src/sys/dev/ic/elink3.c

1790 lines
46 KiB
C

/* $OpenBSD: elink3.c,v 1.99 2023/04/11 00:45:08 jsg Exp $ */
/* $NetBSD: elink3.c,v 1.32 1997/05/14 00:22:00 thorpej Exp $ */
/*
* Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
* Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Herb Peyerl.
* 4. The name of Herb Peyerl may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/selinfo.h>
#include <sys/timeout.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/cpu.h>
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/ic/elink3var.h>
#include <dev/ic/elink3reg.h>
/*
* Structure to map media-present bits in boards to
* ifmedia codes and printable media names. Used for table-driven
* ifmedia initialization.
*/
struct ep_media {
int epm_eeprom_data; /* bitmask for eeprom config */
int epm_conn; /* sc->ep_connectors code for medium */
char *epm_name; /* name of medium */
uint64_t epm_ifmedia; /* ifmedia word for medium */
int epm_ifdata;
};
/*
* ep_media table for Vortex/Demon/Boomerang:
* map from media-present bits in register RESET_OPTIONS+2
* to ifmedia "media words" and printable names.
*
* XXX indexed directly by INTERNAL_CONFIG default_media field,
* (i.e., EPMEDIA_ constants) forcing order of entries.
* Note that 3 is reserved.
*/
const struct ep_media ep_vortex_media[] = {
{ EP_PCI_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T,
EPMEDIA_10BASE_T },
{ EP_PCI_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5,
EPMEDIA_AUI },
{ 0, 0, "reserved", IFM_NONE, EPMEDIA_RESV1 },
{ EP_PCI_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2,
EPMEDIA_10BASE_2 },
{ EP_PCI_100BASE_TX, EPC_100TX, "100-TX", IFM_ETHER|IFM_100_TX,
EPMEDIA_100BASE_TX },
{ EP_PCI_100BASE_FX, EPC_100FX, "100-FX", IFM_ETHER|IFM_100_FX,
EPMEDIA_100BASE_FX },
{ EP_PCI_100BASE_MII,EPC_MII, "mii", IFM_ETHER|IFM_100_TX,
EPMEDIA_MII },
{ EP_PCI_100BASE_T4, EPC_100T4, "100-T4", IFM_ETHER|IFM_100_T4,
EPMEDIA_100BASE_T4 }
};
/*
* ep_media table for 3c509/3c509b/3c579/3c589:
* map from media-present bits in register CNFG_CNTRL
* (window 0, offset ?) to ifmedia "media words" and printable names.
*/
struct ep_media ep_isa_media[] = {
{ EP_W0_CC_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T, EPMEDIA_10BASE_T },
{ EP_W0_CC_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5, EPMEDIA_AUI },
{ EP_W0_CC_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2, EPMEDIA_10BASE_2 },
};
/* Map vortex reset_options bits to if_media codes. */
const uint64_t ep_default_to_media[] = {
IFM_ETHER | IFM_10_T,
IFM_ETHER | IFM_10_5,
0, /* reserved by 3Com */
IFM_ETHER | IFM_10_2,
IFM_ETHER | IFM_100_TX,
IFM_ETHER | IFM_100_FX,
IFM_ETHER | IFM_100_TX, /* XXX really MII: need to talk to PHY */
IFM_ETHER | IFM_100_T4,
};
struct cfdriver ep_cd = {
NULL, "ep", DV_IFNET
};
void ep_vortex_probemedia(struct ep_softc *sc);
void ep_isa_probemedia(struct ep_softc *sc);
void eptxstat(struct ep_softc *);
int epstatus(struct ep_softc *);
int epioctl(struct ifnet *, u_long, caddr_t);
void epstart(struct ifnet *);
void epwatchdog(struct ifnet *);
void epreset(struct ep_softc *);
void epread(struct ep_softc *);
struct mbuf *epget(struct ep_softc *, int);
void epmbuffill(void *);
void epmbufempty(struct ep_softc *);
void epsetfilter(struct ep_softc *);
void ep_roadrunner_mii_enable(struct ep_softc *);
int epsetmedia(struct ep_softc *, int);
/* ifmedia callbacks */
int ep_media_change(struct ifnet *);
void ep_media_status(struct ifnet *, struct ifmediareq *);
/* MII callbacks */
int ep_mii_readreg(struct device *, int, int);
void ep_mii_writereg(struct device *, int, int, int);
void ep_statchg(struct device *);
void ep_mii_setbit(struct ep_softc *, u_int16_t);
void ep_mii_clrbit(struct ep_softc *, u_int16_t);
u_int16_t ep_mii_readbit(struct ep_softc *, u_int16_t);
void ep_mii_sync(struct ep_softc *);
void ep_mii_sendbits(struct ep_softc *, u_int32_t, int);
int epbusyeeprom(struct ep_softc *);
u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd,u_int arg);
static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
static __inline int ep_w1_reg(struct ep_softc *, int);
/*
* Issue a (reset) command, and be sure it has completed.
* Used for global reset, TX_RESET, RX_RESET.
*/
static inline void
ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
bus_space_write_2(iot, ioh, cmd, arg);
ep_finish_reset(iot, ioh);
}
/*
* Wait for any pending reset to complete.
*/
static inline void
ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int i;
for (i = 0; i < 10000; i++) {
if ((bus_space_read_2(iot, ioh, EP_STATUS) &
S_COMMAND_IN_PROGRESS) == 0)
break;
DELAY(10);
}
}
static inline void
ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int i;
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
/*
* Spin for about 1 msec, to avoid forcing a DELAY() between
* every received packet (adding latency and limiting pkt-recv rate).
* On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
* is about right.
*/
for (i = 0; i < 8000; i++) {
if ((bus_space_read_2(iot, ioh, EP_STATUS) &
S_COMMAND_IN_PROGRESS) == 0)
return;
}
/* not fast enough, do DELAY()s */
ep_finish_reset(iot, ioh);
}
/*
* Some chips (i.e., 3c574 RoadRunner) have Window 1 registers offset.
*/
static __inline int
ep_w1_reg(struct ep_softc *sc, int reg)
{
switch (sc->ep_chipset) {
case EP_CHIPSET_ROADRUNNER:
switch (reg) {
case EP_W1_FREE_TX:
case EP_W1_RUNNER_RDCTL:
case EP_W1_RUNNER_WRCTL:
return (reg);
}
return (reg + 0x10);
}
return (reg);
}
/*
* Back-end attach and configure.
*/
void
epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t i;
sc->ep_chipset = chipset;
/*
* We could have been groveling around in other register
* windows in the front-end; make sure we're in window 0
* to read the EEPROM.
*/
GO_WINDOW(0);
if (enaddr == NULL) {
/*
* Read the station address from the eeprom.
*/
for (i = 0; i < 3; i++) {
u_int16_t x = ep_read_eeprom(sc, i);
sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
}
} else {
bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
}
printf(" address %s", ether_sprintf(sc->sc_arpcom.ac_enaddr));
if (sc->ep_flags & EP_FLAGS_MII)
printf("\n");
else
printf(", ");
/*
* Vortex-based (3c59x pci,eisa) cards allow FDDI-sized (4500) byte
* packets. Commands only take an 11-bit parameter, and 11 bits
* isn't enough to hold a full-size packet length.
* Commands to these cards implicitly upshift a packet size
* or threshold by 2 bits.
* To detect cards with large-packet support, we probe by setting
* the transmit threshold register, then change windows and
* read back the threshold register directly, and see if the
* threshold value was shifted or not.
*/
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
GO_WINDOW(5);
i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
GO_WINDOW(1);
switch (i) {
case EP_LARGEWIN_PROBE:
case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
sc->txashift = 0;
break;
case (EP_LARGEWIN_PROBE << 2):
sc->txashift = 2;
/* XXX does the 3c515 support Vortex-style RESET_OPTIONS? */
break;
default:
printf("wrote %x to TX_AVAIL_THRESH, read back %x. "
"Interface disabled\n", EP_THRESH_DISABLE, (int) i);
return;
}
timeout_set(&sc->sc_epmbuffill_tmo, epmbuffill, sc);
/*
* Ensure Tx-available interrupts are enabled for
* start the interface.
* XXX should be in epinit()?
*/
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = epstart;
ifp->if_ioctl = epioctl;
ifp->if_watchdog = epwatchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
/* 64 packets are around 100ms on 10Mbps */
ifq_set_maxlen(&ifp->if_snd, 64);
if_attach(ifp);
ether_ifattach(ifp);
/*
* Finish configuration:
* determine chipset if the front-end couldn't do so,
* show board details, set media.
*/
GO_WINDOW(0);
ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
ep_media_status);
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = ep_mii_readreg;
sc->sc_mii.mii_writereg = ep_mii_writereg;
sc->sc_mii.mii_statchg = ep_statchg;
/*
* If we've got an indirect (ISA, PCMCIA?) board, the chipset
* is unknown. If the board has large-packet support, it's a
* Vortex/Boomerang, otherwise it's a 3c509.
* XXX use eeprom capability word instead?
*/
if (sc->ep_chipset == EP_CHIPSET_UNKNOWN && sc->txashift) {
printf("warning: unknown chipset, possibly 3c515?\n");
#ifdef notyet
sc->sc_chipset = EP_CHIPSET_VORTEX;
#endif /* notyet */
}
/*
* Ascertain which media types are present and inform ifmedia.
*/
switch (sc->ep_chipset) {
case EP_CHIPSET_ROADRUNNER:
if (sc->ep_flags & EP_FLAGS_MII) {
ep_roadrunner_mii_enable(sc);
GO_WINDOW(0);
}
/* FALLTHROUGH */
case EP_CHIPSET_BOOMERANG:
/*
* If the device has MII, probe it. We won't be using
* any `native' media in this case, only PHYs. If
* we don't, just treat the Boomerang like the Vortex.
*/
if (sc->ep_flags & EP_FLAGS_MII) {
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media,
IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media,
IFM_ETHER|IFM_NONE);
} else {
ifmedia_set(&sc->sc_mii.mii_media,
IFM_ETHER|IFM_AUTO);
}
break;
}
/* FALLTHROUGH */
/* on a direct bus, the attach routine can tell, but check anyway. */
case EP_CHIPSET_VORTEX:
case EP_CHIPSET_BOOMERANG2:
ep_vortex_probemedia(sc);
break;
/* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */
case EP_CHIPSET_3C509:
default:
ep_isa_probemedia(sc);
break;
}
GO_WINDOW(1); /* Window 1 is operating window */
sc->tx_start_thresh = 20; /* probably a good starting point. */
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
}
int
ep_detach(struct device *self)
{
struct ep_softc *sc = (struct ep_softc *)self;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
if (sc->ep_flags & EP_FLAGS_MII)
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
return (0);
}
/*
* Find supported media on 3c509-generation hardware that doesn't have
* a "reset_options" register in window 3.
* Use the config_cntrl register in window 0 instead.
* Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
* that implement CONFIG_CTRL. We don't have a good way to set the
* default active medium; punt to ifconfig instead.
*
* XXX what about 3c515, pcmcia 10/100?
*/
void
ep_isa_probemedia(struct ep_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifmedia *ifm = &sc->sc_mii.mii_media;
int conn, i;
u_int16_t ep_w0_config, port;
conn = 0;
GO_WINDOW(0);
ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
for (i = 0; i < nitems(ep_isa_media); i++) {
struct ep_media * epm = ep_isa_media + i;
if ((ep_w0_config & epm->epm_eeprom_data) != 0) {
ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
if (conn)
printf("/");
printf("%s", epm->epm_name);
conn |= epm->epm_conn;
}
}
sc->ep_connectors = conn;
/* get default medium from EEPROM */
if (epbusyeeprom(sc))
return; /* XXX why is eeprom busy? */
bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
READ_EEPROM | EEPROM_ADDR_CFG);
if (epbusyeeprom(sc))
return; /* XXX why is eeprom busy? */
port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
port = port >> 14;
printf(" (default %s)\n", ep_vortex_media[port].epm_name);
/* tell ifconfig what currently-active media is. */
ifmedia_set(ifm, ep_default_to_media[port]);
/* XXX autoselect not yet implemented */
}
/*
* Find media present on large-packet-capable elink3 devices.
* Show onboard configuration of large-packet-capable elink3 devices
* (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
* Use media and card-version info in window 3 instead.
*
* XXX how much of this works with 3c515, pcmcia 10/100?
*/
void
ep_vortex_probemedia(struct ep_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifmedia *ifm = &sc->sc_mii.mii_media;
u_int config1, conn;
int reset_options;
int default_media; /* 3-bit encoding of default (EEPROM) media */
int autoselect; /* boolean: should default to autoselect */
const char *medium_name;
register int i;
GO_WINDOW(3);
config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
GO_WINDOW(0);
default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
/* set available media options */
conn = 0;
for (i = 0; i < nitems(ep_vortex_media); i++) {
const struct ep_media *epm = ep_vortex_media + i;
if ((reset_options & epm->epm_eeprom_data) != 0) {
if (conn)
printf("/");
printf("%s", epm->epm_name);
conn |= epm->epm_conn;
ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
}
}
sc->ep_connectors = conn;
/* Show eeprom's idea of default media. */
medium_name = (default_media > nitems(ep_vortex_media) - 1)
? "(unknown/impossible media)"
: ep_vortex_media[default_media].epm_name;
printf(" default %s%s",
medium_name, (autoselect) ? "/autoselect" : "");
/* sc->sc_media = ep_vortex_media[default_media].epm_ifdata;*/
#ifdef notyet
/*
* Set default: either the active interface the card
* reads from the EEPROM, or if autoselect is true,
* whatever we find is actually connected.
*
* XXX autoselect not yet implemented.
*/
#endif /* notyet */
/* tell ifconfig what currently-active media is. */
ifmedia_set(ifm, ep_default_to_media[default_media]);
}
/*
* Bring device up.
*
* The order in here seems important. Otherwise we may not receive
* interrupts. ?!
*/
void
epinit(struct ep_softc *sc)
{
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
/* make sure any pending reset has completed before touching board */
ep_finish_reset(iot, ioh);
/* cancel any pending I/O */
epstop(sc);
if (sc->bustype != EP_BUS_PCI) {
GO_WINDOW(0);
bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
}
if (sc->bustype == EP_BUS_PCMCIA) {
bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
}
GO_WINDOW(2);
for (i = 0; i < 6; i++) /* Reload the ether_addr. */
bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
sc->sc_arpcom.ac_enaddr[i]);
if (sc->bustype == EP_BUS_PCI || sc->bustype == EP_BUS_EISA)
/*
* Reset the station-address receive filter.
* A bug workaround for busmastering (Vortex, Demon) cards.
*/
for (i = 0; i < 6; i++)
bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
GO_WINDOW(1); /* Window 1 is operating window */
for (i = 0; i < 31; i++)
bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
/* Set threshold for Tx-space available interrupt. */
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
/* Enable options in the PCMCIA LAN COR register, via
* RoadRunner Window 1.
*
* XXX MAGIC CONSTANTS!
*/
u_int16_t cor;
bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11));
cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
bus_space_write_2(iot, ioh, 0, cor);
bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
if (sc->ep_flags & EP_FLAGS_MII) {
ep_roadrunner_mii_enable(sc);
GO_WINDOW(1);
}
}
/* Enable interrupts. */
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK |
S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK |
S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
/*
* Attempt to get rid of any stray interrupts that occurred during
* configuration. On the i386 this isn't possible because one may
* already be queued. However, a single stray interrupt is
* unimportant.
*/
bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
epsetfilter(sc);
epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
epmbuffill(sc);
/* Interface is now `running', with no output active. */
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
/* Attempt to start output, if any. */
epstart(ifp);
}
/*
* Set multicast receive filter.
* elink3 hardware has no selective multicast filter in hardware.
* Enable reception of all multicasts and filter in software.
*/
void
epsetfilter(struct ep_softc *sc)
{
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
GO_WINDOW(1); /* Window 1 is operating window */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
FIL_INDIVIDUAL | FIL_BRDCST |
((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
}
int
ep_media_change(struct ifnet *ifp)
{
register struct ep_softc *sc = ifp->if_softc;
return epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
}
/*
* Reset and enable the MII on the RoadRunner.
*/
void
ep_roadrunner_mii_enable(struct ep_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
GO_WINDOW(3);
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
delay(1000);
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
EP_PCI_100BASE_MII|EP_RUNNER_MII_RESET|EP_RUNNER_ENABLE_MII);
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
delay(1000);
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
}
/*
* Set active media to a specific given EPMEDIA_<> value.
* For vortex/demon/boomerang cards, update media field in w3_internal_config,
* and power on selected transceiver.
* For 3c509-generation cards (3c509/3c579/3c589/3c509B),
* update media field in w0_address_config, and power on selected xcvr.
*/
int
epsetmedia(struct ep_softc *sc, int medium)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int w4_media;
int config0, config1;
/*
* you can `ifconfig (link0|-link0) ep0' to get the following
* behaviour:
* -link0 disable AUI/UTP. enable BNC.
* link0 disable BNC. enable AUI.
* link1 if the card has a UTP connector, and link0 is
* set too, then you get the UTP port.
*/
/*
* First, change the media-control bits in EP_W4_MEDIA_TYPE.
*/
/* Turn everything off. First turn off linkbeat and UTP. */
GO_WINDOW(4);
w4_media = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
w4_media = w4_media & ~(ENABLE_UTP|SQE_ENABLE);
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, w4_media);
/* Turn off coax */
bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
delay(1000);
/* If the device has MII, select it, and then tell the
* PHY which media to use.
*/
if (sc->ep_flags & EP_FLAGS_MII) {
GO_WINDOW(3);
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
int resopt;
resopt = bus_space_read_2(iot, ioh,
EP_W3_RESET_OPTIONS);
bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
resopt | EP_RUNNER_ENABLE_MII);
}
config0 = (u_int)bus_space_read_2(iot, ioh,
EP_W3_INTERNAL_CONFIG);
config1 = (u_int)bus_space_read_2(iot, ioh,
EP_W3_INTERNAL_CONFIG + 2);
config1 = config1 & ~CONFIG_MEDIAMASK;
config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
GO_WINDOW(1); /* back to operating window */
mii_mediachg(&sc->sc_mii);
return (0);
}
/*
* Now turn on the selected media/transceiver.
*/
GO_WINDOW(4);
switch (medium) {
case EPMEDIA_10BASE_T:
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, (ENABLE_UTP |
(sc->bustype == EP_BUS_PCMCIA ? MEDIA_LED : 0)));
break;
case EPMEDIA_10BASE_2:
bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
DELAY(1000); /* 50ms not enough? */
break;
/* XXX following only for new-generation cards */
case EPMEDIA_100BASE_TX:
case EPMEDIA_100BASE_FX:
case EPMEDIA_100BASE_T4: /* XXX check documentation */
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
w4_media | LINKBEAT_ENABLE);
DELAY(1000); /* not strictly necessary? */
break;
case EPMEDIA_AUI:
bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
w4_media | SQE_ENABLE);
DELAY(1000); /* not strictly necessary? */
break;
case EPMEDIA_MII:
break;
default:
#if defined(EP_DEBUG)
printf("%s unknown media 0x%x\n", sc->sc_dev.dv_xname, medium);
#endif
break;
}
/*
* Tell the chip which PHY [sic] to use.
*/
switch (sc->ep_chipset) {
case EP_CHIPSET_VORTEX:
case EP_CHIPSET_BOOMERANG2:
GO_WINDOW(3);
config0 = (u_int)bus_space_read_2(iot, ioh,
EP_W3_INTERNAL_CONFIG);
config1 = (u_int)bus_space_read_2(iot, ioh,
EP_W3_INTERNAL_CONFIG + 2);
#if defined(EP_DEBUG)
printf("%s: read 0x%x, 0x%x from EP_W3_CONFIG register\n",
sc->sc_dev.dv_xname, config0, config1);
#endif
config1 = config1 & ~CONFIG_MEDIAMASK;
config1 |= (medium << CONFIG_MEDIAMASK_SHIFT);
#if defined(EP_DEBUG)
printf("epsetmedia: %s: medium 0x%x, 0x%x to EP_W3_CONFIG\n",
sc->sc_dev.dv_xname, medium, config1);
#endif
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
break;
default:
GO_WINDOW(0);
config0 = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
config0 &= 0x3fff;
bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,
config0 | (medium << 14));
DELAY(1000);
break;
}
GO_WINDOW(1); /* Window 1 is operating window */
return (0);
}
/*
* Get currently-selected media from card.
* (if_media callback, may be called before interface is brought up).
*/
void
ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
{
register struct ep_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int config1;
u_int ep_mediastatus;
/*
* If we have MII, go ask the PHY what's going on.
*/
if (sc->ep_flags & EP_FLAGS_MII) {
mii_pollstat(&sc->sc_mii);
req->ifm_active = sc->sc_mii.mii_media_active;
req->ifm_status = sc->sc_mii.mii_media_status;
return;
}
/* XXX read from softc when we start autosensing media */
req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
switch (sc->ep_chipset) {
case EP_CHIPSET_VORTEX:
case EP_CHIPSET_BOOMERANG:
GO_WINDOW(3);
delay(5000);
config1 = bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
GO_WINDOW(1);
config1 =
(config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
req->ifm_active = ep_default_to_media[config1];
/* XXX check full-duplex bits? */
GO_WINDOW(4);
req->ifm_status = IFM_AVALID; /* XXX */
ep_mediastatus = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
if (ep_mediastatus & LINKBEAT_DETECT)
req->ifm_status |= IFM_ACTIVE; /* XXX automedia */
break;
case EP_CHIPSET_UNKNOWN:
case EP_CHIPSET_3C509:
req->ifm_status = 0; /* XXX */
break;
default:
printf("%s: media_status on unknown chipset 0x%x\n",
ifp->if_xname, sc->ep_chipset);
break;
}
/* XXX look for softc heartbeat for other chips or media */
GO_WINDOW(1);
return;
}
/*
* Start outputting on the interface.
* Always called as splnet().
*/
void
epstart(struct ifnet *ifp)
{
register struct ep_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct mbuf *m, *m0;
caddr_t data;
int sh, len, pad, txreg;
/* Don't transmit if interface is busy or not running */
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
startagain:
/* Sneak a peek at the next packet */
m0 = ifq_deq_begin(&ifp->if_snd);
if (m0 == NULL)
return;
/* We need to use m->m_pkthdr.len, so require the header */
if ((m0->m_flags & M_PKTHDR) == 0)
panic("epstart: no header mbuf");
len = m0->m_pkthdr.len;
pad = (4 - len) & 3;
/*
* The 3c509 automatically pads short packets to minimum ethernet
* length, but we drop packets that are too large. Perhaps we should
* truncate them instead?
*/
if (len + pad > ETHER_MAX_LEN) {
/* packet is obviously too large: toss it */
++ifp->if_oerrors;
ifq_deq_commit(&ifp->if_snd, m0);
m_freem(m0);
goto readcheck;
}
if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
len + pad + 4) {
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | ((len + pad + 4) >> sc->txashift));
/* not enough room in FIFO */
ifq_deq_rollback(&ifp->if_snd, m0);
ifq_set_oactive(&ifp->if_snd);
return;
} else {
bus_space_write_2(iot, ioh, EP_COMMAND,
SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE);
}
ifq_deq_commit(&ifp->if_snd, m0);
if (m0 == NULL)
return;
bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
((len / 4 + sc->tx_start_thresh) /*>> sc->txashift*/));
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
#endif
/*
* Do the output at splhigh() so that an interrupt from another device
* won't cause a FIFO underrun.
*/
sh = splhigh();
txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
bus_space_write_2(iot, ioh, txreg, len);
bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
if (EP_IS_BUS_32(sc->bustype)) {
for (m = m0; m; ) {
data = mtod(m, u_int8_t *);
if (m->m_len > 3 && ALIGNED_POINTER(data, uint32_t)) {
bus_space_write_raw_multi_4(iot, ioh, txreg,
data, m->m_len & ~3);
if (m->m_len & 3)
bus_space_write_multi_1(iot, ioh, txreg,
data + (m->m_len & ~3),
m->m_len & 3);
} else
bus_space_write_multi_1(iot, ioh, txreg,
data, m->m_len);
m0 = m_free(m);
m = m0;
}
} else {
for (m = m0; m; ) {
data = mtod(m, u_int8_t *);
if (m->m_len > 1 && ALIGNED_POINTER(data, uint16_t)) {
bus_space_write_raw_multi_2(iot, ioh, txreg,
data, m->m_len & ~1);
if (m->m_len & 1)
bus_space_write_1(iot, ioh, txreg,
*(data + m->m_len - 1));
} else
bus_space_write_multi_1(iot, ioh, txreg,
data, m->m_len);
m0 = m_free(m);
m = m0;
}
}
while (pad--)
bus_space_write_1(iot, ioh, txreg, 0);
splx(sh);
readcheck:
if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
ERR_INCOMPLETE) == 0) {
/* We received a complete packet. */
u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
if ((status & S_INTR_LATCH) == 0) {
/*
* No interrupt, read the packet and continue
* Is this supposed to happen? Is my motherboard
* completely busted?
*/
epread(sc);
} else
/* Got an interrupt, return to get it serviced. */
return;
} else {
/* Check if we are stuck and reset [see XXX comment] */
if (epstatus(sc)) {
#ifdef EP_DEBUG
if (ifp->if_flags & IFF_DEBUG)
printf("%s: adapter reset\n",
sc->sc_dev.dv_xname);
#endif
epreset(sc);
}
}
goto startagain;
}
/*
* XXX: The 3c509 card can get in a mode where both the fifo status bit
* FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
* We detect this situation and we reset the adapter.
* It happens at times when there is a lot of broadcast traffic
* on the cable (once in a blue moon).
*/
int
epstatus(struct ep_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t fifost;
/*
* Check the FIFO status and act accordingly
*/
GO_WINDOW(4);
fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
GO_WINDOW(1);
if (fifost & FIFOS_RX_UNDERRUN) {
#ifdef EP_DEBUG
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
#endif
epreset(sc);
return 0;
}
if (fifost & FIFOS_RX_STATUS_OVERRUN) {
#ifdef EP_DEBUG
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
#endif
return 1;
}
if (fifost & FIFOS_RX_OVERRUN) {
#ifdef EP_DEBUG
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
#endif
return 1;
}
if (fifost & FIFOS_TX_OVERRUN) {
#ifdef EP_DEBUG
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
#endif
epreset(sc);
return 0;
}
return 0;
}
void
eptxstat(struct ep_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
/*
* We need to read+write TX_STATUS until we get a 0 status
* in order to turn off the interrupt flag.
*/
while ((i = bus_space_read_1(iot, ioh,
ep_w1_reg(sc, EP_W1_TX_STATUS))) & TXS_COMPLETE) {
bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
0x0);
if (i & TXS_JABBER) {
++sc->sc_arpcom.ac_if.if_oerrors;
#ifdef EP_DEBUG
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: jabber (%x)\n",
sc->sc_dev.dv_xname, i);
#endif
epreset(sc);
} else if (i & TXS_UNDERRUN) {
++sc->sc_arpcom.ac_if.if_oerrors;
#ifdef EP_DEBUG
if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
printf("%s: fifo underrun (%x) @%d\n",
sc->sc_dev.dv_xname, i,
sc->tx_start_thresh);
#endif
if (sc->tx_succ_ok < 100)
sc->tx_start_thresh = min(ETHER_MAX_LEN,
sc->tx_start_thresh + 20);
sc->tx_succ_ok = 0;
epreset(sc);
} else if (i & TXS_MAX_COLLISION) {
++sc->sc_arpcom.ac_if.if_collisions;
bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
ifq_clr_oactive(&sc->sc_arpcom.ac_if.if_snd);
} else
sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
}
}
int
epintr(void *arg)
{
register struct ep_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_int16_t status;
int ret = 0;
for (;;) {
bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
status = bus_space_read_2(iot, ioh, EP_STATUS);
if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
break;
ret = 1;
/*
* Acknowledge any interrupts. It's important that we do this
* first, since there would otherwise be a race condition.
* Due to the i386 interrupt queueing, we may get spurious
* interrupts occasionally.
*/
bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
if (status & S_RX_COMPLETE)
epread(sc);
if (status & S_TX_AVAIL) {
ifq_clr_oactive(&ifp->if_snd);
epstart(ifp);
}
if (status & S_CARD_FAILURE) {
epreset(sc);
return (1);
}
if (status & S_TX_COMPLETE) {
eptxstat(sc);
epstart(ifp);
}
}
/* no more interrupts */
return (ret);
}
void
epread(struct ep_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct mbuf *m;
int len, error = 0;
len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
again:
#ifdef EP_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
int err = len & ERR_MASK;
char *s = NULL;
if (len & ERR_INCOMPLETE)
s = "incomplete packet";
else if (err == ERR_OVERRUN)
s = "packet overrun";
else if (err == ERR_RUNT)
s = "runt packet";
else if (err == ERR_ALIGNMENT)
s = "bad alignment";
else if (err == ERR_CRC)
s = "bad crc";
else if (err == ERR_OVERSIZE)
s = "oversized packet";
else if (err == ERR_DRIBBLE)
s = "dribble bits";
if (s)
printf("%s: %s\n", sc->sc_dev.dv_xname, s);
}
#endif
if (len & ERR_INCOMPLETE)
goto done;
if (len & ERR_RX) {
++ifp->if_ierrors;
error = 1;
goto done;
}
len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
/* Pull packet off interface. */
m = epget(sc, len);
if (m == NULL) {
ifp->if_ierrors++;
error = 1;
goto done;
}
ml_enqueue(&ml, m);
/*
* In periods of high traffic we can actually receive enough
* packets so that the fifo overrun bit will be set at this point,
* even though we just read a packet. In this case we
* are not going to receive any more interrupts. We check for
* this condition and read again until the fifo is not full.
* We could simplify this test by not using epstatus(), but
* rechecking the RX_STATUS register directly. This test could
* result in unnecessary looping in cases where there is a new
* packet but the fifo is not full, but it will not fix the
* stuck behavior.
*
* Even with this improvement, we still get packet overrun errors
* which are hurting performance. Maybe when I get some more time
* I'll modify epread() so that it can handle RX_EARLY interrupts.
*/
if (epstatus(sc)) {
len = bus_space_read_2(iot, ioh,
ep_w1_reg(sc, EP_W1_RX_STATUS));
/* Check if we are stuck and reset [see XXX comment] */
if (len & ERR_INCOMPLETE) {
#ifdef EP_DEBUG
if (ifp->if_flags & IFF_DEBUG)
printf("%s: adapter reset\n",
sc->sc_dev.dv_xname);
#endif
epreset(sc);
goto done;
}
goto again;
}
done:
if (error)
ep_discard_rxtop(iot, ioh);
if_input(ifp, &ml);
}
struct mbuf *
epget(struct ep_softc *sc, int totlen)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct mbuf *m;
caddr_t data;
int len, pad, off, sh, rxreg;
splassert(IPL_NET);
m = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = NULL;
if (m == NULL) {
m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
/* If the queue is no longer full, refill. */
if (!timeout_pending(&sc->sc_epmbuffill_tmo))
timeout_add(&sc->sc_epmbuffill_tmo, 1);
}
if (!m)
return (NULL);
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
len = MCLBYTES;
m->m_pkthdr.len = totlen;
m->m_len = totlen;
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
m->m_data += pad;
len -= pad;
/*
* We read the packet at splhigh() so that an interrupt from another
* device doesn't cause the card's buffer to overflow while we're
* reading it. We may still lose packets at other times.
*/
sh = splhigh();
rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
off = 0;
while (totlen) {
len = min(totlen, m_trailingspace(m));
if (len == 0)
panic("ep_get: packet does not fit in MCLBYTES");
data = mtod(m, u_int8_t *);
if (EP_IS_BUS_32(sc->bustype))
pad = 4 - ((u_long)(data + off) & 0x3);
else
pad = (u_long)(data + off) & 0x1;
if (pad) {
if (pad < len)
pad = len;
bus_space_read_multi_1(iot, ioh, rxreg,
data + off, pad);
len = pad;
} else if (EP_IS_BUS_32(sc->bustype) && len > 3 &&
ALIGNED_POINTER(data, uint32_t)) {
len &= ~3;
bus_space_read_raw_multi_4(iot, ioh, rxreg,
data + off, len);
} else if (len > 1 && ALIGNED_POINTER(data, uint16_t)) {
len &= ~1;
bus_space_read_raw_multi_2(iot, ioh, rxreg,
data + off, len);
} else
bus_space_read_multi_1(iot, ioh, rxreg,
data + off, len);
off += len;
totlen -= len;
}
ep_discard_rxtop(iot, ioh);
splx(sh);
return m;
}
int
epioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ep_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
epinit(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
epinit(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
epstop(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
epreset(sc);
error = 0;
}
splx(s);
return (error);
}
void
epreset(struct ep_softc *sc)
{
int s;
s = splnet();
epinit(sc);
splx(s);
}
void
epwatchdog(struct ifnet *ifp)
{
struct ep_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_arpcom.ac_if.if_oerrors;
epreset(sc);
}
void
epstop(struct ep_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
if (sc->ep_flags & EP_FLAGS_MII) {
mii_down(&sc->sc_mii);
}
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
/* Clear the FIFO buffer count, thus halting
* any currently-running transactions.
*/
GO_WINDOW(1); /* sanity */
bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
}
bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
ep_discard_rxtop(iot, ioh);
bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
epmbufempty(sc);
}
/*
* We get eeprom data from the id_port given an offset into the
* eeprom. Basically; after the ID_sequence is sent to all of
* the cards; they enter the ID_CMD state where they will accept
* command requests. 0x80-0xbf loads the eeprom data. We then
* read the port 16 times and with every read; the cards check
* for contention (ie: if one card writes a 0 bit and another
* writes a 1 bit then the host sees a 0. At the end of the cycle;
* each card compares the data on the bus; if there is a difference
* then that card goes into ID_WAIT state again). In the meantime;
* one bit of data is returned in the AX register which is conveniently
* returned to us by bus_space_read_1(). Hence; we read 16 times getting one
* bit of data with each read.
*
* NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
*/
u_int16_t
epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
{
u_int16_t data = 0;
int i;
bus_space_write_1(iot, ioh, 0, 0x80 + offset);
delay(1000);
for (i = 0; i < 16; i++)
data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
return (data);
}
int
epbusyeeprom(struct ep_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i = 100, j;
while (i--) {
j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
if (j & EEPROM_BUSY)
delay(100);
else
break;
}
if (!i) {
printf("\n%s: eeprom failed to come ready\n",
sc->sc_dev.dv_xname);
return (1);
}
if (sc->bustype != EP_BUS_PCMCIA && sc->bustype != EP_BUS_PCI &&
(j & EEPROM_TST_MODE)) {
printf("\n%s: erase pencil mark, or disable PnP mode!\n",
sc->sc_dev.dv_xname);
return (1);
}
return (0);
}
u_int16_t
ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
{
u_int16_t readcmd;
/*
* RoadRunner has a larger EEPROM, so a different read command
* is required.
*/
if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER)
readcmd = READ_EEPROM_RR;
else
readcmd = READ_EEPROM;
if (epbusyeeprom(sc))
return (0); /* XXX why is eeprom busy? */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_COMMAND,
readcmd | offset);
if (epbusyeeprom(sc))
return (0); /* XXX why is eeprom busy? */
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_DATA));
}
void
epmbuffill(void *v)
{
struct ep_softc *sc = v;
int s, i;
s = splnet();
for (i = 0; i < MAX_MBS; i++) {
if (sc->mb[i] == NULL) {
sc->mb[i] = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
if (sc->mb[i] == NULL)
break;
}
}
/* If the queue was not filled, try again. */
if (i < MAX_MBS)
timeout_add(&sc->sc_epmbuffill_tmo, 1);
splx(s);
}
void
epmbufempty(struct ep_softc *sc)
{
int s, i;
s = splnet();
for (i = 0; i<MAX_MBS; i++) {
if (sc->mb[i]) {
m_freem(sc->mb[i]);
sc->mb[i] = NULL;
}
}
sc->next_mb = 0;
timeout_del(&sc->sc_epmbuffill_tmo);
splx(s);
}
void
ep_mii_setbit(struct ep_softc *sc, u_int16_t bit)
{
u_int16_t val;
/* We assume we're already in Window 4 */
val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
val | bit);
}
void
ep_mii_clrbit(struct ep_softc *sc, u_int16_t bit)
{
u_int16_t val;
/* We assume we're already in Window 4 */
val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
val & ~bit);
}
u_int16_t
ep_mii_readbit(struct ep_softc *sc, u_int16_t bit)
{
/* We assume we're already in Window 4 */
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
bit);
}
void
ep_mii_sync(struct ep_softc *sc)
{
int i;
/* We assume we're already in Window 4 */
ep_mii_clrbit(sc, PHYSMGMT_DIR);
for (i = 0; i < 32; i++) {
ep_mii_clrbit(sc, PHYSMGMT_CLK);
ep_mii_setbit(sc, PHYSMGMT_CLK);
}
}
void
ep_mii_sendbits(struct ep_softc *sc, u_int32_t data, int nbits)
{
int i;
/* We assume we're already in Window 4 */
ep_mii_setbit(sc, PHYSMGMT_DIR);
for (i = 1 << (nbits - 1); i; i = i >> 1) {
ep_mii_clrbit(sc, PHYSMGMT_CLK);
ep_mii_readbit(sc, PHYSMGMT_CLK);
if (data & i)
ep_mii_setbit(sc, PHYSMGMT_DATA);
else
ep_mii_clrbit(sc, PHYSMGMT_DATA);
ep_mii_setbit(sc, PHYSMGMT_CLK);
ep_mii_readbit(sc, PHYSMGMT_CLK);
}
}
int
ep_mii_readreg(struct device *self, int phy, int reg)
{
struct ep_softc *sc = (struct ep_softc *)self;
int val = 0, i, err;
/*
* Read the PHY register by manually driving the MII control lines.
*/
GO_WINDOW(4);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
ep_mii_sync(sc);
ep_mii_sendbits(sc, MII_COMMAND_START, 2);
ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
ep_mii_sendbits(sc, phy, 5);
ep_mii_sendbits(sc, reg, 5);
ep_mii_clrbit(sc, PHYSMGMT_DIR);
ep_mii_clrbit(sc, PHYSMGMT_CLK);
ep_mii_setbit(sc, PHYSMGMT_CLK);
ep_mii_clrbit(sc, PHYSMGMT_CLK);
err = ep_mii_readbit(sc, PHYSMGMT_DATA);
ep_mii_setbit(sc, PHYSMGMT_CLK);
/* Even if an error occurs, must still clock out the cycle. */
for (i = 0; i < 16; i++) {
val <<= 1;
ep_mii_clrbit(sc, PHYSMGMT_CLK);
if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
val |= 1;
ep_mii_setbit(sc, PHYSMGMT_CLK);
}
ep_mii_clrbit(sc, PHYSMGMT_CLK);
ep_mii_setbit(sc, PHYSMGMT_CLK);
GO_WINDOW(1); /* back to operating window */
return (err ? 0 : val);
}
void
ep_mii_writereg(struct device *self, int phy, int reg, int val)
{
struct ep_softc *sc = (struct ep_softc *)self;
/*
* Write the PHY register by manually driving the MII control lines.
*/
GO_WINDOW(4);
ep_mii_sync(sc);
ep_mii_sendbits(sc, MII_COMMAND_START, 2);
ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
ep_mii_sendbits(sc, phy, 5);
ep_mii_sendbits(sc, reg, 5);
ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
ep_mii_sendbits(sc, val, 16);
ep_mii_clrbit(sc, PHYSMGMT_CLK);
ep_mii_setbit(sc, PHYSMGMT_CLK);
GO_WINDOW(1); /* back to operating window */
}
void
ep_statchg(struct device *self)
{
struct ep_softc *sc = (struct ep_softc *)self;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int mctl;
/* XXX Update ifp->if_baudrate */
GO_WINDOW(3);
mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
if (sc->sc_mii.mii_media_active & IFM_FDX)
mctl |= MAC_CONTROL_FDX;
else
mctl &= ~MAC_CONTROL_FDX;
bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
GO_WINDOW(1); /* back to operating window */
}