3167 lines
82 KiB
C
3167 lines
82 KiB
C
/* $OpenBSD: athn.c,v 1.111 2021/04/15 18:25:43 stsp Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
|
|
* Copyright (c) 2008-2010 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for Atheros 802.11a/g/n chipsets.
|
|
*/
|
|
|
|
#include "athn_usb.h"
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/timeout.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/device.h>
|
|
#include <sys/stdint.h> /* uintptr_t */
|
|
#include <sys/endian.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_amrr.h>
|
|
#include <net80211/ieee80211_ra.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
|
|
#include <dev/ic/athnreg.h>
|
|
#include <dev/ic/athnvar.h>
|
|
|
|
#ifdef ATHN_DEBUG
|
|
int athn_debug = 0;
|
|
#endif
|
|
|
|
void athn_radiotap_attach(struct athn_softc *);
|
|
void athn_get_chanlist(struct athn_softc *);
|
|
const char * athn_get_mac_name(struct athn_softc *);
|
|
const char * athn_get_rf_name(struct athn_softc *);
|
|
void athn_led_init(struct athn_softc *);
|
|
void athn_set_led(struct athn_softc *, int);
|
|
void athn_btcoex_init(struct athn_softc *);
|
|
void athn_btcoex_enable(struct athn_softc *);
|
|
void athn_btcoex_disable(struct athn_softc *);
|
|
void athn_set_rxfilter(struct athn_softc *, uint32_t);
|
|
void athn_get_chipid(struct athn_softc *);
|
|
int athn_reset_power_on(struct athn_softc *);
|
|
int athn_reset(struct athn_softc *, int);
|
|
void athn_init_pll(struct athn_softc *,
|
|
const struct ieee80211_channel *);
|
|
int athn_set_power_awake(struct athn_softc *);
|
|
void athn_set_power_sleep(struct athn_softc *);
|
|
void athn_write_serdes(struct athn_softc *,
|
|
const struct athn_serdes *);
|
|
void athn_config_pcie(struct athn_softc *);
|
|
void athn_config_nonpcie(struct athn_softc *);
|
|
int athn_set_chan(struct athn_softc *, struct ieee80211_channel *,
|
|
struct ieee80211_channel *);
|
|
int athn_switch_chan(struct athn_softc *,
|
|
struct ieee80211_channel *, struct ieee80211_channel *);
|
|
void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
|
|
void athn_reset_key(struct athn_softc *, int);
|
|
int athn_set_key(struct ieee80211com *, struct ieee80211_node *,
|
|
struct ieee80211_key *);
|
|
void athn_delete_key(struct ieee80211com *, struct ieee80211_node *,
|
|
struct ieee80211_key *);
|
|
void athn_iter_calib(void *, struct ieee80211_node *);
|
|
int athn_cap_noisefloor(struct athn_softc *, int);
|
|
int athn_nf_hist_mid(int *, int);
|
|
void athn_filter_noisefloor(struct athn_softc *);
|
|
void athn_start_noisefloor_calib(struct athn_softc *, int);
|
|
void athn_calib_to(void *);
|
|
int athn_init_calib(struct athn_softc *,
|
|
struct ieee80211_channel *, struct ieee80211_channel *);
|
|
uint8_t athn_chan2fbin(struct ieee80211_channel *);
|
|
int athn_interpolate(int, int, int, int, int);
|
|
void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *,
|
|
int *);
|
|
void athn_init_dma(struct athn_softc *);
|
|
void athn_rx_start(struct athn_softc *);
|
|
void athn_inc_tx_trigger_level(struct athn_softc *);
|
|
int athn_stop_rx_dma(struct athn_softc *);
|
|
int athn_rx_abort(struct athn_softc *);
|
|
void athn_tx_reclaim(struct athn_softc *, int);
|
|
int athn_tx_pending(struct athn_softc *, int);
|
|
void athn_stop_tx_dma(struct athn_softc *, int);
|
|
int athn_txtime(struct athn_softc *, int, int, u_int);
|
|
void athn_set_sta_timers(struct athn_softc *);
|
|
void athn_set_hostap_timers(struct athn_softc *);
|
|
void athn_set_opmode(struct athn_softc *);
|
|
void athn_set_bss(struct athn_softc *, struct ieee80211_node *);
|
|
void athn_enable_interrupts(struct athn_softc *);
|
|
void athn_disable_interrupts(struct athn_softc *);
|
|
void athn_init_qos(struct athn_softc *);
|
|
int athn_hw_reset(struct athn_softc *, struct ieee80211_channel *,
|
|
struct ieee80211_channel *, int);
|
|
struct ieee80211_node *athn_node_alloc(struct ieee80211com *);
|
|
void athn_newassoc(struct ieee80211com *, struct ieee80211_node *,
|
|
int);
|
|
int athn_media_change(struct ifnet *);
|
|
void athn_next_scan(void *);
|
|
int athn_newstate(struct ieee80211com *, enum ieee80211_state,
|
|
int);
|
|
void athn_updateedca(struct ieee80211com *);
|
|
int athn_clock_rate(struct athn_softc *);
|
|
int athn_chan_sifs(struct ieee80211_channel *);
|
|
void athn_setsifs(struct athn_softc *);
|
|
int athn_acktimeout(struct ieee80211_channel *, int);
|
|
void athn_setacktimeout(struct athn_softc *,
|
|
struct ieee80211_channel *, int);
|
|
void athn_setctstimeout(struct athn_softc *,
|
|
struct ieee80211_channel *, int);
|
|
void athn_setclockrate(struct athn_softc *);
|
|
void athn_updateslot(struct ieee80211com *);
|
|
void athn_start(struct ifnet *);
|
|
void athn_watchdog(struct ifnet *);
|
|
void athn_set_multi(struct athn_softc *);
|
|
int athn_ioctl(struct ifnet *, u_long, caddr_t);
|
|
int athn_init(struct ifnet *);
|
|
void athn_stop(struct ifnet *, int);
|
|
void athn_init_tx_queues(struct athn_softc *);
|
|
int32_t athn_ani_get_rssi(struct athn_softc *);
|
|
void athn_ani_ofdm_err_trigger(struct athn_softc *);
|
|
void athn_ani_cck_err_trigger(struct athn_softc *);
|
|
void athn_ani_lower_immunity(struct athn_softc *);
|
|
void athn_ani_restart(struct athn_softc *);
|
|
void athn_ani_monitor(struct athn_softc *);
|
|
|
|
/* Extern functions. */
|
|
int ar5416_attach(struct athn_softc *);
|
|
int ar9280_attach(struct athn_softc *);
|
|
int ar9285_attach(struct athn_softc *);
|
|
int ar9287_attach(struct athn_softc *);
|
|
int ar9380_attach(struct athn_softc *);
|
|
int ar5416_init_calib(struct athn_softc *,
|
|
struct ieee80211_channel *, struct ieee80211_channel *);
|
|
int ar9285_init_calib(struct athn_softc *,
|
|
struct ieee80211_channel *, struct ieee80211_channel *);
|
|
int ar9003_init_calib(struct athn_softc *);
|
|
void ar9285_pa_calib(struct athn_softc *);
|
|
void ar9271_pa_calib(struct athn_softc *);
|
|
void ar9287_1_3_enable_async_fifo(struct athn_softc *);
|
|
void ar9287_1_3_setup_async_fifo(struct athn_softc *);
|
|
void ar9003_reset_txsring(struct athn_softc *);
|
|
|
|
struct cfdriver athn_cd = {
|
|
NULL, "athn", DV_IFNET
|
|
};
|
|
|
|
void
|
|
athn_config_ht(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int i, ntxstreams, nrxstreams;
|
|
|
|
if ((sc->flags & ATHN_FLAG_11N) == 0)
|
|
return;
|
|
|
|
/* Set HT capabilities. */
|
|
ic->ic_htcaps = (IEEE80211_HTCAP_SMPS_DIS <<
|
|
IEEE80211_HTCAP_SMPS_SHIFT);
|
|
#ifdef notyet
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_40 |
|
|
IEEE80211_HTCAP_SGI40 |
|
|
IEEE80211_HTCAP_DSSSCCK40;
|
|
#endif
|
|
ic->ic_htxcaps = 0;
|
|
#ifdef notyet
|
|
if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
|
|
if (AR_SREV_9380_10_OR_LATER(sc))
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
|
|
if (AR_SREV_9280_10_OR_LATER(sc)) {
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
|
|
ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
|
|
}
|
|
#endif
|
|
ntxstreams = sc->ntxchains;
|
|
nrxstreams = sc->nrxchains;
|
|
if (!AR_SREV_9380_10_OR_LATER(sc)) {
|
|
ntxstreams = MIN(ntxstreams, 2);
|
|
nrxstreams = MIN(nrxstreams, 2);
|
|
}
|
|
/* Set supported HT rates. */
|
|
if (ic->ic_userflags & IEEE80211_F_NOMIMO)
|
|
ntxstreams = nrxstreams = 1;
|
|
memset(ic->ic_sup_mcs, 0, sizeof(ic->ic_sup_mcs));
|
|
for (i = 0; i < nrxstreams; i++)
|
|
ic->ic_sup_mcs[i] = 0xff;
|
|
ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED;
|
|
if (ntxstreams != nrxstreams) {
|
|
ic->ic_tx_mcs_set |= IEEE80211_TX_RX_MCS_NOT_EQUAL;
|
|
ic->ic_tx_mcs_set |= (ntxstreams - 1) << 2;
|
|
}
|
|
}
|
|
|
|
int
|
|
athn_attach(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
int error;
|
|
|
|
/* Read hardware revision. */
|
|
athn_get_chipid(sc);
|
|
|
|
if ((error = athn_reset_power_on(sc)) != 0) {
|
|
printf("%s: could not reset chip\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
if ((error = athn_set_power_awake(sc)) != 0) {
|
|
printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
|
|
error = ar5416_attach(sc);
|
|
else if (AR_SREV_9280(sc))
|
|
error = ar9280_attach(sc);
|
|
else if (AR_SREV_9285(sc))
|
|
error = ar9285_attach(sc);
|
|
#if NATHN_USB > 0
|
|
else if (AR_SREV_9271(sc))
|
|
error = ar9285_attach(sc);
|
|
#endif
|
|
else if (AR_SREV_9287(sc))
|
|
error = ar9287_attach(sc);
|
|
else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
|
|
error = ar9380_attach(sc);
|
|
else
|
|
error = ENOTSUP;
|
|
if (error != 0) {
|
|
printf("%s: could not attach chip\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
/* We can put the chip in sleep state now. */
|
|
athn_set_power_sleep(sc);
|
|
|
|
if (!(sc->flags & ATHN_FLAG_USB)) {
|
|
error = sc->ops.dma_alloc(sc);
|
|
if (error != 0) {
|
|
printf("%s: could not allocate DMA resources\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
/* Steal one Tx buffer for beacons. */
|
|
sc->bcnbuf = SIMPLEQ_FIRST(&sc->txbufs);
|
|
SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list);
|
|
}
|
|
|
|
if (sc->flags & ATHN_FLAG_RFSILENT) {
|
|
DPRINTF(("found RF switch connected to GPIO pin %d\n",
|
|
sc->rfsilent_pin));
|
|
}
|
|
DPRINTF(("%d key cache entries\n", sc->kc_entries));
|
|
/*
|
|
* In HostAP mode, the number of STAs that we can handle is
|
|
* limited by the number of entries in the HW key cache.
|
|
* TKIP keys would consume 2 entries in this cache but we
|
|
* only use the hardware crypto engine for CCMP.
|
|
*/
|
|
ic->ic_max_nnodes = sc->kc_entries - IEEE80211_WEP_NKID;
|
|
if (ic->ic_max_nnodes > IEEE80211_CACHE_SIZE)
|
|
ic->ic_max_nnodes = IEEE80211_CACHE_SIZE;
|
|
|
|
DPRINTF(("using %s loop power control\n",
|
|
(sc->flags & ATHN_FLAG_OLPC) ? "open" : "closed"));
|
|
|
|
DPRINTF(("txchainmask=0x%x rxchainmask=0x%x\n",
|
|
sc->txchainmask, sc->rxchainmask));
|
|
/* Count the number of bits set (in lowest 3 bits). */
|
|
sc->ntxchains =
|
|
((sc->txchainmask >> 2) & 1) +
|
|
((sc->txchainmask >> 1) & 1) +
|
|
((sc->txchainmask >> 0) & 1);
|
|
sc->nrxchains =
|
|
((sc->rxchainmask >> 2) & 1) +
|
|
((sc->rxchainmask >> 1) & 1) +
|
|
((sc->rxchainmask >> 0) & 1);
|
|
|
|
if (AR_SINGLE_CHIP(sc)) {
|
|
printf("%s: %s rev %d (%dT%dR), ROM rev %d, address %s\n",
|
|
sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev,
|
|
sc->ntxchains, sc->nrxchains, sc->eep_rev,
|
|
ether_sprintf(ic->ic_myaddr));
|
|
} else {
|
|
printf("%s: MAC %s rev %d, RF %s (%dT%dR), ROM rev %d, "
|
|
"address %s\n",
|
|
sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev,
|
|
athn_get_rf_name(sc), sc->ntxchains, sc->nrxchains,
|
|
sc->eep_rev, ether_sprintf(ic->ic_myaddr));
|
|
}
|
|
|
|
timeout_set(&sc->scan_to, athn_next_scan, sc);
|
|
timeout_set(&sc->calib_to, athn_calib_to, sc);
|
|
|
|
sc->amrr.amrr_min_success_threshold = 1;
|
|
sc->amrr.amrr_max_success_threshold = 15;
|
|
|
|
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
|
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/* Set device capabilities. */
|
|
ic->ic_caps =
|
|
IEEE80211_C_WEP | /* WEP. */
|
|
IEEE80211_C_RSN | /* WPA/RSN. */
|
|
#ifndef IEEE80211_STA_ONLY
|
|
IEEE80211_C_HOSTAP | /* Host AP mode supported. */
|
|
IEEE80211_C_APPMGT | /* Host AP power saving supported. */
|
|
#endif
|
|
IEEE80211_C_MONITOR | /* Monitor mode supported. */
|
|
IEEE80211_C_SHSLOT | /* Short slot time supported. */
|
|
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
|
|
IEEE80211_C_PMGT; /* Power saving supported. */
|
|
|
|
athn_config_ht(sc);
|
|
|
|
/* Set supported rates. */
|
|
if (sc->flags & ATHN_FLAG_11G) {
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B] =
|
|
ieee80211_std_rateset_11b;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11G] =
|
|
ieee80211_std_rateset_11g;
|
|
}
|
|
if (sc->flags & ATHN_FLAG_11A) {
|
|
ic->ic_sup_rates[IEEE80211_MODE_11A] =
|
|
ieee80211_std_rateset_11a;
|
|
}
|
|
|
|
/* Get the list of authorized/supported channels. */
|
|
athn_get_chanlist(sc);
|
|
|
|
/* IBSS channel undefined for now. */
|
|
ic->ic_ibss_chan = &ic->ic_channels[0];
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = athn_ioctl;
|
|
ifp->if_start = athn_start;
|
|
ifp->if_watchdog = athn_watchdog;
|
|
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
|
|
|
|
if_attach(ifp);
|
|
ieee80211_ifattach(ifp);
|
|
ic->ic_node_alloc = athn_node_alloc;
|
|
ic->ic_newassoc = athn_newassoc;
|
|
ic->ic_updateslot = athn_updateslot;
|
|
ic->ic_updateedca = athn_updateedca;
|
|
ic->ic_set_key = athn_set_key;
|
|
ic->ic_delete_key = athn_delete_key;
|
|
|
|
/* Override 802.11 state transition machine. */
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = athn_newstate;
|
|
ieee80211_media_init(ifp, athn_media_change, ieee80211_media_status);
|
|
|
|
#if NBPFILTER > 0
|
|
athn_radiotap_attach(sc);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
athn_detach(struct athn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int qid;
|
|
|
|
timeout_del(&sc->scan_to);
|
|
timeout_del(&sc->calib_to);
|
|
|
|
if (!(sc->flags & ATHN_FLAG_USB)) {
|
|
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
|
|
athn_tx_reclaim(sc, qid);
|
|
|
|
/* Free Tx/Rx DMA resources. */
|
|
sc->ops.dma_free(sc);
|
|
}
|
|
/* Free ROM copy. */
|
|
if (sc->eep != NULL)
|
|
free(sc->eep, M_DEVBUF, 0);
|
|
|
|
ieee80211_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Attach the interface to 802.11 radiotap.
|
|
*/
|
|
void
|
|
athn_radiotap_attach(struct athn_softc *sc)
|
|
{
|
|
bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
|
|
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
|
|
|
|
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
|
|
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
|
|
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
athn_get_chanlist(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t chan;
|
|
int i;
|
|
|
|
if (sc->flags & ATHN_FLAG_11G) {
|
|
for (i = 1; i <= 14; i++) {
|
|
chan = i;
|
|
ic->ic_channels[chan].ic_freq =
|
|
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
|
|
ic->ic_channels[chan].ic_flags =
|
|
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
|
|
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
|
|
if (sc->flags & ATHN_FLAG_11N)
|
|
ic->ic_channels[chan].ic_flags |=
|
|
IEEE80211_CHAN_HT;
|
|
}
|
|
}
|
|
if (sc->flags & ATHN_FLAG_11A) {
|
|
for (i = 0; i < nitems(athn_5ghz_chans); i++) {
|
|
chan = athn_5ghz_chans[i];
|
|
ic->ic_channels[chan].ic_freq =
|
|
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
|
|
if (sc->flags & ATHN_FLAG_11N)
|
|
ic->ic_channels[chan].ic_flags |=
|
|
IEEE80211_CHAN_HT;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
athn_rx_start(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint32_t rfilt;
|
|
|
|
/* Setup Rx DMA descriptors. */
|
|
sc->ops.rx_enable(sc);
|
|
|
|
/* Set Rx filter. */
|
|
rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
|
|
/* Want Compressed Block Ack Requests. */
|
|
rfilt |= AR_RX_FILTER_COMPR_BAR;
|
|
rfilt |= AR_RX_FILTER_BEACON;
|
|
if (ic->ic_opmode != IEEE80211_M_STA) {
|
|
rfilt |= AR_RX_FILTER_PROBEREQ;
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
rfilt |= AR_RX_FILTER_PROM;
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (AR_SREV_9280_10_OR_LATER(sc) &&
|
|
ic->ic_opmode == IEEE80211_M_HOSTAP)
|
|
rfilt |= AR_RX_FILTER_PSPOLL;
|
|
#endif
|
|
}
|
|
athn_set_rxfilter(sc, rfilt);
|
|
|
|
/* Set BSSID mask. */
|
|
AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
|
|
AR_WRITE(sc, AR_BSSMSKU, 0xffff);
|
|
|
|
athn_set_opmode(sc);
|
|
|
|
/* Set multicast filter. */
|
|
AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
|
|
AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
|
|
|
|
AR_WRITE(sc, AR_FILT_OFDM, 0);
|
|
AR_WRITE(sc, AR_FILT_CCK, 0);
|
|
AR_WRITE(sc, AR_MIBC, 0);
|
|
AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
|
|
AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
|
|
|
|
/* XXX ANI. */
|
|
AR_WRITE(sc, AR_PHY_ERR_1, 0);
|
|
AR_WRITE(sc, AR_PHY_ERR_2, 0);
|
|
|
|
/* Disable HW crypto for now. */
|
|
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
|
|
|
|
/* Start PCU Rx. */
|
|
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
|
|
{
|
|
AR_WRITE(sc, AR_RX_FILTER, rfilt);
|
|
|
|
#ifdef notyet
|
|
reg = AR_READ(sc, AR_PHY_ERR);
|
|
reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
|
|
AR_PHY_ERR_CCK_TIMING);
|
|
AR_WRITE(sc, AR_PHY_ERR, reg);
|
|
if (reg != 0)
|
|
AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
|
|
else
|
|
AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
|
|
#else
|
|
AR_WRITE(sc, AR_PHY_ERR, 0);
|
|
AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
|
|
#endif
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
int
|
|
athn_intr(void *xsc)
|
|
{
|
|
struct athn_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
|
|
(IFF_UP | IFF_RUNNING))
|
|
return (0);
|
|
|
|
return (sc->ops.intr(sc));
|
|
}
|
|
|
|
void
|
|
athn_get_chipid(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = AR_READ(sc, AR_SREV);
|
|
if (MS(reg, AR_SREV_ID) == 0xff) {
|
|
sc->mac_ver = MS(reg, AR_SREV_VERSION2);
|
|
sc->mac_rev = MS(reg, AR_SREV_REVISION2);
|
|
if (!(reg & AR_SREV_TYPE2_HOST_MODE))
|
|
sc->flags |= ATHN_FLAG_PCIE;
|
|
} else {
|
|
sc->mac_ver = MS(reg, AR_SREV_VERSION);
|
|
sc->mac_rev = MS(reg, AR_SREV_REVISION);
|
|
if (sc->mac_ver == AR_SREV_VERSION_5416_PCIE)
|
|
sc->flags |= ATHN_FLAG_PCIE;
|
|
}
|
|
}
|
|
|
|
const char *
|
|
athn_get_mac_name(struct athn_softc *sc)
|
|
{
|
|
switch (sc->mac_ver) {
|
|
case AR_SREV_VERSION_5416_PCI:
|
|
return ("AR5416");
|
|
case AR_SREV_VERSION_5416_PCIE:
|
|
return ("AR5418");
|
|
case AR_SREV_VERSION_9160:
|
|
return ("AR9160");
|
|
case AR_SREV_VERSION_9280:
|
|
return ("AR9280");
|
|
case AR_SREV_VERSION_9285:
|
|
return ("AR9285");
|
|
case AR_SREV_VERSION_9271:
|
|
return ("AR9271");
|
|
case AR_SREV_VERSION_9287:
|
|
return ("AR9287");
|
|
case AR_SREV_VERSION_9380:
|
|
return ("AR9380");
|
|
case AR_SREV_VERSION_9485:
|
|
return ("AR9485");
|
|
}
|
|
return ("unknown");
|
|
}
|
|
|
|
/*
|
|
* Return RF chip name (not for single-chip solutions).
|
|
*/
|
|
const char *
|
|
athn_get_rf_name(struct athn_softc *sc)
|
|
{
|
|
KASSERT(!AR_SINGLE_CHIP(sc));
|
|
|
|
switch (sc->rf_rev) {
|
|
case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
|
|
return ("AR5133");
|
|
case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
|
|
return ("AR2133");
|
|
case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
|
|
return ("AR5122");
|
|
case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
|
|
return ("AR2122");
|
|
}
|
|
return ("unknown");
|
|
}
|
|
|
|
int
|
|
athn_reset_power_on(struct athn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Set force wake. */
|
|
AR_WRITE(sc, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
|
|
|
|
if (!AR_SREV_9380_10_OR_LATER(sc)) {
|
|
/* Make sure no DMA is active by doing an AHB reset. */
|
|
AR_WRITE(sc, AR_RC, AR_RC_AHB);
|
|
}
|
|
/* RTC reset and clear. */
|
|
AR_WRITE(sc, AR_RTC_RESET, 0);
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(2);
|
|
if (!AR_SREV_9380_10_OR_LATER(sc))
|
|
AR_WRITE(sc, AR_RC, 0);
|
|
AR_WRITE(sc, AR_RTC_RESET, 1);
|
|
|
|
/* Poll until RTC is ON. */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
|
|
AR_RTC_STATUS_ON)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 1000) {
|
|
DPRINTF(("RTC not waking up\n"));
|
|
return (ETIMEDOUT);
|
|
}
|
|
return (athn_reset(sc, 0));
|
|
}
|
|
|
|
int
|
|
athn_reset(struct athn_softc *sc, int cold)
|
|
{
|
|
int ntries;
|
|
|
|
/* Set force wake. */
|
|
AR_WRITE(sc, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
|
|
|
|
if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
|
|
(AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
|
|
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
|
|
AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
|
|
(!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
|
|
} else if (!AR_SREV_9380_10_OR_LATER(sc))
|
|
AR_WRITE(sc, AR_RC, AR_RC_AHB);
|
|
|
|
AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
|
|
(cold ? AR_RTC_RC_MAC_COLD : 0));
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(50);
|
|
AR_WRITE(sc, AR_RTC_RC, 0);
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (!(AR_READ(sc, AR_RTC_RC) &
|
|
(AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 1000) {
|
|
DPRINTF(("RTC stuck in MAC reset\n"));
|
|
return (ETIMEDOUT);
|
|
}
|
|
AR_WRITE(sc, AR_RC, 0);
|
|
AR_WRITE_BARRIER(sc);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
athn_set_power_awake(struct athn_softc *sc)
|
|
{
|
|
int ntries, error;
|
|
|
|
/* Do a Power-On-Reset if shutdown. */
|
|
if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
|
|
AR_RTC_STATUS_SHUTDOWN) {
|
|
if ((error = athn_reset_power_on(sc)) != 0)
|
|
return (error);
|
|
if (!AR_SREV_9380_10_OR_LATER(sc))
|
|
athn_init_pll(sc, NULL);
|
|
}
|
|
AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(50); /* Give chip the chance to awake. */
|
|
|
|
/* Poll until RTC is ON. */
|
|
for (ntries = 0; ntries < 4000; ntries++) {
|
|
if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
|
|
AR_RTC_STATUS_ON)
|
|
break;
|
|
DELAY(50);
|
|
AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
|
|
}
|
|
if (ntries == 4000) {
|
|
DPRINTF(("RTC not waking up\n"));
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
|
|
AR_WRITE_BARRIER(sc);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
athn_set_power_sleep(struct athn_softc *sc)
|
|
{
|
|
AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
|
|
/* Allow the MAC to go to sleep. */
|
|
AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
|
|
if (!AR_SREV_9380_10_OR_LATER(sc))
|
|
AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
|
|
/*
|
|
* NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
|
|
* results in high power consumption on AR5416 chipsets.
|
|
*/
|
|
if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
|
|
AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
|
|
{
|
|
uint32_t pll;
|
|
|
|
if (AR_SREV_9380_10_OR_LATER(sc)) {
|
|
if (AR_SREV_9485(sc))
|
|
AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
|
|
pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
|
|
pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
|
|
} else if (AR_SREV_9280_10_OR_LATER(sc)) {
|
|
pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
|
|
if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
|
|
if (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)
|
|
pll = 0x142c;
|
|
else if (AR_SREV_9280_20(sc))
|
|
pll = 0x2850;
|
|
else
|
|
pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
|
|
} else
|
|
pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
|
|
} else if (AR_SREV_9160_10_OR_LATER(sc)) {
|
|
pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
|
|
if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
|
|
pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
|
|
else
|
|
pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
|
|
} else {
|
|
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
|
|
if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
|
|
pll |= SM(AR_RTC_PLL_DIV, 0x0a);
|
|
else
|
|
pll |= SM(AR_RTC_PLL_DIV, 0x0b);
|
|
}
|
|
DPRINTFN(5, ("AR_RTC_PLL_CONTROL=0x%08x\n", pll));
|
|
AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
|
|
if (AR_SREV_9271(sc)) {
|
|
/* Switch core clock to 117MHz. */
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(500);
|
|
AR_WRITE(sc, AR9271_CLOCK_CONTROL, 0x304);
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(100);
|
|
AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
|
|
{
|
|
int i;
|
|
|
|
/* Write sequence to Serializer/Deserializer. */
|
|
for (i = 0; i < serdes->nvals; i++)
|
|
AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_config_pcie(struct athn_softc *sc)
|
|
{
|
|
/* Disable PLL when in L0s as well as receiver clock when in L1. */
|
|
athn_write_serdes(sc, sc->serdes);
|
|
|
|
DELAY(1000);
|
|
/* Allow forcing of PCIe core into L1 state. */
|
|
AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
|
|
|
|
#ifndef ATHN_PCIE_WAEN
|
|
AR_WRITE(sc, AR_WA, sc->workaround);
|
|
#else
|
|
AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
|
|
#endif
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
/*
|
|
* Serializer/Deserializer programming for non-PCIe devices.
|
|
*/
|
|
static const uint32_t ar_nonpcie_serdes_regs[] = {
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES,
|
|
AR_PCIE_SERDES2,
|
|
};
|
|
|
|
static const uint32_t ar_nonpcie_serdes_vals[] = {
|
|
0x9248fc00,
|
|
0x24924924,
|
|
0x28000029,
|
|
0x57160824,
|
|
0x25980579,
|
|
0x00000000,
|
|
0x1aaabe40,
|
|
0xbe105554,
|
|
0x000e1007,
|
|
0x00000000
|
|
};
|
|
|
|
static const struct athn_serdes ar_nonpcie_serdes = {
|
|
nitems(ar_nonpcie_serdes_vals),
|
|
ar_nonpcie_serdes_regs,
|
|
ar_nonpcie_serdes_vals
|
|
};
|
|
|
|
void
|
|
athn_config_nonpcie(struct athn_softc *sc)
|
|
{
|
|
athn_write_serdes(sc, &ar_nonpcie_serdes);
|
|
}
|
|
|
|
int
|
|
athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
struct ieee80211_channel *extc)
|
|
{
|
|
struct athn_ops *ops = &sc->ops;
|
|
int error, qid;
|
|
|
|
/* Check that Tx is stopped, otherwise RF Bus grant will not work. */
|
|
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
|
|
if (athn_tx_pending(sc, qid))
|
|
return (EBUSY);
|
|
|
|
/* Request RF Bus grant. */
|
|
if ((error = ops->rf_bus_request(sc)) != 0)
|
|
return (error);
|
|
|
|
ops->set_phy(sc, c, extc);
|
|
|
|
/* Change the synthesizer. */
|
|
if ((error = ops->set_synth(sc, c, extc)) != 0)
|
|
return (error);
|
|
|
|
sc->curchan = c;
|
|
sc->curchanext = extc;
|
|
|
|
/* Set transmit power values for new channel. */
|
|
ops->set_txpower(sc, c, extc);
|
|
|
|
/* Release the RF Bus grant. */
|
|
ops->rf_bus_release(sc);
|
|
|
|
/* Write delta slope coeffs for modes where OFDM may be used. */
|
|
if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
|
|
ops->set_delta_slope(sc, c, extc);
|
|
|
|
ops->spur_mitigate(sc, c, extc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
struct ieee80211_channel *extc)
|
|
{
|
|
int error, qid;
|
|
|
|
/* Disable interrupts. */
|
|
athn_disable_interrupts(sc);
|
|
|
|
/* Stop all Tx queues. */
|
|
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
|
|
athn_stop_tx_dma(sc, qid);
|
|
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
|
|
athn_tx_reclaim(sc, qid);
|
|
|
|
/* Stop Rx. */
|
|
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
|
|
AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
|
|
AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
|
|
AR_WRITE(sc, AR_FILT_OFDM, 0);
|
|
AR_WRITE(sc, AR_FILT_CCK, 0);
|
|
athn_set_rxfilter(sc, 0);
|
|
error = athn_stop_rx_dma(sc);
|
|
if (error != 0)
|
|
goto reset;
|
|
|
|
#ifdef notyet
|
|
/* AR9280 needs a full reset. */
|
|
if (AR_SREV_9280(sc))
|
|
#endif
|
|
goto reset;
|
|
|
|
/* If band or bandwidth changes, we need to do a full reset. */
|
|
if (c->ic_flags != sc->curchan->ic_flags ||
|
|
((extc != NULL) ^ (sc->curchanext != NULL))) {
|
|
DPRINTFN(2, ("channel band switch\n"));
|
|
goto reset;
|
|
}
|
|
error = athn_set_power_awake(sc);
|
|
if (error != 0)
|
|
goto reset;
|
|
|
|
error = athn_set_chan(sc, c, extc);
|
|
if (error != 0) {
|
|
reset: /* Error found, try a full reset. */
|
|
DPRINTFN(3, ("needs a full reset\n"));
|
|
error = athn_hw_reset(sc, c, extc, 0);
|
|
if (error != 0) /* Hopeless case. */
|
|
return (error);
|
|
}
|
|
athn_rx_start(sc);
|
|
|
|
/* Re-enable interrupts. */
|
|
athn_enable_interrupts(sc);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
|
|
{
|
|
#define COEFF_SCALE_SHIFT 24
|
|
uint32_t exp, man;
|
|
|
|
/* exponent = 14 - floor(log2(coeff)) */
|
|
for (exp = 31; exp > 0; exp--)
|
|
if (coeff & (1 << exp))
|
|
break;
|
|
exp = 14 - (exp - COEFF_SCALE_SHIFT);
|
|
|
|
/* mantissa = floor(coeff * 2^exponent + 0.5) */
|
|
man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
|
|
|
|
*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
|
|
*exponent = exp - 16;
|
|
#undef COEFF_SCALE_SHIFT
|
|
}
|
|
|
|
void
|
|
athn_reset_key(struct athn_softc *sc, int entry)
|
|
{
|
|
/*
|
|
* NB: Key cache registers access special memory area that requires
|
|
* two 32-bit writes to actually update the values in the internal
|
|
* memory. Consequently, writes must be grouped by pair.
|
|
*
|
|
* All writes to registers with an offset of 0x0 or 0x8 write to a
|
|
* temporary register. A write to a register with an offset of 0x4
|
|
* or 0xc writes concatenates the written value with the value in
|
|
* the temporary register and writes the result to key cache memory.
|
|
* The actual written memory area is 50 bits wide.
|
|
*/
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
|
|
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
|
|
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
|
|
AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
|
|
|
|
AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
|
|
AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
|
|
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
int
|
|
athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct athn_softc *sc = ic->ic_softc;
|
|
const uint8_t *key, *addr;
|
|
uintptr_t entry;
|
|
uint32_t lo, hi, unicast;
|
|
|
|
if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
|
|
/* Use software crypto for ciphers other than CCMP. */
|
|
return ieee80211_set_key(ic, ni, k);
|
|
}
|
|
|
|
if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
|
|
entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
|
|
else
|
|
#endif
|
|
entry = IEEE80211_WEP_NKID;
|
|
if (entry >= sc->kc_entries - IEEE80211_WEP_NKID)
|
|
return ENOSPC;
|
|
} else {
|
|
entry = k->k_id;
|
|
if (entry >= IEEE80211_WEP_NKID)
|
|
return ENOSPC;
|
|
}
|
|
k->k_priv = (void *)entry;
|
|
|
|
/* NB: See note about key cache registers access above. */
|
|
key = k->k_key;
|
|
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
|
|
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
|
|
|
|
AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
|
|
AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CCM);
|
|
|
|
unicast = AR_KEYTABLE_VALID;
|
|
if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
|
|
addr = ni->ni_macaddr;
|
|
lo = LE_READ_4(&addr[0]);
|
|
hi = LE_READ_2(&addr[4]);
|
|
lo = lo >> 1 | hi << 31;
|
|
hi = hi >> 1;
|
|
} else {
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
uint8_t groupaddr[ETHER_ADDR_LEN];
|
|
IEEE80211_ADDR_COPY(groupaddr, ic->ic_myaddr);
|
|
groupaddr[0] |= 0x01;
|
|
lo = LE_READ_4(&groupaddr[0]);
|
|
hi = LE_READ_2(&groupaddr[4]);
|
|
lo = lo >> 1 | hi << 31;
|
|
hi = hi >> 1;
|
|
/*
|
|
* KEYTABLE_VALID indicates that the address
|
|
* is a unicast address which must match the
|
|
* transmitter address when decrypting frames.
|
|
* Not setting KEYTABLE_VALID allows hardware to
|
|
* use this key for multicast frame decryption.
|
|
*/
|
|
unicast = 0;
|
|
} else
|
|
#endif
|
|
lo = hi = 0;
|
|
}
|
|
AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
|
|
AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | unicast);
|
|
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
/* Enable HW crypto. */
|
|
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
|
|
|
|
AR_WRITE_BARRIER(sc);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct athn_softc *sc = ic->ic_softc;
|
|
uintptr_t entry;
|
|
|
|
if (k->k_cipher == IEEE80211_CIPHER_CCMP) {
|
|
entry = (uintptr_t)k->k_priv;
|
|
athn_reset_key(sc, entry);
|
|
explicit_bzero(k, sizeof(*k));
|
|
} else
|
|
ieee80211_delete_key(ic, ni, k);
|
|
}
|
|
|
|
void
|
|
athn_led_init(struct athn_softc *sc)
|
|
{
|
|
struct athn_ops *ops = &sc->ops;
|
|
|
|
ops->gpio_config_output(sc, sc->led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
|
|
/* LED off, active low. */
|
|
athn_set_led(sc, 0);
|
|
}
|
|
|
|
void
|
|
athn_set_led(struct athn_softc *sc, int on)
|
|
{
|
|
struct athn_ops *ops = &sc->ops;
|
|
|
|
sc->led_state = on;
|
|
ops->gpio_write(sc, sc->led_pin, !sc->led_state);
|
|
}
|
|
|
|
#ifdef ATHN_BT_COEXISTENCE
|
|
void
|
|
athn_btcoex_init(struct athn_softc *sc)
|
|
{
|
|
struct athn_ops *ops = &sc->ops;
|
|
uint32_t reg;
|
|
|
|
if (sc->flags & ATHN_FLAG_BTCOEX2WIRE) {
|
|
/* Connect bt_active to baseband. */
|
|
AR_CLRBITS(sc, sc->gpio_input_en_off,
|
|
AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
|
|
AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
|
|
AR_SETBITS(sc, sc->gpio_input_en_off,
|
|
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
|
|
|
|
reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
|
|
reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
|
|
AR_GPIO_BTACTIVE_PIN);
|
|
AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
|
|
} else { /* 3-wire. */
|
|
AR_SETBITS(sc, sc->gpio_input_en_off,
|
|
AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
|
|
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
|
|
|
|
reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
|
|
reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
|
|
AR_GPIO_BTACTIVE_PIN);
|
|
reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
|
|
AR_GPIO_BTPRIORITY_PIN);
|
|
AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
|
|
ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
|
|
}
|
|
}
|
|
|
|
void
|
|
athn_btcoex_enable(struct athn_softc *sc)
|
|
{
|
|
struct athn_ops *ops = &sc->ops;
|
|
uint32_t reg;
|
|
|
|
if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) {
|
|
AR_WRITE(sc, AR_BT_COEX_MODE,
|
|
SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
|
|
SM(AR_BT_PRIORITY_TIME, 2) |
|
|
SM(AR_BT_FIRST_SLOT_TIME, 5) |
|
|
SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
|
|
AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
|
|
AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
|
|
AR_WRITE(sc, AR_BT_COEX_WEIGHT,
|
|
SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
|
|
SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
|
|
AR_WRITE(sc, AR_BT_COEX_MODE2,
|
|
SM(AR_BT_BCN_MISS_THRESH, 50) |
|
|
AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
|
|
|
|
AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
|
|
AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
|
|
|
|
} else { /* 2-wire. */
|
|
ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
|
|
}
|
|
reg = AR_READ(sc, AR_GPIO_PDPU);
|
|
reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
|
|
reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
|
|
AR_WRITE(sc, AR_GPIO_PDPU, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
/* Disable PCIe Active State Power Management (ASPM). */
|
|
if (sc->sc_disable_aspm != NULL)
|
|
sc->sc_disable_aspm(sc);
|
|
|
|
/* XXX Start periodic timer. */
|
|
}
|
|
|
|
void
|
|
athn_btcoex_disable(struct athn_softc *sc)
|
|
{
|
|
struct athn_ops *ops = &sc->ops;
|
|
|
|
ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
|
|
|
|
ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
|
|
|
|
if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) {
|
|
AR_WRITE(sc, AR_BT_COEX_MODE,
|
|
SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
|
|
AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
|
|
AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
|
|
/* XXX Stop periodic timer. */
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
/* XXX Restore ASPM setting? */
|
|
}
|
|
#endif
|
|
|
|
void
|
|
athn_iter_calib(void *arg, struct ieee80211_node *ni)
|
|
{
|
|
struct athn_softc *sc = arg;
|
|
struct athn_node *an = (struct athn_node *)ni;
|
|
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
|
|
ieee80211_amrr_choose(&sc->amrr, ni, &an->amn);
|
|
}
|
|
|
|
int
|
|
athn_cap_noisefloor(struct athn_softc *sc, int nf)
|
|
{
|
|
int16_t min, max;
|
|
|
|
if (nf == 0 || nf == -1) /* invalid measurement */
|
|
return AR_DEFAULT_NOISE_FLOOR;
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_bss->ni_chan)) {
|
|
min = sc->cca_min_2g;
|
|
max = sc->cca_max_2g;
|
|
} else {
|
|
min = sc->cca_min_5g;
|
|
max = sc->cca_max_5g;
|
|
}
|
|
|
|
if (nf < min)
|
|
return min;
|
|
if (nf > max)
|
|
return max;
|
|
|
|
return nf;
|
|
}
|
|
|
|
int
|
|
athn_nf_hist_mid(int *nf_vals, int nvalid)
|
|
{
|
|
int nf_sorted[ATHN_NF_CAL_HIST_MAX];
|
|
int i, j, nf;
|
|
|
|
if (nvalid <= 1)
|
|
return nf_vals[0];
|
|
|
|
for (i = 0; i < nvalid; i++)
|
|
nf_sorted[i] = nf_vals[i];
|
|
|
|
for (i = 0; i < nvalid; i++) {
|
|
for (j = 1; j < nvalid - i; j++) {
|
|
if (nf_sorted[j] > nf_sorted[j - 1]) {
|
|
nf = nf_sorted[j];
|
|
nf_sorted[j] = nf_sorted[j - 1];
|
|
nf_sorted[j - 1] = nf;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nf_sorted[nvalid / 2];
|
|
}
|
|
|
|
void
|
|
athn_filter_noisefloor(struct athn_softc *sc)
|
|
{
|
|
int nf_vals[ATHN_NF_CAL_HIST_MAX];
|
|
int nf_ext_vals[ATHN_NF_CAL_HIST_MAX];
|
|
int i, cur, n;
|
|
|
|
for (i = 0; i < sc->nrxchains; i++) {
|
|
if (sc->nf_hist_cur > 0)
|
|
cur = sc->nf_hist_cur - 1;
|
|
else
|
|
cur = ATHN_NF_CAL_HIST_MAX - 1;
|
|
for (n = 0; n < sc->nf_hist_nvalid; n++) {
|
|
nf_vals[n] = sc->nf_hist[cur].nf[i];
|
|
nf_ext_vals[n] = sc->nf_hist[cur].nf_ext[i];
|
|
if (++cur >= ATHN_NF_CAL_HIST_MAX)
|
|
cur = 0;
|
|
}
|
|
sc->nf_priv[i] = athn_cap_noisefloor(sc,
|
|
athn_nf_hist_mid(nf_vals, sc->nf_hist_nvalid));
|
|
sc->nf_ext_priv[i] = athn_cap_noisefloor(sc,
|
|
athn_nf_hist_mid(nf_ext_vals, sc->nf_hist_nvalid));
|
|
}
|
|
}
|
|
|
|
void
|
|
athn_start_noisefloor_calib(struct athn_softc *sc, int reset_history)
|
|
{
|
|
extern int ticks;
|
|
|
|
if (reset_history)
|
|
sc->nf_hist_nvalid = 0;
|
|
|
|
sc->nf_calib_pending = 1;
|
|
sc->nf_calib_ticks = ticks;
|
|
|
|
sc->ops.noisefloor_calib(sc);
|
|
}
|
|
|
|
void
|
|
athn_calib_to(void *arg)
|
|
{
|
|
extern int ticks;
|
|
struct athn_softc *sc = arg;
|
|
struct athn_ops *ops = &sc->ops;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
/* Do periodic (every 4 minutes) PA calibration. */
|
|
if (AR_SREV_9285_11_OR_LATER(sc) &&
|
|
!AR_SREV_9380_10_OR_LATER(sc) &&
|
|
(ticks - (sc->pa_calib_ticks + 240 * hz)) >= 0) {
|
|
sc->pa_calib_ticks = ticks;
|
|
if (AR_SREV_9271(sc))
|
|
ar9271_pa_calib(sc);
|
|
else
|
|
ar9285_pa_calib(sc);
|
|
}
|
|
|
|
/* Do periodic (every 4 minutes) NF calibration. */
|
|
if (sc->nf_calib_pending && ops->get_noisefloor(sc)) {
|
|
if (sc->nf_hist_nvalid < ATHN_NF_CAL_HIST_MAX)
|
|
sc->nf_hist_nvalid++;
|
|
athn_filter_noisefloor(sc);
|
|
ops->apply_noisefloor(sc);
|
|
sc->nf_calib_pending = 0;
|
|
}
|
|
if (ticks - (sc->nf_calib_ticks + 240 * hz) >= 0)
|
|
athn_start_noisefloor_calib(sc, 0);
|
|
|
|
/* Do periodic (every 30 seconds) temperature compensation. */
|
|
if ((sc->flags & ATHN_FLAG_OLPC) &&
|
|
ticks >= sc->olpc_ticks + 30 * hz) {
|
|
sc->olpc_ticks = ticks;
|
|
ops->olpc_temp_compensation(sc);
|
|
}
|
|
|
|
#ifdef notyet
|
|
/* XXX ANI. */
|
|
athn_ani_monitor(sc);
|
|
#endif
|
|
|
|
/* Do periodic (every 30 seconds) ADC/IQ calibration. */
|
|
if (sc->cur_calib_mask != 0) {
|
|
ops->next_calib(sc);
|
|
sc->iqcal_ticks = ticks;
|
|
} else if (sc->sup_calib_mask != 0 &&
|
|
ticks >= sc->iqcal_ticks + 30 * hz) {
|
|
memset(&sc->calib, 0, sizeof(sc->calib));
|
|
sc->cur_calib_mask = sc->sup_calib_mask;
|
|
ops->do_calib(sc);
|
|
sc->iqcal_ticks = ticks;
|
|
}
|
|
|
|
if (ic->ic_fixed_rate == -1) {
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
athn_iter_calib(sc, ic->ic_bss);
|
|
else
|
|
ieee80211_iterate_nodes(ic, athn_iter_calib, sc);
|
|
}
|
|
timeout_add_msec(&sc->calib_to, 500);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
struct ieee80211_channel *extc)
|
|
{
|
|
struct athn_ops *ops = &sc->ops;
|
|
int error;
|
|
|
|
if (AR_SREV_9380_10_OR_LATER(sc))
|
|
error = ar9003_init_calib(sc);
|
|
else if (AR_SREV_9285_10_OR_LATER(sc))
|
|
error = ar9285_init_calib(sc, c, extc);
|
|
else
|
|
error = ar5416_init_calib(sc, c, extc);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (!AR_SREV_9380_10_OR_LATER(sc)) {
|
|
/* Do PA calibration. */
|
|
if (AR_SREV_9285_11_OR_LATER(sc)) {
|
|
extern int ticks;
|
|
sc->pa_calib_ticks = ticks;
|
|
if (AR_SREV_9271(sc))
|
|
ar9271_pa_calib(sc);
|
|
else
|
|
ar9285_pa_calib(sc);
|
|
}
|
|
}
|
|
|
|
/* Do noisefloor calibration. */
|
|
ops->init_noisefloor_calib(sc);
|
|
|
|
if (AR_SREV_9160_10_OR_LATER(sc)) {
|
|
/* Support IQ calibration. */
|
|
sc->sup_calib_mask = ATHN_CAL_IQ;
|
|
if (AR_SREV_9380_10_OR_LATER(sc)) {
|
|
/* Support temperature compensation calibration. */
|
|
sc->sup_calib_mask |= ATHN_CAL_TEMP;
|
|
} else if (IEEE80211_IS_CHAN_5GHZ(c) || extc != NULL) {
|
|
/*
|
|
* ADC gain calibration causes uplink throughput
|
|
* drops in HT40 mode on AR9287.
|
|
*/
|
|
if (!AR_SREV_9287(sc)) {
|
|
/* Support ADC gain calibration. */
|
|
sc->sup_calib_mask |= ATHN_CAL_ADC_GAIN;
|
|
}
|
|
/* Support ADC DC offset calibration. */
|
|
sc->sup_calib_mask |= ATHN_CAL_ADC_DC;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Adaptive noise immunity.
|
|
*/
|
|
int32_t
|
|
athn_ani_get_rssi(struct athn_softc *sc)
|
|
{
|
|
return (0); /* XXX */
|
|
}
|
|
|
|
void
|
|
athn_ani_ofdm_err_trigger(struct athn_softc *sc)
|
|
{
|
|
struct athn_ani *ani = &sc->ani;
|
|
struct athn_ops *ops = &sc->ops;
|
|
int32_t rssi;
|
|
|
|
/* First, raise noise immunity level, up to max. */
|
|
if (ani->noise_immunity_level < 4) {
|
|
ani->noise_immunity_level++;
|
|
ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
|
|
return;
|
|
}
|
|
|
|
/* Then, raise our spur immunity level, up to max. */
|
|
if (ani->spur_immunity_level < 7) {
|
|
ani->spur_immunity_level++;
|
|
ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
|
|
return;
|
|
}
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
|
|
if (ani->firstep_level < 2) {
|
|
ani->firstep_level++;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
rssi = athn_ani_get_rssi(sc);
|
|
if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
|
|
/*
|
|
* Beacon RSSI is high, turn off OFDM weak signal detection
|
|
* or raise first step level as last resort.
|
|
*/
|
|
if (ani->ofdm_weak_signal) {
|
|
ani->ofdm_weak_signal = 0;
|
|
ops->disable_ofdm_weak_signal(sc);
|
|
ani->spur_immunity_level = 0;
|
|
ops->set_spur_immunity_level(sc, 0);
|
|
} else if (ani->firstep_level < 2) {
|
|
ani->firstep_level++;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
}
|
|
} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
|
|
/*
|
|
* Beacon RSSI is in mid range, we need OFDM weak signal
|
|
* detection but we can raise first step level.
|
|
*/
|
|
if (!ani->ofdm_weak_signal) {
|
|
ani->ofdm_weak_signal = 1;
|
|
ops->enable_ofdm_weak_signal(sc);
|
|
}
|
|
if (ani->firstep_level < 2) {
|
|
ani->firstep_level++;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
}
|
|
} else if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_bss->ni_chan)) {
|
|
/*
|
|
* Beacon RSSI is low, if in b/g mode, turn off OFDM weak
|
|
* signal detection and zero first step level to maximize
|
|
* CCK sensitivity.
|
|
*/
|
|
if (ani->ofdm_weak_signal) {
|
|
ani->ofdm_weak_signal = 0;
|
|
ops->disable_ofdm_weak_signal(sc);
|
|
}
|
|
if (ani->firstep_level > 0) {
|
|
ani->firstep_level = 0;
|
|
ops->set_firstep_level(sc, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
athn_ani_cck_err_trigger(struct athn_softc *sc)
|
|
{
|
|
struct athn_ani *ani = &sc->ani;
|
|
struct athn_ops *ops = &sc->ops;
|
|
int32_t rssi;
|
|
|
|
/* Raise noise immunity level, up to max. */
|
|
if (ani->noise_immunity_level < 4) {
|
|
ani->noise_immunity_level++;
|
|
ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
|
|
return;
|
|
}
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
|
|
if (ani->firstep_level < 2) {
|
|
ani->firstep_level++;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
rssi = athn_ani_get_rssi(sc);
|
|
if (rssi > ATHN_ANI_RSSI_THR_LOW) {
|
|
/*
|
|
* Beacon RSSI is in mid or high range, raise first step
|
|
* level.
|
|
*/
|
|
if (ani->firstep_level < 2) {
|
|
ani->firstep_level++;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
}
|
|
} else if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_bss->ni_chan)) {
|
|
/*
|
|
* Beacon RSSI is low, zero first step level to maximize
|
|
* CCK sensitivity.
|
|
*/
|
|
if (ani->firstep_level > 0) {
|
|
ani->firstep_level = 0;
|
|
ops->set_firstep_level(sc, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
athn_ani_lower_immunity(struct athn_softc *sc)
|
|
{
|
|
struct athn_ani *ani = &sc->ani;
|
|
struct athn_ops *ops = &sc->ops;
|
|
int32_t rssi;
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
|
|
if (ani->firstep_level > 0) {
|
|
ani->firstep_level--;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
rssi = athn_ani_get_rssi(sc);
|
|
if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
|
|
/*
|
|
* Beacon RSSI is high, leave OFDM weak signal detection
|
|
* off or it may oscillate.
|
|
*/
|
|
} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
|
|
/*
|
|
* Beacon RSSI is in mid range, turn on OFDM weak signal
|
|
* detection or lower first step level.
|
|
*/
|
|
if (!ani->ofdm_weak_signal) {
|
|
ani->ofdm_weak_signal = 1;
|
|
ops->enable_ofdm_weak_signal(sc);
|
|
return;
|
|
}
|
|
if (ani->firstep_level > 0) {
|
|
ani->firstep_level--;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
return;
|
|
}
|
|
} else {
|
|
/* Beacon RSSI is low, lower first step level. */
|
|
if (ani->firstep_level > 0) {
|
|
ani->firstep_level--;
|
|
ops->set_firstep_level(sc, ani->firstep_level);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* Lower spur immunity level down to zero, or if all else fails,
|
|
* lower noise immunity level down to zero.
|
|
*/
|
|
if (ani->spur_immunity_level > 0) {
|
|
ani->spur_immunity_level--;
|
|
ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
|
|
} else if (ani->noise_immunity_level > 0) {
|
|
ani->noise_immunity_level--;
|
|
ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
|
|
}
|
|
}
|
|
|
|
void
|
|
athn_ani_restart(struct athn_softc *sc)
|
|
{
|
|
struct athn_ani *ani = &sc->ani;
|
|
|
|
AR_WRITE(sc, AR_PHY_ERR_1, 0);
|
|
AR_WRITE(sc, AR_PHY_ERR_2, 0);
|
|
AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
|
|
AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
ani->listen_time = 0;
|
|
ani->ofdm_phy_err_count = 0;
|
|
ani->cck_phy_err_count = 0;
|
|
}
|
|
|
|
void
|
|
athn_ani_monitor(struct athn_softc *sc)
|
|
{
|
|
struct athn_ani *ani = &sc->ani;
|
|
uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
|
|
int32_t cycdelta, txfdelta, rxfdelta;
|
|
int32_t listen_time;
|
|
|
|
txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
|
|
rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
|
|
cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
|
|
|
|
if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
|
|
cycdelta = cyccnt - ani->cyccnt;
|
|
txfdelta = txfcnt - ani->txfcnt;
|
|
rxfdelta = rxfcnt - ani->rxfcnt;
|
|
|
|
listen_time = (cycdelta - txfdelta - rxfdelta) /
|
|
(athn_clock_rate(sc) * 1000);
|
|
} else
|
|
listen_time = 0;
|
|
|
|
ani->cyccnt = cyccnt;
|
|
ani->txfcnt = txfcnt;
|
|
ani->rxfcnt = rxfcnt;
|
|
|
|
if (listen_time < 0) {
|
|
athn_ani_restart(sc);
|
|
return;
|
|
}
|
|
ani->listen_time += listen_time;
|
|
|
|
phy1 = AR_READ(sc, AR_PHY_ERR_1);
|
|
phy2 = AR_READ(sc, AR_PHY_ERR_2);
|
|
|
|
if (phy1 < ani->ofdm_phy_err_base) {
|
|
AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
|
|
AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
|
|
}
|
|
if (phy2 < ani->cck_phy_err_base) {
|
|
AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
|
|
AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
|
|
}
|
|
if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
|
|
AR_WRITE_BARRIER(sc);
|
|
return;
|
|
}
|
|
ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
|
|
ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
|
|
|
|
if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
|
|
/* Check to see if we need to lower immunity. */
|
|
if (ani->ofdm_phy_err_count <=
|
|
ani->listen_time * ani->ofdm_trig_low / 1000 &&
|
|
ani->cck_phy_err_count <=
|
|
ani->listen_time * ani->cck_trig_low / 1000)
|
|
athn_ani_lower_immunity(sc);
|
|
athn_ani_restart(sc);
|
|
|
|
} else if (ani->listen_time > ATHN_ANI_PERIOD) {
|
|
/* Check to see if we need to raise immunity. */
|
|
if (ani->ofdm_phy_err_count >
|
|
ani->listen_time * ani->ofdm_trig_high / 1000) {
|
|
athn_ani_ofdm_err_trigger(sc);
|
|
athn_ani_restart(sc);
|
|
} else if (ani->cck_phy_err_count >
|
|
ani->listen_time * ani->cck_trig_high / 1000) {
|
|
athn_ani_cck_err_trigger(sc);
|
|
athn_ani_restart(sc);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint8_t
|
|
athn_chan2fbin(struct ieee80211_channel *c)
|
|
{
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
return (c->ic_freq - 2300);
|
|
else
|
|
return ((c->ic_freq - 4800) / 5);
|
|
}
|
|
|
|
int
|
|
athn_interpolate(int x, int x1, int y1, int x2, int y2)
|
|
{
|
|
if (x1 == x2) /* Prevents division by zero. */
|
|
return (y1);
|
|
/* Linear interpolation. */
|
|
return (y1 + ((x - x1) * (y2 - y1)) / (x2 - x1));
|
|
}
|
|
|
|
void
|
|
athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
|
|
int *lo, int *hi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < npiers; i++)
|
|
if (pierfreq[i] == AR_BCHAN_UNUSED ||
|
|
pierfreq[i] > fbin)
|
|
break;
|
|
*hi = i;
|
|
*lo = *hi - 1;
|
|
if (*lo == -1)
|
|
*lo = *hi;
|
|
else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
|
|
*hi = *lo;
|
|
}
|
|
|
|
void
|
|
athn_init_dma(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
if (!AR_SREV_9380_10_OR_LATER(sc)) {
|
|
/* Set AHB not to do cacheline prefetches. */
|
|
AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
|
|
}
|
|
reg = AR_READ(sc, AR_TXCFG);
|
|
/* Let MAC DMA reads be in 128-byte chunks. */
|
|
reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
|
|
|
|
/* Set initial Tx trigger level. */
|
|
if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
|
|
reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
|
|
else if (!AR_SREV_9380_10_OR_LATER(sc))
|
|
reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
|
|
AR_WRITE(sc, AR_TXCFG, reg);
|
|
|
|
/* Let MAC DMA writes be in 128-byte chunks. */
|
|
reg = AR_READ(sc, AR_RXCFG);
|
|
reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
|
|
AR_WRITE(sc, AR_RXCFG, reg);
|
|
|
|
/* Setup Rx FIFO threshold to hold off Tx activities. */
|
|
AR_WRITE(sc, AR_RXFIFO_CFG, 512);
|
|
|
|
/* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
|
|
if (AR_SREV_9285(sc)) {
|
|
AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
|
|
AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
|
|
} else if (!AR_SREV_9271(sc)) {
|
|
AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
|
|
AR_PCU_TXBUF_CTRL_USABLE_SIZE);
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
/* Reset Tx status ring. */
|
|
if (AR_SREV_9380_10_OR_LATER(sc))
|
|
ar9003_reset_txsring(sc);
|
|
}
|
|
|
|
void
|
|
athn_inc_tx_trigger_level(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg, ftrig;
|
|
|
|
reg = AR_READ(sc, AR_TXCFG);
|
|
ftrig = MS(reg, AR_TXCFG_FTRIG);
|
|
/*
|
|
* NB: The AR9285 and all single-stream parts have an issue that
|
|
* limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
|
|
*/
|
|
if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
|
|
return; /* Already at max. */
|
|
reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
|
|
AR_WRITE(sc, AR_TXCFG, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
int
|
|
athn_stop_rx_dma(struct athn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
AR_WRITE(sc, AR_CR, AR_CR_RXD);
|
|
/* Wait for Rx enable bit to go low. */
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
|
|
return (0);
|
|
DELAY(100);
|
|
}
|
|
DPRINTF(("Rx DMA failed to stop\n"));
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
int
|
|
athn_rx_abort(struct athn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
|
|
return (0);
|
|
DELAY(10);
|
|
}
|
|
DPRINTF(("Rx failed to go idle in 10ms\n"));
|
|
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
|
|
AR_WRITE_BARRIER(sc);
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
void
|
|
athn_tx_reclaim(struct athn_softc *sc, int qid)
|
|
{
|
|
struct athn_txq *txq = &sc->txq[qid];
|
|
struct athn_tx_buf *bf;
|
|
|
|
/* Reclaim all buffers queued in the specified Tx queue. */
|
|
/* NB: Tx DMA must be stopped. */
|
|
while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
|
|
SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
|
|
bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_ni = NULL; /* Nodes already freed! */
|
|
|
|
/* Link Tx buffer back to global free list. */
|
|
SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list);
|
|
}
|
|
}
|
|
|
|
int
|
|
athn_tx_pending(struct athn_softc *sc, int qid)
|
|
{
|
|
return (MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
|
|
(AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0);
|
|
}
|
|
|
|
void
|
|
athn_stop_tx_dma(struct athn_softc *sc, int qid)
|
|
{
|
|
uint32_t tsflo;
|
|
int ntries, i;
|
|
|
|
AR_WRITE(sc, AR_Q_TXD, 1 << qid);
|
|
for (ntries = 0; ntries < 40; ntries++) {
|
|
if (!athn_tx_pending(sc, qid))
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
if (ntries == 40) {
|
|
for (i = 0; i < 2; i++) {
|
|
tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
|
|
AR_WRITE(sc, AR_QUIET2,
|
|
SM(AR_QUIET2_QUIET_DUR, 10));
|
|
AR_WRITE(sc, AR_QUIET_PERIOD, 100);
|
|
AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
|
|
AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
|
|
if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
|
|
break;
|
|
}
|
|
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
|
|
AR_WRITE_BARRIER(sc);
|
|
DELAY(200);
|
|
AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
for (ntries = 0; ntries < 40; ntries++) {
|
|
if (!athn_tx_pending(sc, qid))
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
|
|
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
|
|
}
|
|
AR_WRITE(sc, AR_Q_TXD, 0);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
int
|
|
athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
#define divround(a, b) (((a) + (b) - 1) / (b))
|
|
int txtime;
|
|
|
|
if (athn_rates[ridx].hwrate & 0x80) { /* MCS */
|
|
/* Assumes a 20MHz channel, HT-mixed frame format, no STBC. */
|
|
txtime = 8 + 8 + 4 + 4 + 4 * 4 + 8 /* HT PLCP */
|
|
+ 4 * ((8 * len + 16 + 6) / (athn_rates[ridx].rate * 2));
|
|
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan))
|
|
txtime += 6; /* aSignalExtension */
|
|
} else if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
|
|
txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
|
|
/* SIFS is 10us for 11g but Signal Extension adds 6us. */
|
|
txtime = 16 + 4 + 4 * txtime + 16;
|
|
} else {
|
|
txtime = divround(16 * len, athn_rates[ridx].rate);
|
|
if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
|
|
txtime += 72 + 24;
|
|
else
|
|
txtime += 144 + 48;
|
|
txtime += 10; /* 10us SIFS. */
|
|
}
|
|
return (txtime);
|
|
#undef divround
|
|
}
|
|
|
|
void
|
|
athn_init_tx_queues(struct athn_softc *sc)
|
|
{
|
|
int qid;
|
|
|
|
for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
|
|
SIMPLEQ_INIT(&sc->txq[qid].head);
|
|
sc->txq[qid].lastds = NULL;
|
|
sc->txq[qid].wait = NULL;
|
|
sc->txq[qid].queued = 0;
|
|
|
|
AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
|
|
SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
|
|
SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
|
|
SM(AR_D_RETRY_LIMIT_FR_SH, 10));
|
|
AR_WRITE(sc, AR_QMISC(qid),
|
|
AR_Q_MISC_DCU_EARLY_TERM_REQ);
|
|
AR_WRITE(sc, AR_DMISC(qid),
|
|
SM(AR_D_MISC_BKOFF_THRESH, 2) |
|
|
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
|
|
}
|
|
|
|
/* Init beacon queue. */
|
|
AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
|
|
AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
|
|
AR_Q_MISC_CBR_INCR_DIS1);
|
|
AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
|
|
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
|
|
AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
|
|
AR_D_MISC_BEACON_USE |
|
|
AR_D_MISC_POST_FR_BKOFF_DIS);
|
|
AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
|
|
SM(AR_D_LCL_IFS_CWMIN, 0) |
|
|
SM(AR_D_LCL_IFS_CWMAX, 0) |
|
|
SM(AR_D_LCL_IFS_AIFS, 1));
|
|
|
|
/* Init CAB (Content After Beacon) queue. */
|
|
AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
|
|
AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
|
|
AR_Q_MISC_CBR_INCR_DIS0);
|
|
AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
|
|
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
|
|
AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
|
|
|
|
/* Init PS-Poll queue. */
|
|
AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
|
|
AR_Q_MISC_CBR_INCR_DIS1);
|
|
|
|
/* Init UAPSD queue. */
|
|
AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
|
|
AR_D_MISC_POST_FR_BKOFF_DIS);
|
|
|
|
if (AR_SREV_9380_10_OR_LATER(sc)) {
|
|
/* Enable MAC descriptor CRC check. */
|
|
AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
|
|
}
|
|
/* Enable DESC interrupts for all Tx queues. */
|
|
AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
|
|
/* Enable EOL interrupts for all Tx queues except UAPSD. */
|
|
AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_set_sta_timers(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint32_t tsfhi, tsflo, tsftu, reg;
|
|
uint32_t intval, next_tbtt, next_dtim;
|
|
int dtim_period, dtim_count, rem_dtim_count;
|
|
|
|
tsfhi = AR_READ(sc, AR_TSF_U32);
|
|
tsflo = AR_READ(sc, AR_TSF_L32);
|
|
tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
|
|
|
|
/* Beacon interval in TU. */
|
|
intval = ic->ic_bss->ni_intval;
|
|
|
|
next_tbtt = roundup(tsftu, intval);
|
|
#ifdef notyet
|
|
dtim_period = ic->ic_dtim_period;
|
|
if (dtim_period <= 0)
|
|
#endif
|
|
dtim_period = 1; /* Assume all TIMs are DTIMs. */
|
|
|
|
#ifdef notyet
|
|
dtim_count = ic->ic_dtim_count;
|
|
if (dtim_count >= dtim_period) /* Should not happen. */
|
|
#endif
|
|
dtim_count = 0; /* Assume last TIM was a DTIM. */
|
|
|
|
/* Compute number of remaining TIMs until next DTIM. */
|
|
rem_dtim_count = 0; /* XXX */
|
|
next_dtim = next_tbtt + rem_dtim_count * intval;
|
|
|
|
AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
|
|
|
|
/*
|
|
* Set the number of consecutive beacons to miss before raising
|
|
* a BMISS interrupt to 10.
|
|
*/
|
|
reg = AR_READ(sc, AR_RSSI_THR);
|
|
reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
|
|
AR_WRITE(sc, AR_RSSI_THR, reg);
|
|
|
|
AR_WRITE(sc, AR_NEXT_DTIM,
|
|
(next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_NEXT_TIM,
|
|
(next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
|
|
|
|
/* CAB timeout is in 1/8 TU. */
|
|
AR_WRITE(sc, AR_SLEEP1,
|
|
SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
|
|
AR_SLEEP1_ASSUME_DTIM);
|
|
AR_WRITE(sc, AR_SLEEP2,
|
|
SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
|
|
|
|
AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
|
|
|
|
AR_SETBITS(sc, AR_TIMER_MODE,
|
|
AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
|
|
|
|
/* Set TSF out-of-range threshold (fixed at 16k us). */
|
|
AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
|
|
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
void
|
|
athn_set_hostap_timers(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint32_t intval, next_tbtt;
|
|
|
|
/* Beacon interval in TU. */
|
|
intval = ic->ic_bss->ni_intval;
|
|
next_tbtt = intval;
|
|
|
|
AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
|
|
(next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_NEXT_CFP,
|
|
(next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
|
|
|
|
AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
|
|
AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
|
|
|
|
AR_WRITE(sc, AR_TIMER_MODE,
|
|
AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
|
|
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
athn_set_opmode(struct athn_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
switch (sc->sc_ic.ic_opmode) {
|
|
#ifndef IEEE80211_STA_ONLY
|
|
case IEEE80211_M_HOSTAP:
|
|
reg = AR_READ(sc, AR_STA_ID1);
|
|
reg &= ~AR_STA_ID1_ADHOC;
|
|
reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
|
|
AR_WRITE(sc, AR_STA_ID1, reg);
|
|
|
|
AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
|
|
break;
|
|
case IEEE80211_M_IBSS:
|
|
case IEEE80211_M_AHDEMO:
|
|
reg = AR_READ(sc, AR_STA_ID1);
|
|
reg &= ~AR_STA_ID1_STA_AP;
|
|
reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
|
|
AR_WRITE(sc, AR_STA_ID1, reg);
|
|
|
|
AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
|
|
break;
|
|
#endif
|
|
default:
|
|
reg = AR_READ(sc, AR_STA_ID1);
|
|
reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
|
|
reg |= AR_STA_ID1_KSRCH_MODE;
|
|
AR_WRITE(sc, AR_STA_ID1, reg);
|
|
break;
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
const uint8_t *bssid = ni->ni_bssid;
|
|
|
|
AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
|
|
AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
|
|
SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_enable_interrupts(struct athn_softc *sc)
|
|
{
|
|
uint32_t mask2;
|
|
|
|
athn_disable_interrupts(sc); /* XXX */
|
|
|
|
AR_WRITE(sc, AR_IMR, sc->imask);
|
|
|
|
mask2 = AR_READ(sc, AR_IMR_S2);
|
|
mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
|
|
AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
|
|
mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
|
|
AR_WRITE(sc, AR_IMR_S2, mask2);
|
|
|
|
AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
|
|
|
|
AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
|
|
|
|
AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
|
|
AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
|
|
|
|
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync);
|
|
AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->isync);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_disable_interrupts(struct athn_softc *sc)
|
|
{
|
|
AR_WRITE(sc, AR_IER, 0);
|
|
(void)AR_READ(sc, AR_IER);
|
|
|
|
AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
|
|
(void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
|
|
|
|
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
|
|
(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
|
|
|
|
AR_WRITE(sc, AR_IMR, 0);
|
|
|
|
AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
|
|
AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
|
|
AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
|
|
|
|
AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_init_qos(struct athn_softc *sc)
|
|
{
|
|
/* Initialize QoS settings. */
|
|
AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
|
|
AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
|
|
AR_WRITE(sc, AR_QOS_NO_ACK,
|
|
SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
|
|
SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
|
|
SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
|
|
AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
|
|
/* Initialize TXOP for all TIDs. */
|
|
AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
|
|
AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
|
|
AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
|
|
AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
int
|
|
athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *c,
|
|
struct ieee80211_channel *extc, int init)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct athn_ops *ops = &sc->ops;
|
|
uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
|
|
int i, error;
|
|
|
|
/* XXX not if already awake */
|
|
if ((error = athn_set_power_awake(sc)) != 0) {
|
|
printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
/* Preserve the antenna on a channel switch. */
|
|
if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
|
|
def_ant = 1;
|
|
/* Preserve other registers. */
|
|
sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
|
|
cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
|
|
AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
|
|
AR_CFG_LED_BLINK_SLOW);
|
|
|
|
/* Mark PHY as inactive. */
|
|
ops->disable_phy(sc);
|
|
|
|
if (init && AR_SREV_9271(sc)) {
|
|
AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
|
|
AR9271_RADIO_RF_RST);
|
|
DELAY(50);
|
|
}
|
|
if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) {
|
|
/* Save TSF before it gets cleared. */
|
|
tsfhi = AR_READ(sc, AR_TSF_U32);
|
|
tsflo = AR_READ(sc, AR_TSF_L32);
|
|
|
|
/* NB: RTC reset clears TSF. */
|
|
error = athn_reset_power_on(sc);
|
|
} else
|
|
error = athn_reset(sc, 0);
|
|
if (error != 0) {
|
|
printf("%s: could not reset chip (error=%d)\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
|
|
/* XXX not if already awake */
|
|
if ((error = athn_set_power_awake(sc)) != 0) {
|
|
printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
athn_init_pll(sc, c);
|
|
ops->set_rf_mode(sc, c);
|
|
|
|
if (sc->flags & ATHN_FLAG_RFSILENT) {
|
|
/* Check that the radio is not disabled by hardware switch. */
|
|
reg = ops->gpio_read(sc, sc->rfsilent_pin);
|
|
if (sc->flags & ATHN_FLAG_RFSILENT_REVERSED)
|
|
reg = !reg;
|
|
if (!reg) {
|
|
printf("%s: radio is disabled by hardware switch\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (EPERM);
|
|
}
|
|
}
|
|
if (init && AR_SREV_9271(sc)) {
|
|
AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
|
|
AR9271_GATE_MAC_CTL);
|
|
DELAY(50);
|
|
}
|
|
if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) {
|
|
/* Restore TSF if it got cleared. */
|
|
AR_WRITE(sc, AR_TSF_L32, tsflo);
|
|
AR_WRITE(sc, AR_TSF_U32, tsfhi);
|
|
}
|
|
|
|
if (AR_SREV_9280_10_OR_LATER(sc))
|
|
AR_SETBITS(sc, sc->gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
|
|
|
|
if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
|
|
ar9287_1_3_enable_async_fifo(sc);
|
|
|
|
/* Write init values to hardware. */
|
|
ops->hw_init(sc, c, extc);
|
|
|
|
/*
|
|
* Only >=AR9280 2.0 parts are capable of encrypting unicast
|
|
* management frames using CCMP.
|
|
*/
|
|
if (AR_SREV_9280_20_OR_LATER(sc)) {
|
|
reg = AR_READ(sc, AR_AES_MUTE_MASK1);
|
|
/* Do not mask the subtype field in management frames. */
|
|
reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
|
|
reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
|
|
~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
|
|
IEEE80211_FC1_MORE_DATA));
|
|
AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
|
|
} else if (AR_SREV_9160_10_OR_LATER(sc)) {
|
|
/* Disable hardware crypto for management frames. */
|
|
AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
|
|
AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
|
|
AR_SETBITS(sc, AR_PCU_MISC_MODE2,
|
|
AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
|
|
}
|
|
|
|
if (ic->ic_curmode != IEEE80211_MODE_11B)
|
|
ops->set_delta_slope(sc, c, extc);
|
|
|
|
ops->spur_mitigate(sc, c, extc);
|
|
ops->init_from_rom(sc, c, extc);
|
|
|
|
/* XXX */
|
|
AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
|
|
AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
|
|
sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
|
|
|
|
athn_set_opmode(sc);
|
|
|
|
AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
|
|
AR_WRITE(sc, AR_BSSMSKU, 0xffff);
|
|
|
|
/* Restore previous antenna. */
|
|
AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
|
|
|
|
AR_WRITE(sc, AR_BSS_ID0, 0);
|
|
AR_WRITE(sc, AR_BSS_ID1, 0);
|
|
|
|
AR_WRITE(sc, AR_ISR, 0xffffffff);
|
|
|
|
AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
|
|
|
|
if ((error = ops->set_synth(sc, c, extc)) != 0) {
|
|
printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
sc->curchan = c;
|
|
sc->curchanext = extc;
|
|
|
|
for (i = 0; i < AR_NUM_DCU; i++)
|
|
AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
|
|
|
|
athn_init_tx_queues(sc);
|
|
|
|
/* Initialize interrupt mask. */
|
|
sc->imask =
|
|
AR_IMR_TXDESC | AR_IMR_TXEOL |
|
|
AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
|
|
AR_IMR_RXMINTR | AR_IMR_RXINTM |
|
|
AR_IMR_GENTMR | AR_IMR_BCNMISC;
|
|
if (AR_SREV_9380_10_OR_LATER(sc))
|
|
sc->imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
|
|
sc->imask |= AR_IMR_MIB;
|
|
#endif
|
|
AR_WRITE(sc, AR_IMR, sc->imask);
|
|
AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
|
|
AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
|
|
sc->isync = AR_INTR_SYNC_DEFAULT;
|
|
if (sc->flags & ATHN_FLAG_RFSILENT)
|
|
sc->isync |= AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin);
|
|
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync);
|
|
AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
|
|
if (AR_SREV_9380_10_OR_LATER(sc)) {
|
|
AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
|
|
AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
|
|
AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
|
|
AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
|
|
}
|
|
|
|
athn_init_qos(sc);
|
|
|
|
AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
|
|
|
|
athn_setsifs(sc);
|
|
athn_updateslot(ic);
|
|
athn_setclockrate(sc);
|
|
if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
|
|
ar9287_1_3_setup_async_fifo(sc);
|
|
|
|
/* Disable sequence number generation in hardware. */
|
|
AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
|
|
|
|
athn_init_dma(sc);
|
|
|
|
/* Program observation bus to see MAC interrupts. */
|
|
AR_WRITE(sc, sc->obs_off, 8);
|
|
|
|
/* Setup Rx interrupt mitigation. */
|
|
AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
|
|
|
|
/* Setup Tx interrupt mitigation. */
|
|
AR_WRITE(sc, AR_TIMT, SM(AR_TIMT_FIRST, 2000) | SM(AR_TIMT_LAST, 500));
|
|
|
|
/* Set maximum interrupt rate threshold (in micro seconds). */
|
|
AR_WRITE(sc, AR_MIRT, SM(AR_MIRT_RATE_THRES, 2000));
|
|
|
|
ops->init_baseband(sc);
|
|
|
|
if ((error = athn_init_calib(sc, c, extc)) != 0) {
|
|
printf("%s: could not initialize calibration\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
ops->set_rxchains(sc);
|
|
|
|
AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
|
|
|
|
if (sc->flags & ATHN_FLAG_USB) {
|
|
if (AR_SREV_9271(sc))
|
|
AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
|
|
else
|
|
AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
|
|
}
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
else {
|
|
/* Default is LE, turn on swapping for BE. */
|
|
AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
|
|
}
|
|
#endif
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct ieee80211_node *
|
|
athn_node_alloc(struct ieee80211com *ic)
|
|
{
|
|
struct athn_node *an;
|
|
|
|
an = malloc(sizeof(struct athn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (an && (ic->ic_flags & IEEE80211_F_HTON))
|
|
ieee80211_ra_node_init(&an->rn);
|
|
return (struct ieee80211_node *)an;
|
|
}
|
|
|
|
void
|
|
athn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
|
|
{
|
|
struct athn_softc *sc = ic->ic_softc;
|
|
struct athn_node *an = (void *)ni;
|
|
struct ieee80211_rateset *rs = &ni->ni_rates;
|
|
uint8_t rate;
|
|
int ridx, i, j;
|
|
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
|
|
ieee80211_amrr_node_init(&sc->amrr, &an->amn);
|
|
else if (ic->ic_opmode == IEEE80211_M_STA)
|
|
ieee80211_ra_node_init(&an->rn);
|
|
|
|
/* Start at lowest available bit-rate, AMRR will raise. */
|
|
ni->ni_txrate = 0;
|
|
|
|
for (i = 0; i < rs->rs_nrates; i++) {
|
|
rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
|
|
|
|
/* Map 802.11 rate to HW rate index. */
|
|
for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
|
|
if (athn_rates[ridx].rate == rate)
|
|
break;
|
|
an->ridx[i] = ridx;
|
|
DPRINTFN(2, ("rate %d index %d\n", rate, ridx));
|
|
|
|
/* Compute fallback rate for retries. */
|
|
an->fallback[i] = i;
|
|
for (j = i - 1; j >= 0; j--) {
|
|
if (athn_rates[an->ridx[j]].phy ==
|
|
athn_rates[an->ridx[i]].phy) {
|
|
an->fallback[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
DPRINTFN(2, ("%d fallbacks to %d\n", i, an->fallback[i]));
|
|
}
|
|
|
|
/* In 11n mode, start at lowest available bit-rate, MiRA will raise. */
|
|
ni->ni_txmcs = 0;
|
|
|
|
for (i = 0; i <= ATHN_MCS_MAX; i++) {
|
|
/* Map MCS index to HW rate index. */
|
|
ridx = ATHN_NUM_LEGACY_RATES + i;
|
|
an->ridx[ridx] = ATHN_RIDX_MCS0 + i;
|
|
|
|
DPRINTFN(2, ("mcs %d index %d ", i, ridx));
|
|
/* Compute fallback rate for retries. */
|
|
if (i == 0 || i == 8) {
|
|
/* MCS 0 and 8 fall back to the lowest legacy rate. */
|
|
if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
|
|
an->fallback[ridx] = ATHN_RIDX_OFDM6;
|
|
else
|
|
an->fallback[ridx] = ATHN_RIDX_CCK1;
|
|
} else {
|
|
/* Other MCS fall back to next supported lower MCS. */
|
|
an->fallback[ridx] = ATHN_NUM_LEGACY_RATES + i;
|
|
for (j = i - 1; j >= 0; j--) {
|
|
if (!isset(ni->ni_rxmcs, j))
|
|
continue;
|
|
an->fallback[ridx] = ATHN_NUM_LEGACY_RATES + j;
|
|
break;
|
|
}
|
|
}
|
|
DPRINTFN(2, (" fallback to %d\n", an->fallback[ridx]));
|
|
}
|
|
}
|
|
|
|
int
|
|
athn_media_change(struct ifnet *ifp)
|
|
{
|
|
struct athn_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t rate, ridx;
|
|
int error;
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error != ENETRESET)
|
|
return (error);
|
|
|
|
if (ic->ic_fixed_rate != -1) {
|
|
rate = ic->ic_sup_rates[ic->ic_curmode].
|
|
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
|
|
/* Map 802.11 rate to HW rate index. */
|
|
for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
|
|
if (athn_rates[ridx].rate == rate)
|
|
break;
|
|
sc->fixed_ridx = ridx;
|
|
}
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
athn_stop(ifp, 0);
|
|
error = athn_init(ifp);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
athn_next_scan(void *arg)
|
|
{
|
|
struct athn_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s;
|
|
|
|
s = splnet();
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_next_scan(&ic->ic_if);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct athn_softc *sc = ifp->if_softc;
|
|
uint32_t reg;
|
|
int error;
|
|
|
|
timeout_del(&sc->calib_to);
|
|
|
|
switch (nstate) {
|
|
case IEEE80211_S_INIT:
|
|
athn_set_led(sc, 0);
|
|
break;
|
|
case IEEE80211_S_SCAN:
|
|
/* Make the LED blink while scanning. */
|
|
athn_set_led(sc, !sc->led_state);
|
|
error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
timeout_add_msec(&sc->scan_to, 200);
|
|
break;
|
|
case IEEE80211_S_AUTH:
|
|
athn_set_led(sc, 0);
|
|
error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
break;
|
|
case IEEE80211_S_ASSOC:
|
|
break;
|
|
case IEEE80211_S_RUN:
|
|
athn_set_led(sc, 1);
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
} else
|
|
#endif
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
error = athn_switch_chan(sc, ic->ic_ibss_chan, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
break;
|
|
}
|
|
|
|
/* Fake a join to initialize the Tx rate. */
|
|
athn_newassoc(ic, ic->ic_bss, 1);
|
|
|
|
athn_set_bss(sc, ic->ic_bss);
|
|
athn_disable_interrupts(sc);
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
athn_set_hostap_timers(sc);
|
|
/* Enable software beacon alert interrupts. */
|
|
sc->imask |= AR_IMR_SWBA;
|
|
} else
|
|
#endif
|
|
{
|
|
athn_set_sta_timers(sc);
|
|
/* Enable beacon miss interrupts. */
|
|
sc->imask |= AR_IMR_BMISS;
|
|
|
|
/* Stop receiving beacons from other BSS. */
|
|
reg = AR_READ(sc, AR_RX_FILTER);
|
|
reg = (reg & ~AR_RX_FILTER_BEACON) |
|
|
AR_RX_FILTER_MYBEACON;
|
|
AR_WRITE(sc, AR_RX_FILTER, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
athn_enable_interrupts(sc);
|
|
|
|
if (sc->sup_calib_mask != 0) {
|
|
memset(&sc->calib, 0, sizeof(sc->calib));
|
|
sc->cur_calib_mask = sc->sup_calib_mask;
|
|
sc->ops.do_calib(sc);
|
|
}
|
|
/* XXX Start ANI. */
|
|
|
|
athn_start_noisefloor_calib(sc, 1);
|
|
timeout_add_msec(&sc->calib_to, 500);
|
|
break;
|
|
}
|
|
|
|
return (sc->sc_newstate(ic, nstate, arg));
|
|
}
|
|
|
|
void
|
|
athn_updateedca(struct ieee80211com *ic)
|
|
{
|
|
#define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
|
|
struct athn_softc *sc = ic->ic_softc;
|
|
const struct ieee80211_edca_ac_params *ac;
|
|
int aci, qid;
|
|
|
|
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
|
|
ac = &ic->ic_edca_ac[aci];
|
|
qid = athn_ac2qid[aci];
|
|
|
|
AR_WRITE(sc, AR_DLCL_IFS(qid),
|
|
SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
|
|
SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
|
|
SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
|
|
if (ac->ac_txoplimit != 0) {
|
|
AR_WRITE(sc, AR_DCHNTIME(qid),
|
|
SM(AR_D_CHNTIME_DUR,
|
|
IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
|
|
AR_D_CHNTIME_EN);
|
|
} else
|
|
AR_WRITE(sc, AR_DCHNTIME(qid), 0);
|
|
}
|
|
AR_WRITE_BARRIER(sc);
|
|
#undef ATHN_EXP2
|
|
}
|
|
|
|
int
|
|
athn_clock_rate(struct athn_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int clockrate; /* MHz. */
|
|
|
|
/*
|
|
* AR9287 v1.3+ MAC runs at 117MHz (instead of 88/44MHz) when
|
|
* ASYNC FIFO is enabled.
|
|
*/
|
|
if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
|
|
clockrate = 117;
|
|
else if (ic->ic_bss->ni_chan != IEEE80211_CHAN_ANYC &&
|
|
IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
|
|
if (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)
|
|
clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
|
|
else
|
|
clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
|
|
} else if (ic->ic_curmode == IEEE80211_MODE_11B) {
|
|
clockrate = AR_CLOCK_RATE_CCK;
|
|
} else
|
|
clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
|
|
if (sc->curchanext != NULL)
|
|
clockrate *= 2;
|
|
|
|
return (clockrate);
|
|
}
|
|
|
|
int
|
|
athn_chan_sifs(struct ieee80211_channel *c)
|
|
{
|
|
return IEEE80211_IS_CHAN_2GHZ(c) ? IEEE80211_DUR_DS_SIFS : 16;
|
|
}
|
|
|
|
void
|
|
athn_setsifs(struct athn_softc *sc)
|
|
{
|
|
int sifs = athn_chan_sifs(sc->sc_ic.ic_bss->ni_chan);
|
|
AR_WRITE(sc, AR_D_GBL_IFS_SIFS, (sifs - 2) * athn_clock_rate(sc));
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
int
|
|
athn_acktimeout(struct ieee80211_channel *c, int slot)
|
|
{
|
|
int sifs = athn_chan_sifs(c);
|
|
int ackto = sifs + slot;
|
|
|
|
/* Workaround for early ACK timeouts. */
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
ackto += 64 - sifs - slot;
|
|
|
|
return ackto;
|
|
}
|
|
|
|
void
|
|
athn_setacktimeout(struct athn_softc *sc, struct ieee80211_channel *c, int slot)
|
|
{
|
|
int ackto = athn_acktimeout(c, slot);
|
|
uint32_t reg = AR_READ(sc, AR_TIME_OUT);
|
|
reg = RW(reg, AR_TIME_OUT_ACK, ackto * athn_clock_rate(sc));
|
|
AR_WRITE(sc, AR_TIME_OUT, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_setctstimeout(struct athn_softc *sc, struct ieee80211_channel *c, int slot)
|
|
{
|
|
int ctsto = athn_acktimeout(c, slot);
|
|
int sifs = athn_chan_sifs(c);
|
|
uint32_t reg = AR_READ(sc, AR_TIME_OUT);
|
|
|
|
/* Workaround for early CTS timeouts. */
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
ctsto += 48 - sifs - slot;
|
|
|
|
reg = RW(reg, AR_TIME_OUT_CTS, ctsto * athn_clock_rate(sc));
|
|
AR_WRITE(sc, AR_TIME_OUT, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_setclockrate(struct athn_softc *sc)
|
|
{
|
|
int clockrate = athn_clock_rate(sc);
|
|
uint32_t reg = AR_READ(sc, AR_USEC);
|
|
reg = RW(reg, AR_USEC_USEC, clockrate - 1);
|
|
AR_WRITE(sc, AR_USEC, reg);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
void
|
|
athn_updateslot(struct ieee80211com *ic)
|
|
{
|
|
struct athn_softc *sc = ic->ic_softc;
|
|
int slot;
|
|
|
|
slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
|
|
IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
|
|
AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
|
|
AR_WRITE_BARRIER(sc);
|
|
|
|
athn_setacktimeout(sc, ic->ic_bss->ni_chan, slot);
|
|
athn_setctstimeout(sc, ic->ic_bss->ni_chan, slot);
|
|
}
|
|
|
|
void
|
|
athn_start(struct ifnet *ifp)
|
|
{
|
|
struct athn_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *m;
|
|
|
|
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
|
|
return;
|
|
|
|
for (;;) {
|
|
if (SIMPLEQ_EMPTY(&sc->txbufs)) {
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
break;
|
|
}
|
|
/* Send pending management frames first. */
|
|
m = mq_dequeue(&ic->ic_mgtq);
|
|
if (m != NULL) {
|
|
ni = m->m_pkthdr.ph_cookie;
|
|
goto sendit;
|
|
}
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
break;
|
|
|
|
m = mq_dequeue(&ic->ic_pwrsaveq);
|
|
if (m != NULL) {
|
|
ni = m->m_pkthdr.ph_cookie;
|
|
goto sendit;
|
|
}
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
break;
|
|
|
|
/* Encapsulate and send data frames. */
|
|
m = ifq_dequeue(&ifp->if_snd);
|
|
if (m == NULL)
|
|
break;
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf != NULL)
|
|
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
|
|
#endif
|
|
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
|
|
continue;
|
|
sendit:
|
|
#if NBPFILTER > 0
|
|
if (ic->ic_rawbpf != NULL)
|
|
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
|
|
#endif
|
|
if (sc->ops.tx(sc, m, ni, 0) != 0) {
|
|
ieee80211_release_node(ic, ni);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
athn_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct athn_softc *sc = ifp->if_softc;
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
if (sc->sc_tx_timer > 0) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
athn_stop(ifp, 1);
|
|
(void)athn_init(ifp);
|
|
ifp->if_oerrors++;
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
ieee80211_watchdog(ifp);
|
|
}
|
|
|
|
void
|
|
athn_set_multi(struct athn_softc *sc)
|
|
{
|
|
struct arpcom *ac = &sc->sc_ic.ic_ac;
|
|
struct ifnet *ifp = &ac->ac_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
const uint8_t *addr;
|
|
uint32_t val, lo, hi;
|
|
uint8_t bit;
|
|
|
|
if (ac->ac_multirangecnt > 0)
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
|
|
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
|
|
lo = hi = 0xffffffff;
|
|
goto done;
|
|
}
|
|
lo = hi = 0;
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
addr = enm->enm_addrlo;
|
|
/* Calculate the XOR value of all eight 6-bit words. */
|
|
val = addr[0] | addr[1] << 8 | addr[2] << 16;
|
|
bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
val = addr[3] | addr[4] << 8 | addr[5] << 16;
|
|
bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
bit &= 0x3f;
|
|
if (bit < 32)
|
|
lo |= 1 << bit;
|
|
else
|
|
hi |= 1 << (bit - 32);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
done:
|
|
AR_WRITE(sc, AR_MCAST_FIL0, lo);
|
|
AR_WRITE(sc, AR_MCAST_FIL1, hi);
|
|
AR_WRITE_BARRIER(sc);
|
|
}
|
|
|
|
int
|
|
athn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct athn_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifreq *ifr;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if ((ifp->if_flags & IFF_RUNNING) &&
|
|
((ifp->if_flags ^ sc->sc_if_flags) &
|
|
(IFF_ALLMULTI | IFF_PROMISC)) != 0) {
|
|
athn_set_multi(sc);
|
|
} else if (!(ifp->if_flags & IFF_RUNNING))
|
|
error = athn_init(ifp);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
athn_stop(ifp, 1);
|
|
}
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
ifr = (struct ifreq *)data;
|
|
error = (cmd == SIOCADDMULTI) ?
|
|
ether_addmulti(ifr, &ic->ic_ac) :
|
|
ether_delmulti(ifr, &ic->ic_ac);
|
|
if (error == ENETRESET) {
|
|
athn_set_multi(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
case SIOCS80211CHANNEL:
|
|
error = ieee80211_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET &&
|
|
ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING))
|
|
athn_switch_chan(sc, ic->ic_ibss_chan, NULL);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = ieee80211_ioctl(ifp, cmd, data);
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
error = 0;
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
athn_stop(ifp, 0);
|
|
error = athn_init(ifp);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
athn_init(struct ifnet *ifp)
|
|
{
|
|
struct athn_softc *sc = ifp->if_softc;
|
|
struct athn_ops *ops = &sc->ops;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *c, *extc;
|
|
int i, error;
|
|
|
|
c = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
|
|
extc = NULL;
|
|
|
|
/* In case a new MAC address has been configured. */
|
|
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
|
|
|
|
/* For CardBus, power on the socket. */
|
|
if (sc->sc_enable != NULL) {
|
|
if ((error = sc->sc_enable(sc)) != 0) {
|
|
printf("%s: could not enable device\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
if ((error = athn_reset_power_on(sc)) != 0) {
|
|
printf("%s: could not power on device\n",
|
|
sc->sc_dev.dv_xname);
|
|
goto fail;
|
|
}
|
|
}
|
|
if (!(sc->flags & ATHN_FLAG_PCIE))
|
|
athn_config_nonpcie(sc);
|
|
else
|
|
athn_config_pcie(sc);
|
|
|
|
ops->enable_antenna_diversity(sc);
|
|
|
|
#ifdef ATHN_BT_COEXISTENCE
|
|
/* Configure bluetooth coexistence for combo chips. */
|
|
if (sc->flags & ATHN_FLAG_BTCOEX)
|
|
athn_btcoex_init(sc);
|
|
#endif
|
|
|
|
/* Configure LED. */
|
|
athn_led_init(sc);
|
|
|
|
/* Configure hardware radio switch. */
|
|
if (sc->flags & ATHN_FLAG_RFSILENT)
|
|
ops->rfsilent_init(sc);
|
|
|
|
if ((error = athn_hw_reset(sc, c, extc, 1)) != 0) {
|
|
printf("%s: unable to reset hardware; reset status %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail;
|
|
}
|
|
|
|
athn_config_ht(sc);
|
|
|
|
/* Enable Rx. */
|
|
athn_rx_start(sc);
|
|
|
|
/* Reset HW key cache entries. */
|
|
for (i = 0; i < sc->kc_entries; i++)
|
|
athn_reset_key(sc, i);
|
|
|
|
/* Enable interrupts. */
|
|
athn_enable_interrupts(sc);
|
|
|
|
#ifdef ATHN_BT_COEXISTENCE
|
|
/* Enable bluetooth coexistence for combo chips. */
|
|
if (sc->flags & ATHN_FLAG_BTCOEX)
|
|
athn_btcoex_enable(sc);
|
|
#endif
|
|
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
#ifdef notyet
|
|
if (ic->ic_flags & IEEE80211_F_WEPON) {
|
|
/* Configure WEP keys. */
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
|
|
}
|
|
#endif
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
else
|
|
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
|
|
return (0);
|
|
fail:
|
|
athn_stop(ifp, 1);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
athn_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct athn_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int qid, i;
|
|
|
|
ifp->if_timer = sc->sc_tx_timer = 0;
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
timeout_del(&sc->scan_to);
|
|
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
|
|
#ifdef ATHN_BT_COEXISTENCE
|
|
/* Disable bluetooth coexistence for combo chips. */
|
|
if (sc->flags & ATHN_FLAG_BTCOEX)
|
|
athn_btcoex_disable(sc);
|
|
#endif
|
|
|
|
/* Disable interrupts. */
|
|
athn_disable_interrupts(sc);
|
|
/* Acknowledge interrupts (avoids interrupt storms). */
|
|
AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
|
|
AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
|
|
|
|
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
|
|
athn_stop_tx_dma(sc, qid);
|
|
/* XXX call athn_hw_reset if Tx still pending? */
|
|
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
|
|
athn_tx_reclaim(sc, qid);
|
|
|
|
/* Stop Rx. */
|
|
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
|
|
AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
|
|
AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
|
|
AR_WRITE(sc, AR_FILT_OFDM, 0);
|
|
AR_WRITE(sc, AR_FILT_CCK, 0);
|
|
AR_WRITE_BARRIER(sc);
|
|
athn_set_rxfilter(sc, 0);
|
|
athn_stop_rx_dma(sc);
|
|
|
|
/* Reset HW key cache entries. */
|
|
for (i = 0; i < sc->kc_entries; i++)
|
|
athn_reset_key(sc, i);
|
|
|
|
athn_reset(sc, 0);
|
|
athn_init_pll(sc, NULL);
|
|
athn_set_power_awake(sc);
|
|
athn_reset(sc, 1);
|
|
athn_init_pll(sc, NULL);
|
|
|
|
athn_set_power_sleep(sc);
|
|
|
|
/* For CardBus, power down the socket. */
|
|
if (disable && sc->sc_disable != NULL)
|
|
sc->sc_disable(sc);
|
|
}
|
|
|
|
void
|
|
athn_suspend(struct athn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
athn_stop(ifp, 1);
|
|
}
|
|
|
|
void
|
|
athn_wakeup(struct athn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
athn_init(ifp);
|
|
}
|