!(staterr & IGC_RXD_STAT_DD))
return 0;
return 1;
}
/*********************************************************************
*
* Verify that the hardware indicated that the checksum is valid.
* Inform the stack about the status of checksum so that stack
* doesn't spend time verifying the checksum.
*
*********************************************************************/
void
igc_rx_checksum(uint32_t staterr, struct mbuf *m, uint32_t ptype)
{
uint16_t status = (uint16_t)staterr;
uint8_t errors = (uint8_t)(staterr >> 24);
if (status & IGC_RXD_STAT_IPCS) {
if (!(errors & IGC_RXD_ERR_IPE)) {
/* IP Checksum Good */
m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
} else
m->m_pkthdr.csum_flags = 0;
}
if (status & (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) {
if (!(errors & IGC_RXD_ERR_TCPE))
m->m_pkthdr.csum_flags |=
M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
}
}
void
igc_watchdog(struct ifnet * ifp)
{
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called whenever the user queries the status of
* the interface using ifconfig.
*
**********************************************************************/
void
igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct igc_softc *sc = ifp->if_softc;
igc_update_link_status(sc);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!sc->link_active) {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
switch (sc->link_speed) {
case 10:
ifmr->ifm_active |= IFM_10_T;
break;
case 100:
ifmr->ifm_active |= IFM_100_TX;
break;
case 1000:
ifmr->ifm_active |= IFM_1000_T;
break;
case 2500:
ifmr->ifm_active |= IFM_2500_T;
break;
}
if (sc->link_duplex == FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
switch (sc->hw.fc.current_mode) {
case igc_fc_tx_pause:
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
break;
case igc_fc_rx_pause:
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
break;
case igc_fc_full:
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE |
IFM_ETH_TXPAUSE;
break;
default:
ifmr->ifm_active &= ~(IFM_FLOW | IFM_ETH_RXPAUSE |
IFM_ETH_TXPAUSE);
break;
}
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called when the user changes speed/duplex using
* media/mediopt option with ifconfig.
*
**********************************************************************/
int
igc_media_change(struct ifnet *ifp)
{
struct igc_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
sc->hw.mac.autoneg = DO_AUTO_NEG;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
break;
case IFM_2500_T:
sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
break;
case IFM_1000_T:
sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case IFM_100_TX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
else
sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
break;
case IFM_10_T:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
else
sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
break;
default:
return EINVAL;
}
igc_init(sc);
return 0;
}
void
igc_iff(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct arpcom *ac = &sc->sc_ac;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t reg_rctl = 0;
uint8_t *mta;
int mcnt = 0;
mta = sc->mta;
bzero(mta, sizeof(uint8_t) * ETHER_ADDR_LEN *
MAX_NUM_MULTICAST_ADDRESSES);
reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
ac->ac_multicnt > MAX_NUM_MULTICAST_ADDRESSES) {
ifp->if_flags |= IFF_ALLMULTI;
reg_rctl |= IGC_RCTL_MPE;
if (ifp->if_flags & IFF_PROMISC)
reg_rctl |= IGC_RCTL_UPE;
} else {
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
bcopy(enm->enm_addrlo,
&mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
mcnt++;
ETHER_NEXT_MULTI(step, enm);
}
igc_update_mc_addr_list(&sc->hw, mta, mcnt);
}
IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
}
void
igc_update_link_status(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct igc_hw *hw = &sc->hw;
int link_state;
if (hw->mac.get_link_status == true)
igc_check_for_link(hw);
if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
if (sc->link_active == 0) {
igc_get_speed_and_duplex(hw, &sc->link_speed,
&sc->link_duplex);
sc->link_active = 1;
ifp->if_baudrate = IF_Mbps(sc->link_speed);
}
link_state = (sc->link_duplex == FULL_DUPLEX) ?
LINK_STATE_FULL_DUPLEX : LINK_STATE_HALF_DUPLEX;
} else {
if (sc->link_active == 1) {
ifp->if_baudrate = sc->link_speed = 0;
sc->link_duplex = 0;
sc->link_active = 0;
}
link_state = LINK_STATE_DOWN;
}
if (ifp->if_link_state != link_state) {
ifp->if_link_state = link_state;
if_link_state_change(ifp);
}
}
/*********************************************************************
*
* Get a buffer from system mbuf buffer pool.
*
**********************************************************************/
int
igc_get_buf(struct rx_ring *rxr, int i)
{
struct igc_softc *sc = rxr->sc;
struct igc_rx_buf *rxbuf;
struct mbuf *m;
union igc_adv_rx_desc *rxdesc;
int error;
rxbuf = &rxr->rx_buffers[i];
rxdesc = &rxr->rx_base[i];
if (rxbuf->buf) {
printf("%s: slot %d already has an mbuf\n", DEVNAME(sc), i);
return ENOBUFS;
}
m = MCLGETL(NULL, M_DONTWAIT, sc->rx_mbuf_sz);
if (!m)
return ENOBUFS;
m->m_data += (m->m_ext.ext_size - sc->rx_mbuf_sz);
m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, rxbuf->map, m,
BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
return error;
}
bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
rxbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
rxbuf->buf = m;
rxdesc->read.pkt_addr = htole64(rxbuf->map->dm_segs[0].ds_addr);
return 0;
}
void
igc_configure_queues(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
struct igc_queue *iq = sc->queues;
uint32_t ivar, newitr = 0;
int i;
/* First turn on RSS capability */
IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
IGC_GPIE_PBA | IGC_GPIE_NSICR);
/* Set the starting interrupt rate */
newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
newitr |= IGC_EITR_CNT_IGNR;
/* Turn on MSI-X */
for (i = 0; i < sc->sc_nqueues; i++, iq++) {
/* RX entries */
igc_set_queues(sc, i, iq->msix, 0);
/* TX entries */
igc_set_queues(sc, i, iq->msix, 1);
sc->msix_queuesmask |= iq->eims;
IGC_WRITE_REG(hw, IGC_EITR(iq->msix), newitr);
}
/* And for the link interrupt */
ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
sc->msix_linkmask = 1 << sc->linkvec;
IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
}
void
igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
{
struct igc_hw *hw = &sc->hw;
uint32_t ivar, index;
index = entry >> 1;
ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
if (type) {
if (entry & 1) {
ivar &= 0x00FFFFFF;
ivar |= (vector | IGC_IVAR_VALID) << 24;
} else {
ivar &= 0xFFFF00FF;
ivar |= (vector | IGC_IVAR_VALID) << 8;
}
} else {
if (entry & 1) {
ivar &= 0xFF00FFFF;
ivar |= (vector | IGC_IVAR_VALID) << 16;
} else {
ivar &= 0xFFFFFF00;
ivar |= vector | IGC_IVAR_VALID;
}
}
IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
}
void
igc_enable_queue(struct igc_softc *sc, uint32_t eims)
{
IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
}
void
igc_enable_intr(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
uint32_t mask;
mask = (sc->msix_queuesmask | sc->msix_linkmask);
IGC_WRITE_REG(hw, IGC_EIAC, mask);
IGC_WRITE_REG(hw, IGC_EIAM, mask);
IGC_WRITE_REG(hw, IGC_EIMS, mask);
IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
IGC_WRITE_FLUSH(hw);
}
void
igc_disable_intr(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
IGC_WRITE_REG(hw, IGC_EIAC, 0);
IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
IGC_WRITE_FLUSH(hw);
}
int
igc_intr_link(void *arg)
{
struct igc_softc *sc = (struct igc_softc *)arg;
uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
if (reg_icr & IGC_ICR_LSC) {
KERNEL_LOCK();
sc->hw.mac.get_link_status = true;
igc_update_link_status(sc);
KERNEL_UNLOCK();
}
IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
return 1;
}
int
igc_intr_queue(void *arg)
{
struct igc_queue *iq = arg;
struct igc_softc *sc = iq->sc;
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct rx_ring *rxr = iq->rxr;
struct tx_ring *txr = iq->txr;
if (ifp->if_flags & IFF_RUNNING) {
igc_txeof(txr);
igc_rxeof(rxr);
igc_rxrefill(rxr);
}
igc_enable_queue(sc, iq->eims);
return 1;
}
/*********************************************************************
*
* Allocate memory for tx_buffer structures. The tx_buffer stores all
* the information needed to transmit a packet on the wire.
*
**********************************************************************/
int
igc_allocate_transmit_buffers(struct tx_ring *txr)
{
struct igc_softc *sc = txr->sc;
struct igc_tx_buf *txbuf;
int error, i;
txr->tx_buffers = mallocarray(sc->num_tx_desc,
sizeof(struct igc_tx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
if (txr->tx_buffers == NULL) {
printf("%s: Unable to allocate tx_buffer memory\n",
DEVNAME(sc));
error = ENOMEM;
goto fail;
}
txr->txtag = txr->txdma.dma_tag;
/* Create the descriptor buffer dma maps. */
for (i = 0; i < sc->num_tx_desc; i++) {
txbuf = &txr->tx_buffers[i];
error = bus_dmamap_create(txr->txdma.dma_tag, IGC_TSO_SIZE,
IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
if (error != 0) {
printf("%s: Unable to create TX DMA map\n",
DEVNAME(sc));
goto fail;
}
}
return 0;
fail:
return error;
}
/*********************************************************************
*
* Allocate and initialize transmit structures.
*
**********************************************************************/
int
igc_setup_transmit_structures(struct igc_softc *sc)
{
struct tx_ring *txr = sc->tx_rings;
int i;
for (i = 0; i < sc->sc_nqueues; i++, txr++) {
if (igc_setup_transmit_ring(txr))
goto fail;
}
return 0;
fail:
igc_free_transmit_structures(sc);
return ENOBUFS;
}
/*********************************************************************
*
* Initialize a transmit ring.
*
**********************************************************************/
int
igc_setup_transmit_ring(struct tx_ring *txr)
{
struct igc_softc *sc = txr->sc;
/* Now allocate transmit buffers for the ring. */
if (igc_allocate_transmit_buffers(txr))
return ENOMEM;
/* Clear the old ring contents */
bzero((void *)txr->tx_base,
(sizeof(union igc_adv_tx_desc)) * sc->num_tx_desc);
/* Reset indices. */
txr->next_avail_desc = 0;
txr->next_to_clean = 0;
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
txr->txdma.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return 0;
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
void
igc_initialize_transmit_unit(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
struct tx_ring *txr;
struct igc_hw *hw = &sc->hw;
uint64_t bus_addr;
uint32_t tctl, txdctl = 0;
int i;
/* Setup the Base and Length of the TX descriptor ring. */
for (i = 0; i < sc->sc_nqueues; i++) {
txr = &sc->tx_rings[i];
bus_addr = txr->txdma.dma_map->dm_segs[0].ds_addr;
/* Base and len of TX ring */
IGC_WRITE_REG(hw, IGC_TDLEN(i),
sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
IGC_WRITE_REG(hw, IGC_TDBAH(i), (uint32_t)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_TDBAL(i), (uint32_t)bus_addr);
/* Init the HEAD/TAIL indices */
IGC_WRITE_REG(hw, IGC_TDT(i), 0);
IGC_WRITE_REG(hw, IGC_TDH(i), 0);
txr->watchdog_timer = 0;
txdctl = 0; /* Clear txdctl */
txdctl |= 0x1f; /* PTHRESH */
txdctl |= 1 << 8; /* HTHRESH */
txdctl |= 1 << 16; /* WTHRESH */
txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
txdctl |= IGC_TXDCTL_GRAN;
txdctl |= 1 << 25; /* LWTHRESH */
IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
}
ifp->if_timer = 0;
/* Program the Transmit Control Register */
tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
tctl &= ~IGC_TCTL_CT;
tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
/* This write will effectively turn on the transmit unit. */
IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
}
/*********************************************************************
*
* Free all transmit rings.
*
**********************************************************************/
void
igc_free_transmit_structures(struct igc_softc *sc)
{
struct tx_ring *txr = sc->tx_rings;
int i;
for (i = 0; i < sc->sc_nqueues; i++, txr++)
igc_free_transmit_buffers(txr);
}
/*********************************************************************
*
* Free transmit ring related data structures.
*
**********************************************************************/
void
igc_free_transmit_buffers(struct tx_ring *txr)
{
struct igc_softc *sc = txr->sc;
struct igc_tx_buf *txbuf;
int i;
if (txr->tx_buffers == NULL)
return;
txbuf = txr->tx_buffers;
for (i = 0; i < sc->num_tx_desc; i++, txbuf++) {
if (txbuf->map != NULL && txbuf->map->dm_nsegs > 0) {
bus_dmamap_sync(txr->txdma.dma_tag, txbuf->map,
0, txbuf->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->txdma.dma_tag, txbuf->map);
}
if (txbuf->m_head != NULL) {
m_freem(txbuf->m_head);
txbuf->m_head = NULL;
}
if (txbuf->map != NULL) {
bus_dmamap_destroy(txr->txdma.dma_tag, txbuf->map);
txbuf->map = NULL;
}
}
if (txr->tx_buffers != NULL)
free(txr->tx_buffers, M_DEVBUF,
sc->num_tx_desc * sizeof(struct igc_tx_buf));
txr->tx_buffers = NULL;
txr->txtag = NULL;
}
/*********************************************************************
*
* Advanced Context Descriptor setup for VLAN, CSUM or TSO
*
**********************************************************************/
int
igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
uint32_t *olinfo_status)
{
struct ether_extracted ext;
struct igc_adv_tx_context_desc *txdesc;
uint32_t type_tucmd_mlhl = 0;
uint32_t vlan_macip_lens = 0;
int off = 0;
vlan_macip_lens |= (sizeof(*ext.eh) << IGC_ADVTXD_MACLEN_SHIFT);
/*
* In advanced descriptors the vlan tag must
* be placed into the context descriptor. Hence
* we need to make one even if not doing offloads.
*/
#ifdef notyet
#if NVLAN > 0
if (ISSET(mp->m_flags, M_VLANTAG)) {
uint32_t vtag = mp->m_pkthdr.ether_vtag;
vlan_macip_lens |= (vtag << IGC_ADVTXD_VLAN_SHIFT);
off = 1;
}
#endif
#endif
ether_extract_headers(mp, &ext);
if (ext.ip4) {
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
if (ISSET(mp->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT)) {
*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
off = 1;
}
#ifdef INET6
} else if (ext.ip6) {
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
#endif
} else {
return 0;
}
vlan_macip_lens |= ext.iphlen;
type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
if (ext.tcp) {
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
if (ISSET(mp->m_pkthdr.csum_flags, M_TCP_CSUM_OUT)) {
*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
off = 1;
}
} else if (ext.udp) {
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
if (ISSET(mp->m_pkthdr.csum_flags, M_UDP_CSUM_OUT)) {
*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
off = 1;
}
}
if (off == 0)
return 0;
/* Now ready a context descriptor */
txdesc = (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
/* Now copy bits into descriptor */
htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
htolem32(&txdesc->seqnum_seed, 0);
htolem32(&txdesc->mss_l4len_idx, 0);
return 1;
}
/*********************************************************************
*
* Allocate memory for rx_buffer structures. Since we use one
* rx_buffer per received packet, the maximum number of rx_buffer's
* that we'll need is equal to the number of receive descriptors
* that we've allocated.
*
**********************************************************************/
int
igc_allocate_receive_buffers(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
struct igc_rx_buf *rxbuf;
int i, error;
rxr->rx_buffers = mallocarray(sc->num_rx_desc,
sizeof(struct igc_rx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
if (rxr->rx_buffers == NULL) {
printf("%s: Unable to allocate rx_buffer memory\n",
DEVNAME(sc));
error = ENOMEM;
goto fail;
}
rxbuf = rxr->rx_buffers;
for (i = 0; i < sc->num_rx_desc; i++, rxbuf++) {
error = bus_dmamap_create(rxr->rxdma.dma_tag,
MAX_JUMBO_FRAME_SIZE, 1, MAX_JUMBO_FRAME_SIZE, 0,
BUS_DMA_NOWAIT, &rxbuf->map);
if (error) {
printf("%s: Unable to create RX DMA map\n",
DEVNAME(sc));
goto fail;
}
}
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
rxr->rxdma.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return 0;
fail:
return error;
}
/*********************************************************************
*
* Allocate and initialize receive structures.
*
**********************************************************************/
int
igc_setup_receive_structures(struct igc_softc *sc)
{
struct rx_ring *rxr = sc->rx_rings;
int i;
for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
if (igc_setup_receive_ring(rxr))
goto fail;
}
return 0;
fail:
igc_free_receive_structures(sc);
return ENOBUFS;
}
/*********************************************************************
*
* Initialize a receive ring and its buffers.
*
**********************************************************************/
int
igc_setup_receive_ring(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
struct ifnet *ifp = &sc->sc_ac.ac_if;
int rsize;
rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
IGC_DBA_ALIGN);
/* Clear the ring contents. */
bzero((void *)rxr->rx_base, rsize);
if (igc_allocate_receive_buffers(rxr))
return ENOMEM;
/* Setup our descriptor indices. */
rxr->next_to_check = 0;
rxr->last_desc_filled = sc->num_rx_desc - 1;
if_rxr_init(&rxr->rx_ring, 2 * ((ifp->if_hardmtu / MCLBYTES) + 1),
sc->num_rx_desc - 1);
return 0;
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
#define BSIZEPKT_ROUNDUP ((1 << IGC_SRRCTL_BSIZEPKT_SHIFT) - 1)
void
igc_initialize_receive_unit(struct igc_softc *sc)
{
struct rx_ring *rxr = sc->rx_rings;
struct igc_hw *hw = &sc->hw;
uint32_t rctl, rxcsum, srrctl = 0;
int i;
/*
* Make sure receives are disabled while setting
* up the descriptor ring.
*/
rctl = IGC_READ_REG(hw, IGC_RCTL);
IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
/* Setup the Receive Control Register */
rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
/* Do not store bad packets */
rctl &= ~IGC_RCTL_SBP;
/* Enable Long Packet receive */
if (sc->hw.mac.max_frame_size != ETHER_MAX_LEN)
rctl |= IGC_RCTL_LPE;
/* Strip the CRC */
rctl |= IGC_RCTL_SECRC;
/*
* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
*/
IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
rxcsum &= ~IGC_RXCSUM_PCSD;
if (sc->sc_nqueues > 1)
rxcsum |= IGC_RXCSUM_PCSD;
IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
if (sc->sc_nqueues > 1)
igc_initialize_rss_mapping(sc);
/* Set maximum packet buffer len */
srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
IGC_SRRCTL_BSIZEPKT_SHIFT;
/* srrctl above overrides this but set the register to a sane value */
rctl |= IGC_RCTL_SZ_2048;
/*
* If TX flow control is disabled and there's > 1 queue defined,
* enable DROP.
*
* This drops frames rather than hanging the RX MAC for all queues.
*/
if ((sc->sc_nqueues > 1) && (sc->fc == igc_fc_none ||
sc->fc == igc_fc_rx_pause)) {
srrctl |= IGC_SRRCTL_DROP_EN;
}
/* Setup the Base and Length of the RX descriptor rings. */
for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
IGC_WRITE_REG(hw, IGC_RXDCTL(i), 0);
uint64_t bus_addr = rxr->rxdma.dma_map->dm_segs[0].ds_addr;
uint32_t rxdctl;
srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
IGC_WRITE_REG(hw, IGC_RDLEN(i),
sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
/* Setup the Head and Tail Descriptor Pointers */
IGC_WRITE_REG(hw, IGC_RDH(i), 0);
IGC_WRITE_REG(hw, IGC_RDT(i), 0);
/* Enable this Queue */
rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= IGC_RX_PTHRESH;
rxdctl |= IGC_RX_HTHRESH << 8;
rxdctl |= IGC_RX_WTHRESH << 16;
IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
}
/* Make sure VLAN Filters are off */
rctl &= ~IGC_RCTL_VFE;
/* Write out the settings */
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
}
/*********************************************************************
*
* Free all receive rings.
*
**********************************************************************/
void
igc_free_receive_structures(struct igc_softc *sc)
{
struct rx_ring *rxr;
int i;
for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
if_rxr_init(&rxr->rx_ring, 0, 0);
for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
igc_free_receive_buffers(rxr);
}
/*********************************************************************
*
* Free receive ring data structures
*
**********************************************************************/
void
igc_free_receive_buffers(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
struct igc_rx_buf *rxbuf;
int i;
if (rxr->rx_buffers != NULL) {
for (i = 0; i < sc->num_rx_desc; i++) {
rxbuf = &rxr->rx_buffers[i];
if (rxbuf->buf != NULL) {
bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map,
0, rxbuf->map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rxr->rxdma.dma_tag,
rxbuf->map);
m_freem(rxbuf->buf);
rxbuf->buf = NULL;
}
bus_dmamap_destroy(rxr->rxdma.dma_tag, rxbuf->map);
rxbuf->map = NULL;
}
free(rxr->rx_buffers, M_DEVBUF,
sc->num_rx_desc * sizeof(struct igc_rx_buf));
rxr->rx_buffers = NULL;
}
}
/*
* Initialise the RSS mapping for NICs that support multiple transmit/
* receive rings.
*/
void
igc_initialize_rss_mapping(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
uint32_t rss_key[10], mrqc, reta, shift = 0;
int i, queue_id;
/*
* The redirection table controls which destination
* queue each bucket redirects traffic to.
* Each DWORD represents four queues, with the LSB
* being the first queue in the DWORD.
*
* This just allocates buckets to queues using round-robin
* allocation.
*
* NOTE: It Just Happens to line up with the default
* RSS allocation method.
*/
/* Warning FM follows */
reta = 0;
for (i = 0; i < 128; i++) {
queue_id = (i % sc->sc_nqueues);
/* Adjust if required */
queue_id = queue_id << shift;
/*
* The low 8 bits are for hash value (n+0);
* The next 8 bits are for hash value (n+1), etc.
*/
reta = reta >> 8;
reta = reta | ( ((uint32_t) queue_id) << 24);
if ((i & 3) == 3) {
IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
reta = 0;
}
}
/*
* MRQC: Multiple Receive Queues Command
* Set queuing to RSS control, number depends on the device.
*/
mrqc = IGC_MRQC_ENABLE_RSS_4Q;
/* Set up random bits */
stoeplitz_to_key(&rss_key, sizeof(rss_key));
/* Now fill our hash function seeds */
for (i = 0; i < 10; i++)
IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
/*
* Configure the RSS fields to hash upon.
*/
mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP);
mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP);
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
}
/*
* igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded. For AMT version type f/w
* this means that the network i/f is open.
*/
void
igc_get_hw_control(struct igc_softc *sc)
{
uint32_t ctrl_ext;
ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
}
/*
* igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is no longer loaded. For AMT versions of the
* f/w this means that the network i/f is closed.
*/
void
igc_release_hw_control(struct igc_softc *sc)
{
uint32_t ctrl_ext;
ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
}
int
igc_is_valid_ether_addr(uint8_t *addr)
{
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
return 0;
}
return 1;
}