src/sys/dev/ic/lm78.c

989 lines
30 KiB
C

/* $OpenBSD: lm78.c,v 1.26 2022/04/08 15:02:28 naddy Exp $ */
/*
* Copyright (c) 2005, 2006 Mark Kettenis
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/sensors.h>
#include <dev/ic/lm78var.h>
#include <dev/isa/wbsioreg.h>
#if defined(LMDEBUG)
#define DPRINTF(x) do { printf x; } while (0)
#else
#define DPRINTF(x)
#endif
/*
* LM78-compatible chips can typically measure voltages up to 4.096 V.
* To measure higher voltages the input is attenuated with (external)
* resistors. Negative voltages are measured using inverting op amps
* and resistors. So we have to convert the sensor values back to
* real voltages by applying the appropriate resistor factor.
*/
#define RFACT_NONE 10000
#define RFACT(x, y) (RFACT_NONE * ((x) + (y)) / (y))
#define NRFACT(x, y) (-RFACT_NONE * (x) / (y))
struct cfdriver lm_cd = {
NULL, "lm", DV_DULL
};
int lm_match(struct lm_softc *);
int wb_match(struct lm_softc *);
int def_match(struct lm_softc *);
void lm_setup_sensors(struct lm_softc *, const struct lm_sensor *);
void lm_refresh(void *);
void lm_refresh_sensor_data(struct lm_softc *);
void lm_refresh_volt(struct lm_softc *, int);
void lm_refresh_temp(struct lm_softc *, int);
void lm_refresh_fanrpm(struct lm_softc *, int);
void wb_refresh_sensor_data(struct lm_softc *);
void wb_w83637hf_refresh_vcore(struct lm_softc *, int);
void wb_refresh_nvolt(struct lm_softc *, int);
void wb_w83627ehf_refresh_nvolt(struct lm_softc *, int);
void wb_refresh_temp(struct lm_softc *, int);
void wb_refresh_fanrpm(struct lm_softc *, int);
void wb_nct6776f_refresh_fanrpm(struct lm_softc *, int);
void wb_w83792d_refresh_fanrpm(struct lm_softc *, int);
void as_refresh_temp(struct lm_softc *, int);
struct lm_chip {
int (*chip_match)(struct lm_softc *);
};
const struct lm_chip lm_chips[] = {
{ wb_match },
{ lm_match },
{ def_match } /* Must be last */
};
const struct lm_sensor lm78_sensors[] = {
/* Voltage */
{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(68, 100) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(30, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(240, 60) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(100, 60) },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor w83627hf_sensors[] = {
/* Voltage */
{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
{ NULL }
};
/*
* The W83627EHF can measure voltages up to 2.048 V instead of the
* traditional 4.096 V. For measuring positive voltages, this can be
* accounted for by halving the resistor factor. Negative voltages
* need special treatment, also because the reference voltage is 2.048 V
* instead of the traditional 3.6 V.
*/
const struct lm_sensor w83627ehf_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
{ "", SENSOR_VOLTS_DC, 5, 0x52, lm_refresh_volt, RFACT_NONE / 2 },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
{ NULL }
};
/*
* w83627dhg is almost identical to w83627ehf, except that
* it has 9 instead of 10 voltage sensors
*/
const struct lm_sensor w83627dhg_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor nct6776f_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 6, 0x56, wb_nct6776f_refresh_fanrpm },
{ "", SENSOR_FANRPM, 6, 0x58, wb_nct6776f_refresh_fanrpm },
{ "", SENSOR_FANRPM, 6, 0x5a, wb_nct6776f_refresh_fanrpm },
{ "", SENSOR_FANRPM, 6, 0x5c, wb_nct6776f_refresh_fanrpm },
{ "", SENSOR_FANRPM, 6, 0x5e, wb_nct6776f_refresh_fanrpm },
{ NULL }
};
/* NCT6779D */
const struct lm_sensor nct6779d_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 4, 0x80, lm_refresh_volt, RFACT_NONE },
{ "VIN1", SENSOR_VOLTS_DC, 4, 0x81, lm_refresh_volt, RFACT(56, 10) / 2 },
{ "AVCC", SENSOR_VOLTS_DC, 4, 0x82, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "+3.3V", SENSOR_VOLTS_DC, 4, 0x83, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "VIN0", SENSOR_VOLTS_DC, 4, 0x84, lm_refresh_volt, RFACT(48600, 10000) },
{ "VIN8", SENSOR_VOLTS_DC, 4, 0x85, lm_refresh_volt, RFACT_NONE / 2 },
{ "VIN4", SENSOR_VOLTS_DC, 4, 0x86, lm_refresh_volt, RFACT_NONE / 2 },
{ "+3.3VSB", SENSOR_VOLTS_DC, 4, 0x87, lm_refresh_volt, RFACT(34, 34) / 2 },
{ "VBAT", SENSOR_VOLTS_DC, 4, 0x88, lm_refresh_volt, RFACT_NONE },
{ "VTT", SENSOR_VOLTS_DC, 4, 0x89, lm_refresh_volt, RFACT_NONE },
{ "VIN5", SENSOR_VOLTS_DC, 4, 0x8a, lm_refresh_volt, RFACT_NONE / 2 },
{ "VIN6", SENSOR_VOLTS_DC, 4, 0x8b, lm_refresh_volt, RFACT_NONE / 2 },
{ "VIN2", SENSOR_VOLTS_DC, 4, 0x8c, lm_refresh_volt, RFACT_NONE },
{ "VIN3", SENSOR_VOLTS_DC, 4, 0x8d, lm_refresh_volt, RFACT(14414, 10000) },
{ "VIN7", SENSOR_VOLTS_DC, 4, 0x8e, lm_refresh_volt, RFACT_NONE / 2 },
/* Temperature */
{ "MB Temperature", SENSOR_TEMP, 4, 0x90, lm_refresh_temp, 0 },
{ "CPU Temperature", SENSOR_TEMP, 4, 0x91, wb_refresh_temp, 0 },
{ "Aux Temp0", SENSOR_TEMP, 4, 0x92, wb_refresh_temp, 0 },
{ "Aux Temp1", SENSOR_TEMP, 4, 0x93, wb_refresh_temp, 0 },
{ "Aux Temp2", SENSOR_TEMP, 4, 0x94, wb_refresh_temp, 0 },
{ "Aux Temp3", SENSOR_TEMP, 4, 0x95, wb_refresh_temp, 0 },
/* Fans */
{ "System Fan", SENSOR_FANRPM, 4, 0xc0, wb_nct6776f_refresh_fanrpm, 0 },
{ "CPU Fan", SENSOR_FANRPM, 4, 0xc2, wb_nct6776f_refresh_fanrpm, 0 },
{ "Aux Fan0", SENSOR_FANRPM, 4, 0xc4, wb_nct6776f_refresh_fanrpm, 0 },
{ "Aux Fan1", SENSOR_FANRPM, 4, 0xc6, wb_nct6776f_refresh_fanrpm, 0 },
{ "Aux Fan2", SENSOR_FANRPM, 4, 0xc8, wb_nct6776f_refresh_fanrpm, 0 },
{ NULL }
};
const struct lm_sensor w83637hf_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, wb_w83637hf_refresh_vcore },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(28, 10) },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 51) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_refresh_nvolt, RFACT(232, 56) },
{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 51) },
{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor w83697hf_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ NULL }
};
/*
* The datasheet doesn't mention the (internal) resistors used for the
* +5V, but using the values from the W83782D datasheets seems to
* provide sensible results.
*/
const struct lm_sensor w83781d_sensors[] = {
/* Voltage */
{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(2100, 604) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(909, 604) },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor w83782d_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "VINR0", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor w83783s_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor w83791d_sensors[] = {
/* Voltage */
{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, 10000 },
{ "VINR0", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, 10000 },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, 10000 },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
{ "5VSB", SENSOR_VOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
{ "VBAT", SENSOR_VOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
{ "VINR1", SENSOR_VOLTS_DC, 0, 0xb2, lm_refresh_volt, RFACT_NONE },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 0, 0xc0, wb_refresh_temp },
{ "", SENSOR_TEMP, 0, 0xc8, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0xba, wb_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0xbb, wb_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor w83792d_sensors[] = {
/* Voltage */
{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x23, wb_refresh_nvolt, RFACT(120, 56) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT(34, 50) },
{ "5VSB", SENSOR_VOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
{ "VBAT", SENSOR_VOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 0, 0xc0, wb_refresh_temp },
{ "", SENSOR_TEMP, 0, 0xc8, wb_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, wb_w83792d_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, wb_w83792d_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, wb_w83792d_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0xb8, wb_w83792d_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0xb9, wb_w83792d_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0xba, wb_w83792d_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0xbe, wb_w83792d_refresh_fanrpm },
{ NULL }
};
const struct lm_sensor as99127f_sensors[] = {
/* Voltage */
{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
/* Temperature */
{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
{ "", SENSOR_TEMP, 1, 0x50, as_refresh_temp },
{ "", SENSOR_TEMP, 2, 0x50, as_refresh_temp },
/* Fans */
{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
{ NULL }
};
void
lm_attach(struct lm_softc *sc)
{
u_int i, config;
for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
if (lm_chips[i].chip_match(sc))
break;
/* No point in doing anything if we don't have any sensors. */
if (sc->numsensors == 0)
return;
sc->sensortask = sensor_task_register(sc, lm_refresh, 5);
if (sc->sensortask == NULL) {
printf("%s: unable to register update task\n",
sc->sc_dev.dv_xname);
return;
}
/* Start the monitoring loop */
config = sc->lm_readreg(sc, LM_CONFIG);
sc->lm_writereg(sc, LM_CONFIG, config | 0x01);
/* Add sensors */
for (i = 0; i < sc->numsensors; ++i)
sensor_attach(&sc->sensordev, &sc->sensors[i]);
sensordev_install(&sc->sensordev);
}
int
lm_match(struct lm_softc *sc)
{
int chipid;
/* See if we have an LM78 or LM79. */
chipid = sc->lm_readreg(sc, LM_CHIPID) & LM_CHIPID_MASK;
switch(chipid) {
case LM_CHIPID_LM78:
printf(": LM78\n");
break;
case LM_CHIPID_LM78J:
printf(": LM78J\n");
break;
case LM_CHIPID_LM79:
printf(": LM79\n");
break;
case LM_CHIPID_LM81:
printf(": LM81\n");
break;
default:
return 0;
}
lm_setup_sensors(sc, lm78_sensors);
sc->refresh_sensor_data = lm_refresh_sensor_data;
return 1;
}
int
def_match(struct lm_softc *sc)
{
int chipid;
chipid = sc->lm_readreg(sc, LM_CHIPID) & LM_CHIPID_MASK;
printf(": unknown chip (ID %d)\n", chipid);
lm_setup_sensors(sc, lm78_sensors);
sc->refresh_sensor_data = lm_refresh_sensor_data;
return 1;
}
int
wb_match(struct lm_softc *sc)
{
int banksel, vendid, devid;
/* Read vendor ID */
banksel = sc->lm_readreg(sc, WB_BANKSEL);
sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
vendid = sc->lm_readreg(sc, WB_VENDID) << 8;
sc->lm_writereg(sc, WB_BANKSEL, 0);
vendid |= sc->lm_readreg(sc, WB_VENDID);
sc->lm_writereg(sc, WB_BANKSEL, banksel);
DPRINTF((" winbond vend id 0x%x\n", vendid));
if (vendid != WB_VENDID_WINBOND && vendid != WB_VENDID_ASUS)
return 0;
/* Read device/chip ID */
sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
devid = sc->lm_readreg(sc, LM_CHIPID);
sc->chipid = sc->lm_readreg(sc, WB_BANK0_CHIPID);
sc->lm_writereg(sc, WB_BANKSEL, banksel);
DPRINTF((" winbond chip id 0x%x\n", sc->chipid));
switch(sc->chipid) {
case WB_CHIPID_W83627HF:
printf(": W83627HF\n");
lm_setup_sensors(sc, w83627hf_sensors);
break;
case WB_CHIPID_W83627THF:
printf(": W83627THF\n");
lm_setup_sensors(sc, w83637hf_sensors);
break;
case WB_CHIPID_W83627EHF_A:
printf(": W83627EHF-A\n");
lm_setup_sensors(sc, w83627ehf_sensors);
break;
case WB_CHIPID_W83627EHF:
printf(": W83627EHF\n");
lm_setup_sensors(sc, w83627ehf_sensors);
break;
case WB_CHIPID_W83627DHG:
switch (sc->sioid) {
case WBSIO_ID_NCT6775F:
printf(": NCT6775F\n");
lm_setup_sensors(sc, nct6776f_sensors);
break;
case WBSIO_ID_NCT6776F:
printf(": NCT6776F\n");
lm_setup_sensors(sc, nct6776f_sensors);
break;
case WBSIO_ID_NCT5104D:
printf(": NCT5104D\n");
lm_setup_sensors(sc, nct6776f_sensors);
break;
case WBSIO_ID_NCT6779D:
printf(": NCT6779D\n");
lm_setup_sensors(sc, nct6779d_sensors);
break;
case WBSIO_ID_NCT6791D:
printf(": NCT6791D\n");
lm_setup_sensors(sc, nct6779d_sensors);
break;
case WBSIO_ID_NCT6792D:
printf(": NCT6792D\n");
lm_setup_sensors(sc, nct6779d_sensors);
break;
case WBSIO_ID_NCT6793D:
printf(": NCT6793D\n");
lm_setup_sensors(sc, nct6779d_sensors);
break;
case WBSIO_ID_NCT6795D:
printf(": NCT6795D\n");
lm_setup_sensors(sc, nct6779d_sensors);
break;
default:
printf(": W83627DHG\n");
lm_setup_sensors(sc, w83627dhg_sensors);
}
break;
case WB_CHIPID_W83637HF:
printf(": W83637HF\n");
sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
if (sc->lm_readreg(sc, WB_BANK0_CONFIG) & WB_CONFIG_VMR9)
sc->vrm9 = 1;
sc->lm_writereg(sc, WB_BANKSEL, banksel);
lm_setup_sensors(sc, w83637hf_sensors);
break;
case WB_CHIPID_W83697HF:
printf(": W83697HF\n");
lm_setup_sensors(sc, w83697hf_sensors);
break;
case WB_CHIPID_W83781D:
case WB_CHIPID_W83781D_2:
printf(": W83781D\n");
lm_setup_sensors(sc, w83781d_sensors);
break;
case WB_CHIPID_W83782D:
printf(": W83782D\n");
lm_setup_sensors(sc, w83782d_sensors);
break;
case WB_CHIPID_W83783S:
printf(": W83783S\n");
lm_setup_sensors(sc, w83783s_sensors);
break;
case WB_CHIPID_W83791D:
printf(": W83791D\n");
lm_setup_sensors(sc, w83791d_sensors);
break;
case WB_CHIPID_W83791SD:
printf(": W83791SD\n");
break;
case WB_CHIPID_W83792D:
if (devid >= 0x10 && devid <= 0x29)
printf(": W83792D rev %c\n", 'A' + devid - 0x10);
else
printf(": W83792D rev 0x%x\n", devid);
lm_setup_sensors(sc, w83792d_sensors);
break;
case WB_CHIPID_AS99127F:
if (vendid == WB_VENDID_ASUS) {
printf(": AS99127F\n");
lm_setup_sensors(sc, w83781d_sensors);
} else {
printf(": AS99127F rev 2\n");
lm_setup_sensors(sc, as99127f_sensors);
}
break;
default:
printf(": unknown Winbond chip (ID 0x%x)\n", sc->chipid);
/* Handle as a standard LM78. */
lm_setup_sensors(sc, lm78_sensors);
sc->refresh_sensor_data = lm_refresh_sensor_data;
return 1;
}
sc->refresh_sensor_data = wb_refresh_sensor_data;
return 1;
}
void
lm_setup_sensors(struct lm_softc *sc, const struct lm_sensor *sensors)
{
int i;
strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname,
sizeof(sc->sensordev.xname));
for (i = 0; sensors[i].desc; i++) {
sc->sensors[i].type = sensors[i].type;
strlcpy(sc->sensors[i].desc, sensors[i].desc,
sizeof(sc->sensors[i].desc));
sc->numsensors++;
}
sc->lm_sensors = sensors;
}
void
lm_refresh(void *arg)
{
struct lm_softc *sc = arg;
sc->refresh_sensor_data(sc);
}
void
lm_refresh_sensor_data(struct lm_softc *sc)
{
int i;
for (i = 0; i < sc->numsensors; i++)
sc->lm_sensors[i].refresh(sc, i);
}
void
lm_refresh_volt(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int data;
data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
sensor->value = (data << 4);
sensor->value *= sc->lm_sensors[n].rfact;
sensor->value /= 10;
}
void
lm_refresh_temp(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int sdata;
/*
* The data sheet suggests that the range of the temperature
* sensor is between -55 degC and +125 degC.
*/
sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
if (sdata > 0x7d && sdata < 0xc9) {
sensor->flags |= SENSOR_FINVALID;
sensor->value = 0;
} else {
if (sdata & 0x80)
sdata -= 0x100;
sensor->flags &= ~SENSOR_FINVALID;
sensor->value = sdata * 1000000 + 273150000;
}
}
void
lm_refresh_fanrpm(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int data, divisor = 1;
/*
* We might get more accurate fan readings by adjusting the
* divisor, but that might interfere with APM or other SMM
* BIOS code reading the fan speeds.
*/
/* FAN3 has a fixed fan divisor. */
if (sc->lm_sensors[n].reg == LM_FAN1 ||
sc->lm_sensors[n].reg == LM_FAN2) {
data = sc->lm_readreg(sc, LM_VIDFAN);
if (sc->lm_sensors[n].reg == LM_FAN1)
divisor = (data >> 4) & 0x03;
else
divisor = (data >> 6) & 0x03;
}
data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
if (data == 0xff || data == 0x00) {
sensor->flags |= SENSOR_FINVALID;
sensor->value = 0;
} else {
sensor->flags &= ~SENSOR_FINVALID;
sensor->value = 1350000 / (data << divisor);
}
}
void
wb_refresh_sensor_data(struct lm_softc *sc)
{
int banksel, bank, i;
/*
* Properly save and restore bank selection register.
*/
banksel = bank = sc->lm_readreg(sc, WB_BANKSEL);
for (i = 0; i < sc->numsensors; i++) {
if (bank != sc->lm_sensors[i].bank) {
bank = sc->lm_sensors[i].bank;
sc->lm_writereg(sc, WB_BANKSEL, bank);
}
sc->lm_sensors[i].refresh(sc, i);
}
sc->lm_writereg(sc, WB_BANKSEL, banksel);
}
void
wb_w83637hf_refresh_vcore(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int data;
data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
/*
* Depending on the voltage detection method,
* one of the following formulas is used:
* VRM8 method: value = raw * 0.016V
* VRM9 method: value = raw * 0.00488V + 0.70V
*/
if (sc->vrm9)
sensor->value = (data * 4880) + 700000;
else
sensor->value = (data * 16000);
}
void
wb_refresh_nvolt(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int data;
data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
sensor->value = ((data << 4) - WB_VREF);
sensor->value *= sc->lm_sensors[n].rfact;
sensor->value /= 10;
sensor->value += WB_VREF * 1000;
}
void
wb_w83627ehf_refresh_nvolt(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int data;
data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
sensor->value = ((data << 3) - WB_W83627EHF_VREF);
sensor->value *= RFACT(232, 10);
sensor->value /= 10;
sensor->value += WB_W83627EHF_VREF * 1000;
}
void
wb_refresh_temp(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int sdata;
/*
* The data sheet suggests that the range of the temperature
* sensor is between -55 degC and +125 degC. However, values
* around -48 degC seem to be a very common bogus values.
* Since such values are unreasonably low, we use -45 degC for
* the lower limit instead.
*/
sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg) << 1;
sdata += sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1) >> 7;
if (sdata > 0x0fa && sdata < 0x1a6) {
sensor->flags |= SENSOR_FINVALID;
sensor->value = 0;
} else {
if (sdata & 0x100)
sdata -= 0x200;
sensor->flags &= ~SENSOR_FINVALID;
sensor->value = sdata * 500000 + 273150000;
}
}
void
wb_refresh_fanrpm(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int fan, data, divisor = 0;
/*
* This is madness; the fan divisor bits are scattered all
* over the place.
*/
if (sc->lm_sensors[n].reg == LM_FAN1 ||
sc->lm_sensors[n].reg == LM_FAN2 ||
sc->lm_sensors[n].reg == LM_FAN3) {
data = sc->lm_readreg(sc, WB_BANK0_VBAT);
fan = (sc->lm_sensors[n].reg - LM_FAN1);
if ((data >> 5) & (1 << fan))
divisor |= 0x04;
}
if (sc->lm_sensors[n].reg == LM_FAN1 ||
sc->lm_sensors[n].reg == LM_FAN2) {
data = sc->lm_readreg(sc, LM_VIDFAN);
if (sc->lm_sensors[n].reg == LM_FAN1)
divisor |= (data >> 4) & 0x03;
else
divisor |= (data >> 6) & 0x03;
} else if (sc->lm_sensors[n].reg == LM_FAN3) {
data = sc->lm_readreg(sc, WB_PIN);
divisor |= (data >> 6) & 0x03;
} else if (sc->lm_sensors[n].reg == WB_BANK0_FAN4 ||
sc->lm_sensors[n].reg == WB_BANK0_FAN5) {
data = sc->lm_readreg(sc, WB_BANK0_FAN45);
if (sc->lm_sensors[n].reg == WB_BANK0_FAN4)
divisor |= (data >> 0) & 0x07;
else
divisor |= (data >> 4) & 0x07;
}
data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
if (data == 0xff || data == 0x00) {
sensor->flags |= SENSOR_FINVALID;
sensor->value = 0;
} else {
sensor->flags &= ~SENSOR_FINVALID;
sensor->value = 1350000 / (data << divisor);
}
}
void
wb_nct6776f_refresh_fanrpm(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int datah, datal;
datah = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
datal = sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1);
if (datah == 0xff) {
sensor->flags |= SENSOR_FINVALID;
sensor->value = 0;
} else {
sensor->flags &= ~SENSOR_FINVALID;
sensor->value = (datah << 8) | datal;
}
}
void
wb_w83792d_refresh_fanrpm(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int reg, shift, data, divisor = 1;
switch (sc->lm_sensors[n].reg) {
case 0x28:
reg = 0x47; shift = 0;
break;
case 0x29:
reg = 0x47; shift = 4;
break;
case 0x2a:
reg = 0x5b; shift = 0;
break;
case 0xb8:
reg = 0x5b; shift = 4;
break;
case 0xb9:
reg = 0x5c; shift = 0;
break;
case 0xba:
reg = 0x5c; shift = 4;
break;
case 0xbe:
reg = 0x9e; shift = 0;
break;
default:
reg = 0;
break;
}
data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
if (data == 0xff || data == 0x00) {
sensor->flags |= SENSOR_FINVALID;
sensor->value = 0;
} else {
if (reg != 0)
divisor = (sc->lm_readreg(sc, reg) >> shift) & 0x7;
sensor->flags &= ~SENSOR_FINVALID;
sensor->value = 1350000 / (data << divisor);
}
}
void
as_refresh_temp(struct lm_softc *sc, int n)
{
struct ksensor *sensor = &sc->sensors[n];
int sdata;
/*
* It seems a shorted temperature diode produces an all-ones
* bit pattern.
*/
sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg) << 1;
sdata += sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1) >> 7;
if (sdata == 0x1ff) {
sensor->flags |= SENSOR_FINVALID;
sensor->value = 0;
} else {
if (sdata & 0x100)
sdata -= 0x200;
sensor->flags &= ~SENSOR_FINVALID;
sensor->value = sdata * 500000 + 273150000;
}
}