1790 lines
46 KiB
C
1790 lines
46 KiB
C
/* $OpenBSD: elink3.c,v 1.99 2023/04/11 00:45:08 jsg Exp $ */
|
|
/* $NetBSD: elink3.c,v 1.32 1997/05/14 00:22:00 thorpej Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
|
|
* Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Herb Peyerl.
|
|
* 4. The name of Herb Peyerl may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/timeout.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/ic/elink3var.h>
|
|
#include <dev/ic/elink3reg.h>
|
|
|
|
/*
|
|
* Structure to map media-present bits in boards to
|
|
* ifmedia codes and printable media names. Used for table-driven
|
|
* ifmedia initialization.
|
|
*/
|
|
struct ep_media {
|
|
int epm_eeprom_data; /* bitmask for eeprom config */
|
|
int epm_conn; /* sc->ep_connectors code for medium */
|
|
char *epm_name; /* name of medium */
|
|
uint64_t epm_ifmedia; /* ifmedia word for medium */
|
|
int epm_ifdata;
|
|
};
|
|
|
|
/*
|
|
* ep_media table for Vortex/Demon/Boomerang:
|
|
* map from media-present bits in register RESET_OPTIONS+2
|
|
* to ifmedia "media words" and printable names.
|
|
*
|
|
* XXX indexed directly by INTERNAL_CONFIG default_media field,
|
|
* (i.e., EPMEDIA_ constants) forcing order of entries.
|
|
* Note that 3 is reserved.
|
|
*/
|
|
const struct ep_media ep_vortex_media[] = {
|
|
{ EP_PCI_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T,
|
|
EPMEDIA_10BASE_T },
|
|
{ EP_PCI_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5,
|
|
EPMEDIA_AUI },
|
|
{ 0, 0, "reserved", IFM_NONE, EPMEDIA_RESV1 },
|
|
{ EP_PCI_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2,
|
|
EPMEDIA_10BASE_2 },
|
|
{ EP_PCI_100BASE_TX, EPC_100TX, "100-TX", IFM_ETHER|IFM_100_TX,
|
|
EPMEDIA_100BASE_TX },
|
|
{ EP_PCI_100BASE_FX, EPC_100FX, "100-FX", IFM_ETHER|IFM_100_FX,
|
|
EPMEDIA_100BASE_FX },
|
|
{ EP_PCI_100BASE_MII,EPC_MII, "mii", IFM_ETHER|IFM_100_TX,
|
|
EPMEDIA_MII },
|
|
{ EP_PCI_100BASE_T4, EPC_100T4, "100-T4", IFM_ETHER|IFM_100_T4,
|
|
EPMEDIA_100BASE_T4 }
|
|
};
|
|
|
|
/*
|
|
* ep_media table for 3c509/3c509b/3c579/3c589:
|
|
* map from media-present bits in register CNFG_CNTRL
|
|
* (window 0, offset ?) to ifmedia "media words" and printable names.
|
|
*/
|
|
struct ep_media ep_isa_media[] = {
|
|
{ EP_W0_CC_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T, EPMEDIA_10BASE_T },
|
|
{ EP_W0_CC_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5, EPMEDIA_AUI },
|
|
{ EP_W0_CC_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2, EPMEDIA_10BASE_2 },
|
|
};
|
|
|
|
/* Map vortex reset_options bits to if_media codes. */
|
|
const uint64_t ep_default_to_media[] = {
|
|
IFM_ETHER | IFM_10_T,
|
|
IFM_ETHER | IFM_10_5,
|
|
0, /* reserved by 3Com */
|
|
IFM_ETHER | IFM_10_2,
|
|
IFM_ETHER | IFM_100_TX,
|
|
IFM_ETHER | IFM_100_FX,
|
|
IFM_ETHER | IFM_100_TX, /* XXX really MII: need to talk to PHY */
|
|
IFM_ETHER | IFM_100_T4,
|
|
};
|
|
|
|
struct cfdriver ep_cd = {
|
|
NULL, "ep", DV_IFNET
|
|
};
|
|
|
|
void ep_vortex_probemedia(struct ep_softc *sc);
|
|
void ep_isa_probemedia(struct ep_softc *sc);
|
|
|
|
void eptxstat(struct ep_softc *);
|
|
int epstatus(struct ep_softc *);
|
|
int epioctl(struct ifnet *, u_long, caddr_t);
|
|
void epstart(struct ifnet *);
|
|
void epwatchdog(struct ifnet *);
|
|
void epreset(struct ep_softc *);
|
|
void epread(struct ep_softc *);
|
|
struct mbuf *epget(struct ep_softc *, int);
|
|
void epmbuffill(void *);
|
|
void epmbufempty(struct ep_softc *);
|
|
void epsetfilter(struct ep_softc *);
|
|
void ep_roadrunner_mii_enable(struct ep_softc *);
|
|
int epsetmedia(struct ep_softc *, int);
|
|
|
|
/* ifmedia callbacks */
|
|
int ep_media_change(struct ifnet *);
|
|
void ep_media_status(struct ifnet *, struct ifmediareq *);
|
|
|
|
/* MII callbacks */
|
|
int ep_mii_readreg(struct device *, int, int);
|
|
void ep_mii_writereg(struct device *, int, int, int);
|
|
void ep_statchg(struct device *);
|
|
|
|
void ep_mii_setbit(struct ep_softc *, u_int16_t);
|
|
void ep_mii_clrbit(struct ep_softc *, u_int16_t);
|
|
u_int16_t ep_mii_readbit(struct ep_softc *, u_int16_t);
|
|
void ep_mii_sync(struct ep_softc *);
|
|
void ep_mii_sendbits(struct ep_softc *, u_int32_t, int);
|
|
|
|
int epbusyeeprom(struct ep_softc *);
|
|
u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
|
|
|
|
static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd,u_int arg);
|
|
static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
|
|
static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
|
|
static __inline int ep_w1_reg(struct ep_softc *, int);
|
|
|
|
/*
|
|
* Issue a (reset) command, and be sure it has completed.
|
|
* Used for global reset, TX_RESET, RX_RESET.
|
|
*/
|
|
static inline void
|
|
ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
bus_space_write_2(iot, ioh, cmd, arg);
|
|
ep_finish_reset(iot, ioh);
|
|
}
|
|
|
|
/*
|
|
* Wait for any pending reset to complete.
|
|
*/
|
|
static inline void
|
|
ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
if ((bus_space_read_2(iot, ioh, EP_STATUS) &
|
|
S_COMMAND_IN_PROGRESS) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
|
|
{
|
|
int i;
|
|
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
|
|
|
|
/*
|
|
* Spin for about 1 msec, to avoid forcing a DELAY() between
|
|
* every received packet (adding latency and limiting pkt-recv rate).
|
|
* On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
|
|
* is about right.
|
|
*/
|
|
for (i = 0; i < 8000; i++) {
|
|
if ((bus_space_read_2(iot, ioh, EP_STATUS) &
|
|
S_COMMAND_IN_PROGRESS) == 0)
|
|
return;
|
|
}
|
|
|
|
/* not fast enough, do DELAY()s */
|
|
ep_finish_reset(iot, ioh);
|
|
}
|
|
|
|
/*
|
|
* Some chips (i.e., 3c574 RoadRunner) have Window 1 registers offset.
|
|
*/
|
|
static __inline int
|
|
ep_w1_reg(struct ep_softc *sc, int reg)
|
|
{
|
|
switch (sc->ep_chipset) {
|
|
case EP_CHIPSET_ROADRUNNER:
|
|
switch (reg) {
|
|
case EP_W1_FREE_TX:
|
|
case EP_W1_RUNNER_RDCTL:
|
|
case EP_W1_RUNNER_WRCTL:
|
|
return (reg);
|
|
}
|
|
return (reg + 0x10);
|
|
}
|
|
return (reg);
|
|
}
|
|
|
|
/*
|
|
* Back-end attach and configure.
|
|
*/
|
|
void
|
|
epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int16_t i;
|
|
|
|
sc->ep_chipset = chipset;
|
|
|
|
/*
|
|
* We could have been groveling around in other register
|
|
* windows in the front-end; make sure we're in window 0
|
|
* to read the EEPROM.
|
|
*/
|
|
GO_WINDOW(0);
|
|
|
|
if (enaddr == NULL) {
|
|
/*
|
|
* Read the station address from the eeprom.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
u_int16_t x = ep_read_eeprom(sc, i);
|
|
|
|
sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
|
|
sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
|
|
}
|
|
} else {
|
|
bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
}
|
|
|
|
printf(" address %s", ether_sprintf(sc->sc_arpcom.ac_enaddr));
|
|
if (sc->ep_flags & EP_FLAGS_MII)
|
|
printf("\n");
|
|
else
|
|
printf(", ");
|
|
|
|
/*
|
|
* Vortex-based (3c59x pci,eisa) cards allow FDDI-sized (4500) byte
|
|
* packets. Commands only take an 11-bit parameter, and 11 bits
|
|
* isn't enough to hold a full-size packet length.
|
|
* Commands to these cards implicitly upshift a packet size
|
|
* or threshold by 2 bits.
|
|
* To detect cards with large-packet support, we probe by setting
|
|
* the transmit threshold register, then change windows and
|
|
* read back the threshold register directly, and see if the
|
|
* threshold value was shifted or not.
|
|
*/
|
|
bus_space_write_2(iot, ioh, EP_COMMAND,
|
|
SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
|
|
GO_WINDOW(5);
|
|
i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
|
|
GO_WINDOW(1);
|
|
switch (i) {
|
|
case EP_LARGEWIN_PROBE:
|
|
case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
|
|
sc->txashift = 0;
|
|
break;
|
|
|
|
case (EP_LARGEWIN_PROBE << 2):
|
|
sc->txashift = 2;
|
|
/* XXX does the 3c515 support Vortex-style RESET_OPTIONS? */
|
|
break;
|
|
|
|
default:
|
|
printf("wrote %x to TX_AVAIL_THRESH, read back %x. "
|
|
"Interface disabled\n", EP_THRESH_DISABLE, (int) i);
|
|
return;
|
|
}
|
|
|
|
timeout_set(&sc->sc_epmbuffill_tmo, epmbuffill, sc);
|
|
|
|
/*
|
|
* Ensure Tx-available interrupts are enabled for
|
|
* start the interface.
|
|
* XXX should be in epinit()?
|
|
*/
|
|
bus_space_write_2(iot, ioh, EP_COMMAND,
|
|
SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
|
|
|
|
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = epstart;
|
|
ifp->if_ioctl = epioctl;
|
|
ifp->if_watchdog = epwatchdog;
|
|
ifp->if_flags =
|
|
IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
/* 64 packets are around 100ms on 10Mbps */
|
|
ifq_set_maxlen(&ifp->if_snd, 64);
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
/*
|
|
* Finish configuration:
|
|
* determine chipset if the front-end couldn't do so,
|
|
* show board details, set media.
|
|
*/
|
|
|
|
GO_WINDOW(0);
|
|
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
|
|
ep_media_status);
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = ep_mii_readreg;
|
|
sc->sc_mii.mii_writereg = ep_mii_writereg;
|
|
sc->sc_mii.mii_statchg = ep_statchg;
|
|
|
|
/*
|
|
* If we've got an indirect (ISA, PCMCIA?) board, the chipset
|
|
* is unknown. If the board has large-packet support, it's a
|
|
* Vortex/Boomerang, otherwise it's a 3c509.
|
|
* XXX use eeprom capability word instead?
|
|
*/
|
|
if (sc->ep_chipset == EP_CHIPSET_UNKNOWN && sc->txashift) {
|
|
printf("warning: unknown chipset, possibly 3c515?\n");
|
|
#ifdef notyet
|
|
sc->sc_chipset = EP_CHIPSET_VORTEX;
|
|
#endif /* notyet */
|
|
}
|
|
|
|
/*
|
|
* Ascertain which media types are present and inform ifmedia.
|
|
*/
|
|
switch (sc->ep_chipset) {
|
|
case EP_CHIPSET_ROADRUNNER:
|
|
if (sc->ep_flags & EP_FLAGS_MII) {
|
|
ep_roadrunner_mii_enable(sc);
|
|
GO_WINDOW(0);
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
case EP_CHIPSET_BOOMERANG:
|
|
/*
|
|
* If the device has MII, probe it. We won't be using
|
|
* any `native' media in this case, only PHYs. If
|
|
* we don't, just treat the Boomerang like the Vortex.
|
|
*/
|
|
if (sc->ep_flags & EP_FLAGS_MII) {
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
|
|
MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_NONE);
|
|
} else {
|
|
ifmedia_set(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_AUTO);
|
|
}
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
/* on a direct bus, the attach routine can tell, but check anyway. */
|
|
case EP_CHIPSET_VORTEX:
|
|
case EP_CHIPSET_BOOMERANG2:
|
|
ep_vortex_probemedia(sc);
|
|
break;
|
|
|
|
/* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */
|
|
case EP_CHIPSET_3C509:
|
|
default:
|
|
ep_isa_probemedia(sc);
|
|
break;
|
|
}
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
|
|
sc->tx_start_thresh = 20; /* probably a good starting point. */
|
|
|
|
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
|
|
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
|
|
}
|
|
|
|
int
|
|
ep_detach(struct device *self)
|
|
{
|
|
struct ep_softc *sc = (struct ep_softc *)self;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
|
|
if (sc->ep_flags & EP_FLAGS_MII)
|
|
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
|
|
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
|
|
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find supported media on 3c509-generation hardware that doesn't have
|
|
* a "reset_options" register in window 3.
|
|
* Use the config_cntrl register in window 0 instead.
|
|
* Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
|
|
* that implement CONFIG_CTRL. We don't have a good way to set the
|
|
* default active medium; punt to ifconfig instead.
|
|
*
|
|
* XXX what about 3c515, pcmcia 10/100?
|
|
*/
|
|
void
|
|
ep_isa_probemedia(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifmedia *ifm = &sc->sc_mii.mii_media;
|
|
int conn, i;
|
|
u_int16_t ep_w0_config, port;
|
|
|
|
conn = 0;
|
|
GO_WINDOW(0);
|
|
ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
|
|
for (i = 0; i < nitems(ep_isa_media); i++) {
|
|
struct ep_media * epm = ep_isa_media + i;
|
|
|
|
if ((ep_w0_config & epm->epm_eeprom_data) != 0) {
|
|
ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
|
|
if (conn)
|
|
printf("/");
|
|
printf("%s", epm->epm_name);
|
|
conn |= epm->epm_conn;
|
|
}
|
|
}
|
|
sc->ep_connectors = conn;
|
|
|
|
/* get default medium from EEPROM */
|
|
if (epbusyeeprom(sc))
|
|
return; /* XXX why is eeprom busy? */
|
|
bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
|
|
READ_EEPROM | EEPROM_ADDR_CFG);
|
|
if (epbusyeeprom(sc))
|
|
return; /* XXX why is eeprom busy? */
|
|
port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
|
|
port = port >> 14;
|
|
|
|
printf(" (default %s)\n", ep_vortex_media[port].epm_name);
|
|
|
|
/* tell ifconfig what currently-active media is. */
|
|
ifmedia_set(ifm, ep_default_to_media[port]);
|
|
|
|
/* XXX autoselect not yet implemented */
|
|
}
|
|
|
|
|
|
/*
|
|
* Find media present on large-packet-capable elink3 devices.
|
|
* Show onboard configuration of large-packet-capable elink3 devices
|
|
* (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
|
|
* Use media and card-version info in window 3 instead.
|
|
*
|
|
* XXX how much of this works with 3c515, pcmcia 10/100?
|
|
*/
|
|
void
|
|
ep_vortex_probemedia(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifmedia *ifm = &sc->sc_mii.mii_media;
|
|
u_int config1, conn;
|
|
int reset_options;
|
|
int default_media; /* 3-bit encoding of default (EEPROM) media */
|
|
int autoselect; /* boolean: should default to autoselect */
|
|
const char *medium_name;
|
|
register int i;
|
|
|
|
GO_WINDOW(3);
|
|
config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
|
|
reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
|
|
GO_WINDOW(0);
|
|
|
|
default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
|
|
autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
|
|
|
|
/* set available media options */
|
|
conn = 0;
|
|
for (i = 0; i < nitems(ep_vortex_media); i++) {
|
|
const struct ep_media *epm = ep_vortex_media + i;
|
|
|
|
if ((reset_options & epm->epm_eeprom_data) != 0) {
|
|
if (conn)
|
|
printf("/");
|
|
printf("%s", epm->epm_name);
|
|
conn |= epm->epm_conn;
|
|
ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
|
|
}
|
|
}
|
|
|
|
sc->ep_connectors = conn;
|
|
|
|
/* Show eeprom's idea of default media. */
|
|
medium_name = (default_media > nitems(ep_vortex_media) - 1)
|
|
? "(unknown/impossible media)"
|
|
: ep_vortex_media[default_media].epm_name;
|
|
printf(" default %s%s",
|
|
medium_name, (autoselect) ? "/autoselect" : "");
|
|
/* sc->sc_media = ep_vortex_media[default_media].epm_ifdata;*/
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* Set default: either the active interface the card
|
|
* reads from the EEPROM, or if autoselect is true,
|
|
* whatever we find is actually connected.
|
|
*
|
|
* XXX autoselect not yet implemented.
|
|
*/
|
|
#endif /* notyet */
|
|
|
|
/* tell ifconfig what currently-active media is. */
|
|
ifmedia_set(ifm, ep_default_to_media[default_media]);
|
|
}
|
|
|
|
/*
|
|
* Bring device up.
|
|
*
|
|
* The order in here seems important. Otherwise we may not receive
|
|
* interrupts. ?!
|
|
*/
|
|
void
|
|
epinit(struct ep_softc *sc)
|
|
{
|
|
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i;
|
|
|
|
/* make sure any pending reset has completed before touching board */
|
|
ep_finish_reset(iot, ioh);
|
|
|
|
/* cancel any pending I/O */
|
|
epstop(sc);
|
|
|
|
if (sc->bustype != EP_BUS_PCI) {
|
|
GO_WINDOW(0);
|
|
bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
|
|
bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
|
|
}
|
|
|
|
if (sc->bustype == EP_BUS_PCMCIA) {
|
|
bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
|
|
}
|
|
|
|
GO_WINDOW(2);
|
|
for (i = 0; i < 6; i++) /* Reload the ether_addr. */
|
|
bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
|
|
sc->sc_arpcom.ac_enaddr[i]);
|
|
|
|
if (sc->bustype == EP_BUS_PCI || sc->bustype == EP_BUS_EISA)
|
|
/*
|
|
* Reset the station-address receive filter.
|
|
* A bug workaround for busmastering (Vortex, Demon) cards.
|
|
*/
|
|
for (i = 0; i < 6; i++)
|
|
bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
|
|
|
|
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
|
|
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
for (i = 0; i < 31; i++)
|
|
bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
|
|
|
|
/* Set threshold for Tx-space available interrupt. */
|
|
bus_space_write_2(iot, ioh, EP_COMMAND,
|
|
SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
|
|
|
|
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
|
|
/* Enable options in the PCMCIA LAN COR register, via
|
|
* RoadRunner Window 1.
|
|
*
|
|
* XXX MAGIC CONSTANTS!
|
|
*/
|
|
u_int16_t cor;
|
|
|
|
bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11));
|
|
|
|
cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
|
|
bus_space_write_2(iot, ioh, 0, cor);
|
|
|
|
bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
|
|
bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
|
|
|
|
if (sc->ep_flags & EP_FLAGS_MII) {
|
|
ep_roadrunner_mii_enable(sc);
|
|
GO_WINDOW(1);
|
|
}
|
|
}
|
|
|
|
/* Enable interrupts. */
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK |
|
|
S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK |
|
|
S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
|
|
|
|
/*
|
|
* Attempt to get rid of any stray interrupts that occurred during
|
|
* configuration. On the i386 this isn't possible because one may
|
|
* already be queued. However, a single stray interrupt is
|
|
* unimportant.
|
|
*/
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
|
|
|
|
epsetfilter(sc);
|
|
epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
|
|
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
|
|
|
|
epmbuffill(sc);
|
|
|
|
/* Interface is now `running', with no output active. */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
/* Attempt to start output, if any. */
|
|
epstart(ifp);
|
|
}
|
|
|
|
/*
|
|
* Set multicast receive filter.
|
|
* elink3 hardware has no selective multicast filter in hardware.
|
|
* Enable reception of all multicasts and filter in software.
|
|
*/
|
|
void
|
|
epsetfilter(struct ep_softc *sc)
|
|
{
|
|
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
|
|
FIL_INDIVIDUAL | FIL_BRDCST |
|
|
((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
|
|
((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
|
|
}
|
|
|
|
|
|
int
|
|
ep_media_change(struct ifnet *ifp)
|
|
{
|
|
register struct ep_softc *sc = ifp->if_softc;
|
|
|
|
return epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
|
|
}
|
|
|
|
/*
|
|
* Reset and enable the MII on the RoadRunner.
|
|
*/
|
|
void
|
|
ep_roadrunner_mii_enable(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
GO_WINDOW(3);
|
|
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
|
|
EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
|
|
delay(1000);
|
|
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
|
|
EP_PCI_100BASE_MII|EP_RUNNER_MII_RESET|EP_RUNNER_ENABLE_MII);
|
|
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
|
|
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
|
|
delay(1000);
|
|
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
|
|
EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
|
|
}
|
|
|
|
/*
|
|
* Set active media to a specific given EPMEDIA_<> value.
|
|
* For vortex/demon/boomerang cards, update media field in w3_internal_config,
|
|
* and power on selected transceiver.
|
|
* For 3c509-generation cards (3c509/3c579/3c589/3c509B),
|
|
* update media field in w0_address_config, and power on selected xcvr.
|
|
*/
|
|
int
|
|
epsetmedia(struct ep_softc *sc, int medium)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int w4_media;
|
|
int config0, config1;
|
|
|
|
/*
|
|
* you can `ifconfig (link0|-link0) ep0' to get the following
|
|
* behaviour:
|
|
* -link0 disable AUI/UTP. enable BNC.
|
|
* link0 disable BNC. enable AUI.
|
|
* link1 if the card has a UTP connector, and link0 is
|
|
* set too, then you get the UTP port.
|
|
*/
|
|
|
|
/*
|
|
* First, change the media-control bits in EP_W4_MEDIA_TYPE.
|
|
*/
|
|
|
|
/* Turn everything off. First turn off linkbeat and UTP. */
|
|
GO_WINDOW(4);
|
|
w4_media = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
|
|
w4_media = w4_media & ~(ENABLE_UTP|SQE_ENABLE);
|
|
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, w4_media);
|
|
|
|
/* Turn off coax */
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
|
|
delay(1000);
|
|
|
|
/* If the device has MII, select it, and then tell the
|
|
* PHY which media to use.
|
|
*/
|
|
if (sc->ep_flags & EP_FLAGS_MII) {
|
|
GO_WINDOW(3);
|
|
|
|
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
|
|
int resopt;
|
|
|
|
resopt = bus_space_read_2(iot, ioh,
|
|
EP_W3_RESET_OPTIONS);
|
|
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
|
|
resopt | EP_RUNNER_ENABLE_MII);
|
|
}
|
|
|
|
config0 = (u_int)bus_space_read_2(iot, ioh,
|
|
EP_W3_INTERNAL_CONFIG);
|
|
config1 = (u_int)bus_space_read_2(iot, ioh,
|
|
EP_W3_INTERNAL_CONFIG + 2);
|
|
|
|
config1 = config1 & ~CONFIG_MEDIAMASK;
|
|
config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
|
|
|
|
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
|
|
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
|
|
GO_WINDOW(1); /* back to operating window */
|
|
|
|
mii_mediachg(&sc->sc_mii);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Now turn on the selected media/transceiver.
|
|
*/
|
|
GO_WINDOW(4);
|
|
switch (medium) {
|
|
case EPMEDIA_10BASE_T:
|
|
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, (ENABLE_UTP |
|
|
(sc->bustype == EP_BUS_PCMCIA ? MEDIA_LED : 0)));
|
|
break;
|
|
|
|
case EPMEDIA_10BASE_2:
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
|
|
DELAY(1000); /* 50ms not enough? */
|
|
break;
|
|
|
|
/* XXX following only for new-generation cards */
|
|
case EPMEDIA_100BASE_TX:
|
|
case EPMEDIA_100BASE_FX:
|
|
case EPMEDIA_100BASE_T4: /* XXX check documentation */
|
|
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
|
|
w4_media | LINKBEAT_ENABLE);
|
|
DELAY(1000); /* not strictly necessary? */
|
|
break;
|
|
|
|
case EPMEDIA_AUI:
|
|
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
|
|
w4_media | SQE_ENABLE);
|
|
DELAY(1000); /* not strictly necessary? */
|
|
break;
|
|
case EPMEDIA_MII:
|
|
break;
|
|
default:
|
|
#if defined(EP_DEBUG)
|
|
printf("%s unknown media 0x%x\n", sc->sc_dev.dv_xname, medium);
|
|
#endif
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
* Tell the chip which PHY [sic] to use.
|
|
*/
|
|
switch (sc->ep_chipset) {
|
|
case EP_CHIPSET_VORTEX:
|
|
case EP_CHIPSET_BOOMERANG2:
|
|
GO_WINDOW(3);
|
|
config0 = (u_int)bus_space_read_2(iot, ioh,
|
|
EP_W3_INTERNAL_CONFIG);
|
|
config1 = (u_int)bus_space_read_2(iot, ioh,
|
|
EP_W3_INTERNAL_CONFIG + 2);
|
|
|
|
#if defined(EP_DEBUG)
|
|
printf("%s: read 0x%x, 0x%x from EP_W3_CONFIG register\n",
|
|
sc->sc_dev.dv_xname, config0, config1);
|
|
#endif
|
|
config1 = config1 & ~CONFIG_MEDIAMASK;
|
|
config1 |= (medium << CONFIG_MEDIAMASK_SHIFT);
|
|
|
|
#if defined(EP_DEBUG)
|
|
printf("epsetmedia: %s: medium 0x%x, 0x%x to EP_W3_CONFIG\n",
|
|
sc->sc_dev.dv_xname, medium, config1);
|
|
#endif
|
|
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
|
|
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
|
|
break;
|
|
|
|
default:
|
|
GO_WINDOW(0);
|
|
config0 = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
|
|
config0 &= 0x3fff;
|
|
bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,
|
|
config0 | (medium << 14));
|
|
DELAY(1000);
|
|
break;
|
|
}
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get currently-selected media from card.
|
|
* (if_media callback, may be called before interface is brought up).
|
|
*/
|
|
void
|
|
ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
|
|
{
|
|
register struct ep_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int config1;
|
|
u_int ep_mediastatus;
|
|
|
|
/*
|
|
* If we have MII, go ask the PHY what's going on.
|
|
*/
|
|
if (sc->ep_flags & EP_FLAGS_MII) {
|
|
mii_pollstat(&sc->sc_mii);
|
|
req->ifm_active = sc->sc_mii.mii_media_active;
|
|
req->ifm_status = sc->sc_mii.mii_media_status;
|
|
return;
|
|
}
|
|
|
|
/* XXX read from softc when we start autosensing media */
|
|
req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
|
|
|
|
switch (sc->ep_chipset) {
|
|
case EP_CHIPSET_VORTEX:
|
|
case EP_CHIPSET_BOOMERANG:
|
|
GO_WINDOW(3);
|
|
delay(5000);
|
|
|
|
config1 = bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
|
|
GO_WINDOW(1);
|
|
|
|
config1 =
|
|
(config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
|
|
req->ifm_active = ep_default_to_media[config1];
|
|
|
|
/* XXX check full-duplex bits? */
|
|
|
|
GO_WINDOW(4);
|
|
req->ifm_status = IFM_AVALID; /* XXX */
|
|
ep_mediastatus = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
|
|
if (ep_mediastatus & LINKBEAT_DETECT)
|
|
req->ifm_status |= IFM_ACTIVE; /* XXX automedia */
|
|
|
|
break;
|
|
|
|
case EP_CHIPSET_UNKNOWN:
|
|
case EP_CHIPSET_3C509:
|
|
req->ifm_status = 0; /* XXX */
|
|
break;
|
|
|
|
default:
|
|
printf("%s: media_status on unknown chipset 0x%x\n",
|
|
ifp->if_xname, sc->ep_chipset);
|
|
break;
|
|
}
|
|
|
|
/* XXX look for softc heartbeat for other chips or media */
|
|
|
|
GO_WINDOW(1);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Start outputting on the interface.
|
|
* Always called as splnet().
|
|
*/
|
|
void
|
|
epstart(struct ifnet *ifp)
|
|
{
|
|
register struct ep_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct mbuf *m, *m0;
|
|
caddr_t data;
|
|
int sh, len, pad, txreg;
|
|
|
|
/* Don't transmit if interface is busy or not running */
|
|
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
|
|
return;
|
|
|
|
startagain:
|
|
/* Sneak a peek at the next packet */
|
|
m0 = ifq_deq_begin(&ifp->if_snd);
|
|
if (m0 == NULL)
|
|
return;
|
|
|
|
/* We need to use m->m_pkthdr.len, so require the header */
|
|
if ((m0->m_flags & M_PKTHDR) == 0)
|
|
panic("epstart: no header mbuf");
|
|
len = m0->m_pkthdr.len;
|
|
|
|
pad = (4 - len) & 3;
|
|
|
|
/*
|
|
* The 3c509 automatically pads short packets to minimum ethernet
|
|
* length, but we drop packets that are too large. Perhaps we should
|
|
* truncate them instead?
|
|
*/
|
|
if (len + pad > ETHER_MAX_LEN) {
|
|
/* packet is obviously too large: toss it */
|
|
++ifp->if_oerrors;
|
|
ifq_deq_commit(&ifp->if_snd, m0);
|
|
m_freem(m0);
|
|
goto readcheck;
|
|
}
|
|
|
|
if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
|
|
len + pad + 4) {
|
|
bus_space_write_2(iot, ioh, EP_COMMAND,
|
|
SET_TX_AVAIL_THRESH | ((len + pad + 4) >> sc->txashift));
|
|
/* not enough room in FIFO */
|
|
ifq_deq_rollback(&ifp->if_snd, m0);
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
return;
|
|
} else {
|
|
bus_space_write_2(iot, ioh, EP_COMMAND,
|
|
SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE);
|
|
}
|
|
|
|
ifq_deq_commit(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
return;
|
|
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
|
|
((len / 4 + sc->tx_start_thresh) /*>> sc->txashift*/));
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
|
|
#endif
|
|
|
|
/*
|
|
* Do the output at splhigh() so that an interrupt from another device
|
|
* won't cause a FIFO underrun.
|
|
*/
|
|
sh = splhigh();
|
|
|
|
txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
|
|
|
|
bus_space_write_2(iot, ioh, txreg, len);
|
|
bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
|
|
if (EP_IS_BUS_32(sc->bustype)) {
|
|
for (m = m0; m; ) {
|
|
data = mtod(m, u_int8_t *);
|
|
if (m->m_len > 3 && ALIGNED_POINTER(data, uint32_t)) {
|
|
bus_space_write_raw_multi_4(iot, ioh, txreg,
|
|
data, m->m_len & ~3);
|
|
if (m->m_len & 3)
|
|
bus_space_write_multi_1(iot, ioh, txreg,
|
|
data + (m->m_len & ~3),
|
|
m->m_len & 3);
|
|
} else
|
|
bus_space_write_multi_1(iot, ioh, txreg,
|
|
data, m->m_len);
|
|
m0 = m_free(m);
|
|
m = m0;
|
|
}
|
|
} else {
|
|
for (m = m0; m; ) {
|
|
data = mtod(m, u_int8_t *);
|
|
if (m->m_len > 1 && ALIGNED_POINTER(data, uint16_t)) {
|
|
bus_space_write_raw_multi_2(iot, ioh, txreg,
|
|
data, m->m_len & ~1);
|
|
if (m->m_len & 1)
|
|
bus_space_write_1(iot, ioh, txreg,
|
|
*(data + m->m_len - 1));
|
|
} else
|
|
bus_space_write_multi_1(iot, ioh, txreg,
|
|
data, m->m_len);
|
|
m0 = m_free(m);
|
|
m = m0;
|
|
}
|
|
}
|
|
while (pad--)
|
|
bus_space_write_1(iot, ioh, txreg, 0);
|
|
|
|
splx(sh);
|
|
|
|
readcheck:
|
|
if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
|
|
ERR_INCOMPLETE) == 0) {
|
|
/* We received a complete packet. */
|
|
u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
|
|
|
|
if ((status & S_INTR_LATCH) == 0) {
|
|
/*
|
|
* No interrupt, read the packet and continue
|
|
* Is this supposed to happen? Is my motherboard
|
|
* completely busted?
|
|
*/
|
|
epread(sc);
|
|
} else
|
|
/* Got an interrupt, return to get it serviced. */
|
|
return;
|
|
} else {
|
|
/* Check if we are stuck and reset [see XXX comment] */
|
|
if (epstatus(sc)) {
|
|
#ifdef EP_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: adapter reset\n",
|
|
sc->sc_dev.dv_xname);
|
|
#endif
|
|
epreset(sc);
|
|
}
|
|
}
|
|
|
|
goto startagain;
|
|
}
|
|
|
|
|
|
/*
|
|
* XXX: The 3c509 card can get in a mode where both the fifo status bit
|
|
* FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
|
|
* We detect this situation and we reset the adapter.
|
|
* It happens at times when there is a lot of broadcast traffic
|
|
* on the cable (once in a blue moon).
|
|
*/
|
|
int
|
|
epstatus(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int16_t fifost;
|
|
|
|
/*
|
|
* Check the FIFO status and act accordingly
|
|
*/
|
|
GO_WINDOW(4);
|
|
fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
|
|
GO_WINDOW(1);
|
|
|
|
if (fifost & FIFOS_RX_UNDERRUN) {
|
|
#ifdef EP_DEBUG
|
|
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
|
|
printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
epreset(sc);
|
|
return 0;
|
|
}
|
|
|
|
if (fifost & FIFOS_RX_STATUS_OVERRUN) {
|
|
#ifdef EP_DEBUG
|
|
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
|
|
printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
if (fifost & FIFOS_RX_OVERRUN) {
|
|
#ifdef EP_DEBUG
|
|
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
|
|
printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
if (fifost & FIFOS_TX_OVERRUN) {
|
|
#ifdef EP_DEBUG
|
|
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
|
|
printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
epreset(sc);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
eptxstat(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i;
|
|
|
|
/*
|
|
* We need to read+write TX_STATUS until we get a 0 status
|
|
* in order to turn off the interrupt flag.
|
|
*/
|
|
while ((i = bus_space_read_1(iot, ioh,
|
|
ep_w1_reg(sc, EP_W1_TX_STATUS))) & TXS_COMPLETE) {
|
|
bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
|
|
0x0);
|
|
|
|
if (i & TXS_JABBER) {
|
|
++sc->sc_arpcom.ac_if.if_oerrors;
|
|
#ifdef EP_DEBUG
|
|
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
|
|
printf("%s: jabber (%x)\n",
|
|
sc->sc_dev.dv_xname, i);
|
|
#endif
|
|
epreset(sc);
|
|
} else if (i & TXS_UNDERRUN) {
|
|
++sc->sc_arpcom.ac_if.if_oerrors;
|
|
#ifdef EP_DEBUG
|
|
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
|
|
printf("%s: fifo underrun (%x) @%d\n",
|
|
sc->sc_dev.dv_xname, i,
|
|
sc->tx_start_thresh);
|
|
#endif
|
|
if (sc->tx_succ_ok < 100)
|
|
sc->tx_start_thresh = min(ETHER_MAX_LEN,
|
|
sc->tx_start_thresh + 20);
|
|
sc->tx_succ_ok = 0;
|
|
epreset(sc);
|
|
} else if (i & TXS_MAX_COLLISION) {
|
|
++sc->sc_arpcom.ac_if.if_collisions;
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
|
|
ifq_clr_oactive(&sc->sc_arpcom.ac_if.if_snd);
|
|
} else
|
|
sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
|
|
}
|
|
}
|
|
|
|
int
|
|
epintr(void *arg)
|
|
{
|
|
register struct ep_softc *sc = arg;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
u_int16_t status;
|
|
int ret = 0;
|
|
|
|
for (;;) {
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
|
|
|
|
status = bus_space_read_2(iot, ioh, EP_STATUS);
|
|
|
|
if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
|
|
S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
|
|
break;
|
|
|
|
ret = 1;
|
|
|
|
/*
|
|
* Acknowledge any interrupts. It's important that we do this
|
|
* first, since there would otherwise be a race condition.
|
|
* Due to the i386 interrupt queueing, we may get spurious
|
|
* interrupts occasionally.
|
|
*/
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
|
|
|
|
if (status & S_RX_COMPLETE)
|
|
epread(sc);
|
|
if (status & S_TX_AVAIL) {
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
epstart(ifp);
|
|
}
|
|
if (status & S_CARD_FAILURE) {
|
|
epreset(sc);
|
|
return (1);
|
|
}
|
|
if (status & S_TX_COMPLETE) {
|
|
eptxstat(sc);
|
|
epstart(ifp);
|
|
}
|
|
}
|
|
|
|
/* no more interrupts */
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
epread(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
struct mbuf *m;
|
|
int len, error = 0;
|
|
|
|
len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
|
|
|
|
again:
|
|
#ifdef EP_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
int err = len & ERR_MASK;
|
|
char *s = NULL;
|
|
|
|
if (len & ERR_INCOMPLETE)
|
|
s = "incomplete packet";
|
|
else if (err == ERR_OVERRUN)
|
|
s = "packet overrun";
|
|
else if (err == ERR_RUNT)
|
|
s = "runt packet";
|
|
else if (err == ERR_ALIGNMENT)
|
|
s = "bad alignment";
|
|
else if (err == ERR_CRC)
|
|
s = "bad crc";
|
|
else if (err == ERR_OVERSIZE)
|
|
s = "oversized packet";
|
|
else if (err == ERR_DRIBBLE)
|
|
s = "dribble bits";
|
|
|
|
if (s)
|
|
printf("%s: %s\n", sc->sc_dev.dv_xname, s);
|
|
}
|
|
#endif
|
|
|
|
if (len & ERR_INCOMPLETE)
|
|
goto done;
|
|
|
|
if (len & ERR_RX) {
|
|
++ifp->if_ierrors;
|
|
error = 1;
|
|
goto done;
|
|
}
|
|
|
|
len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
|
|
|
|
/* Pull packet off interface. */
|
|
m = epget(sc, len);
|
|
if (m == NULL) {
|
|
ifp->if_ierrors++;
|
|
error = 1;
|
|
goto done;
|
|
}
|
|
|
|
ml_enqueue(&ml, m);
|
|
|
|
/*
|
|
* In periods of high traffic we can actually receive enough
|
|
* packets so that the fifo overrun bit will be set at this point,
|
|
* even though we just read a packet. In this case we
|
|
* are not going to receive any more interrupts. We check for
|
|
* this condition and read again until the fifo is not full.
|
|
* We could simplify this test by not using epstatus(), but
|
|
* rechecking the RX_STATUS register directly. This test could
|
|
* result in unnecessary looping in cases where there is a new
|
|
* packet but the fifo is not full, but it will not fix the
|
|
* stuck behavior.
|
|
*
|
|
* Even with this improvement, we still get packet overrun errors
|
|
* which are hurting performance. Maybe when I get some more time
|
|
* I'll modify epread() so that it can handle RX_EARLY interrupts.
|
|
*/
|
|
if (epstatus(sc)) {
|
|
len = bus_space_read_2(iot, ioh,
|
|
ep_w1_reg(sc, EP_W1_RX_STATUS));
|
|
/* Check if we are stuck and reset [see XXX comment] */
|
|
if (len & ERR_INCOMPLETE) {
|
|
#ifdef EP_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: adapter reset\n",
|
|
sc->sc_dev.dv_xname);
|
|
#endif
|
|
epreset(sc);
|
|
goto done;
|
|
}
|
|
goto again;
|
|
}
|
|
done:
|
|
if (error)
|
|
ep_discard_rxtop(iot, ioh);
|
|
if_input(ifp, &ml);
|
|
}
|
|
|
|
struct mbuf *
|
|
epget(struct ep_softc *sc, int totlen)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct mbuf *m;
|
|
caddr_t data;
|
|
int len, pad, off, sh, rxreg;
|
|
|
|
splassert(IPL_NET);
|
|
|
|
m = sc->mb[sc->next_mb];
|
|
sc->mb[sc->next_mb] = NULL;
|
|
if (m == NULL) {
|
|
m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
|
|
/* If the queue is no longer full, refill. */
|
|
if (!timeout_pending(&sc->sc_epmbuffill_tmo))
|
|
timeout_add(&sc->sc_epmbuffill_tmo, 1);
|
|
}
|
|
if (!m)
|
|
return (NULL);
|
|
|
|
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
|
|
|
|
len = MCLBYTES;
|
|
m->m_pkthdr.len = totlen;
|
|
m->m_len = totlen;
|
|
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
|
|
m->m_data += pad;
|
|
len -= pad;
|
|
|
|
/*
|
|
* We read the packet at splhigh() so that an interrupt from another
|
|
* device doesn't cause the card's buffer to overflow while we're
|
|
* reading it. We may still lose packets at other times.
|
|
*/
|
|
sh = splhigh();
|
|
|
|
rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
|
|
|
|
off = 0;
|
|
while (totlen) {
|
|
len = min(totlen, m_trailingspace(m));
|
|
if (len == 0)
|
|
panic("ep_get: packet does not fit in MCLBYTES");
|
|
|
|
data = mtod(m, u_int8_t *);
|
|
if (EP_IS_BUS_32(sc->bustype))
|
|
pad = 4 - ((u_long)(data + off) & 0x3);
|
|
else
|
|
pad = (u_long)(data + off) & 0x1;
|
|
|
|
if (pad) {
|
|
if (pad < len)
|
|
pad = len;
|
|
bus_space_read_multi_1(iot, ioh, rxreg,
|
|
data + off, pad);
|
|
len = pad;
|
|
} else if (EP_IS_BUS_32(sc->bustype) && len > 3 &&
|
|
ALIGNED_POINTER(data, uint32_t)) {
|
|
len &= ~3;
|
|
bus_space_read_raw_multi_4(iot, ioh, rxreg,
|
|
data + off, len);
|
|
} else if (len > 1 && ALIGNED_POINTER(data, uint16_t)) {
|
|
len &= ~1;
|
|
bus_space_read_raw_multi_2(iot, ioh, rxreg,
|
|
data + off, len);
|
|
} else
|
|
bus_space_read_multi_1(iot, ioh, rxreg,
|
|
data + off, len);
|
|
|
|
off += len;
|
|
totlen -= len;
|
|
}
|
|
|
|
ep_discard_rxtop(iot, ioh);
|
|
|
|
splx(sh);
|
|
|
|
return m;
|
|
}
|
|
|
|
int
|
|
epioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
epinit(sc);
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
error = ENETRESET;
|
|
else
|
|
epinit(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
epstop(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
epreset(sc);
|
|
error = 0;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
epreset(struct ep_softc *sc)
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
epinit(sc);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
epwatchdog(struct ifnet *ifp)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
|
|
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
++sc->sc_arpcom.ac_if.if_oerrors;
|
|
|
|
epreset(sc);
|
|
}
|
|
|
|
void
|
|
epstop(struct ep_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
if (sc->ep_flags & EP_FLAGS_MII) {
|
|
mii_down(&sc->sc_mii);
|
|
}
|
|
|
|
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
|
|
/* Clear the FIFO buffer count, thus halting
|
|
* any currently-running transactions.
|
|
*/
|
|
GO_WINDOW(1); /* sanity */
|
|
bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
|
|
bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
|
|
}
|
|
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
|
|
ep_discard_rxtop(iot, ioh);
|
|
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
|
|
|
|
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
|
|
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
|
|
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
|
|
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
|
|
|
|
epmbufempty(sc);
|
|
}
|
|
|
|
/*
|
|
* We get eeprom data from the id_port given an offset into the
|
|
* eeprom. Basically; after the ID_sequence is sent to all of
|
|
* the cards; they enter the ID_CMD state where they will accept
|
|
* command requests. 0x80-0xbf loads the eeprom data. We then
|
|
* read the port 16 times and with every read; the cards check
|
|
* for contention (ie: if one card writes a 0 bit and another
|
|
* writes a 1 bit then the host sees a 0. At the end of the cycle;
|
|
* each card compares the data on the bus; if there is a difference
|
|
* then that card goes into ID_WAIT state again). In the meantime;
|
|
* one bit of data is returned in the AX register which is conveniently
|
|
* returned to us by bus_space_read_1(). Hence; we read 16 times getting one
|
|
* bit of data with each read.
|
|
*
|
|
* NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
|
|
*/
|
|
u_int16_t
|
|
epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
|
|
{
|
|
u_int16_t data = 0;
|
|
int i;
|
|
|
|
bus_space_write_1(iot, ioh, 0, 0x80 + offset);
|
|
delay(1000);
|
|
for (i = 0; i < 16; i++)
|
|
data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
|
|
return (data);
|
|
}
|
|
|
|
int
|
|
epbusyeeprom(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i = 100, j;
|
|
|
|
while (i--) {
|
|
j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
|
|
if (j & EEPROM_BUSY)
|
|
delay(100);
|
|
else
|
|
break;
|
|
}
|
|
if (!i) {
|
|
printf("\n%s: eeprom failed to come ready\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (1);
|
|
}
|
|
if (sc->bustype != EP_BUS_PCMCIA && sc->bustype != EP_BUS_PCI &&
|
|
(j & EEPROM_TST_MODE)) {
|
|
printf("\n%s: erase pencil mark, or disable PnP mode!\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
u_int16_t
|
|
ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
|
|
{
|
|
u_int16_t readcmd;
|
|
|
|
/*
|
|
* RoadRunner has a larger EEPROM, so a different read command
|
|
* is required.
|
|
*/
|
|
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER)
|
|
readcmd = READ_EEPROM_RR;
|
|
else
|
|
readcmd = READ_EEPROM;
|
|
|
|
if (epbusyeeprom(sc))
|
|
return (0); /* XXX why is eeprom busy? */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_COMMAND,
|
|
readcmd | offset);
|
|
if (epbusyeeprom(sc))
|
|
return (0); /* XXX why is eeprom busy? */
|
|
|
|
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_DATA));
|
|
}
|
|
|
|
void
|
|
epmbuffill(void *v)
|
|
{
|
|
struct ep_softc *sc = v;
|
|
int s, i;
|
|
|
|
s = splnet();
|
|
for (i = 0; i < MAX_MBS; i++) {
|
|
if (sc->mb[i] == NULL) {
|
|
sc->mb[i] = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
|
|
if (sc->mb[i] == NULL)
|
|
break;
|
|
}
|
|
}
|
|
/* If the queue was not filled, try again. */
|
|
if (i < MAX_MBS)
|
|
timeout_add(&sc->sc_epmbuffill_tmo, 1);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
epmbufempty(struct ep_softc *sc)
|
|
{
|
|
int s, i;
|
|
|
|
s = splnet();
|
|
for (i = 0; i<MAX_MBS; i++) {
|
|
if (sc->mb[i]) {
|
|
m_freem(sc->mb[i]);
|
|
sc->mb[i] = NULL;
|
|
}
|
|
}
|
|
sc->next_mb = 0;
|
|
timeout_del(&sc->sc_epmbuffill_tmo);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
ep_mii_setbit(struct ep_softc *sc, u_int16_t bit)
|
|
{
|
|
u_int16_t val;
|
|
|
|
/* We assume we're already in Window 4 */
|
|
val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
|
|
val | bit);
|
|
}
|
|
|
|
void
|
|
ep_mii_clrbit(struct ep_softc *sc, u_int16_t bit)
|
|
{
|
|
u_int16_t val;
|
|
|
|
/* We assume we're already in Window 4 */
|
|
val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
|
|
val & ~bit);
|
|
}
|
|
|
|
u_int16_t
|
|
ep_mii_readbit(struct ep_softc *sc, u_int16_t bit)
|
|
{
|
|
|
|
/* We assume we're already in Window 4 */
|
|
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
|
|
bit);
|
|
}
|
|
|
|
void
|
|
ep_mii_sync(struct ep_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* We assume we're already in Window 4 */
|
|
ep_mii_clrbit(sc, PHYSMGMT_DIR);
|
|
for (i = 0; i < 32; i++) {
|
|
ep_mii_clrbit(sc, PHYSMGMT_CLK);
|
|
ep_mii_setbit(sc, PHYSMGMT_CLK);
|
|
}
|
|
}
|
|
|
|
void
|
|
ep_mii_sendbits(struct ep_softc *sc, u_int32_t data, int nbits)
|
|
{
|
|
int i;
|
|
|
|
/* We assume we're already in Window 4 */
|
|
ep_mii_setbit(sc, PHYSMGMT_DIR);
|
|
for (i = 1 << (nbits - 1); i; i = i >> 1) {
|
|
ep_mii_clrbit(sc, PHYSMGMT_CLK);
|
|
ep_mii_readbit(sc, PHYSMGMT_CLK);
|
|
if (data & i)
|
|
ep_mii_setbit(sc, PHYSMGMT_DATA);
|
|
else
|
|
ep_mii_clrbit(sc, PHYSMGMT_DATA);
|
|
ep_mii_setbit(sc, PHYSMGMT_CLK);
|
|
ep_mii_readbit(sc, PHYSMGMT_CLK);
|
|
}
|
|
}
|
|
|
|
int
|
|
ep_mii_readreg(struct device *self, int phy, int reg)
|
|
{
|
|
struct ep_softc *sc = (struct ep_softc *)self;
|
|
int val = 0, i, err;
|
|
|
|
/*
|
|
* Read the PHY register by manually driving the MII control lines.
|
|
*/
|
|
|
|
GO_WINDOW(4);
|
|
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
|
|
|
|
ep_mii_sync(sc);
|
|
ep_mii_sendbits(sc, MII_COMMAND_START, 2);
|
|
ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
|
|
ep_mii_sendbits(sc, phy, 5);
|
|
ep_mii_sendbits(sc, reg, 5);
|
|
|
|
ep_mii_clrbit(sc, PHYSMGMT_DIR);
|
|
ep_mii_clrbit(sc, PHYSMGMT_CLK);
|
|
ep_mii_setbit(sc, PHYSMGMT_CLK);
|
|
ep_mii_clrbit(sc, PHYSMGMT_CLK);
|
|
|
|
err = ep_mii_readbit(sc, PHYSMGMT_DATA);
|
|
ep_mii_setbit(sc, PHYSMGMT_CLK);
|
|
|
|
/* Even if an error occurs, must still clock out the cycle. */
|
|
for (i = 0; i < 16; i++) {
|
|
val <<= 1;
|
|
ep_mii_clrbit(sc, PHYSMGMT_CLK);
|
|
if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
|
|
val |= 1;
|
|
ep_mii_setbit(sc, PHYSMGMT_CLK);
|
|
}
|
|
ep_mii_clrbit(sc, PHYSMGMT_CLK);
|
|
ep_mii_setbit(sc, PHYSMGMT_CLK);
|
|
|
|
GO_WINDOW(1); /* back to operating window */
|
|
|
|
return (err ? 0 : val);
|
|
}
|
|
|
|
void
|
|
ep_mii_writereg(struct device *self, int phy, int reg, int val)
|
|
{
|
|
struct ep_softc *sc = (struct ep_softc *)self;
|
|
|
|
/*
|
|
* Write the PHY register by manually driving the MII control lines.
|
|
*/
|
|
|
|
GO_WINDOW(4);
|
|
|
|
ep_mii_sync(sc);
|
|
ep_mii_sendbits(sc, MII_COMMAND_START, 2);
|
|
ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
|
|
ep_mii_sendbits(sc, phy, 5);
|
|
ep_mii_sendbits(sc, reg, 5);
|
|
ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
|
|
ep_mii_sendbits(sc, val, 16);
|
|
|
|
ep_mii_clrbit(sc, PHYSMGMT_CLK);
|
|
ep_mii_setbit(sc, PHYSMGMT_CLK);
|
|
|
|
GO_WINDOW(1); /* back to operating window */
|
|
}
|
|
|
|
void
|
|
ep_statchg(struct device *self)
|
|
{
|
|
struct ep_softc *sc = (struct ep_softc *)self;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int mctl;
|
|
|
|
/* XXX Update ifp->if_baudrate */
|
|
|
|
GO_WINDOW(3);
|
|
mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX)
|
|
mctl |= MAC_CONTROL_FDX;
|
|
else
|
|
mctl &= ~MAC_CONTROL_FDX;
|
|
bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
|
|
GO_WINDOW(1); /* back to operating window */
|
|
}
|