src/sys/dev/ic/athn.c

3167 lines
82 KiB
C

/* $OpenBSD: athn.c,v 1.111 2021/04/15 18:25:43 stsp Exp $ */
/*-
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008-2010 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros 802.11a/g/n chipsets.
*/
#include "athn_usb.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/timeout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/stdint.h> /* uintptr_t */
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_ra.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>
#ifdef ATHN_DEBUG
int athn_debug = 0;
#endif
void athn_radiotap_attach(struct athn_softc *);
void athn_get_chanlist(struct athn_softc *);
const char * athn_get_mac_name(struct athn_softc *);
const char * athn_get_rf_name(struct athn_softc *);
void athn_led_init(struct athn_softc *);
void athn_set_led(struct athn_softc *, int);
void athn_btcoex_init(struct athn_softc *);
void athn_btcoex_enable(struct athn_softc *);
void athn_btcoex_disable(struct athn_softc *);
void athn_set_rxfilter(struct athn_softc *, uint32_t);
void athn_get_chipid(struct athn_softc *);
int athn_reset_power_on(struct athn_softc *);
int athn_reset(struct athn_softc *, int);
void athn_init_pll(struct athn_softc *,
const struct ieee80211_channel *);
int athn_set_power_awake(struct athn_softc *);
void athn_set_power_sleep(struct athn_softc *);
void athn_write_serdes(struct athn_softc *,
const struct athn_serdes *);
void athn_config_pcie(struct athn_softc *);
void athn_config_nonpcie(struct athn_softc *);
int athn_set_chan(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
int athn_switch_chan(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
void athn_reset_key(struct athn_softc *, int);
int athn_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void athn_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void athn_iter_calib(void *, struct ieee80211_node *);
int athn_cap_noisefloor(struct athn_softc *, int);
int athn_nf_hist_mid(int *, int);
void athn_filter_noisefloor(struct athn_softc *);
void athn_start_noisefloor_calib(struct athn_softc *, int);
void athn_calib_to(void *);
int athn_init_calib(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
uint8_t athn_chan2fbin(struct ieee80211_channel *);
int athn_interpolate(int, int, int, int, int);
void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *,
int *);
void athn_init_dma(struct athn_softc *);
void athn_rx_start(struct athn_softc *);
void athn_inc_tx_trigger_level(struct athn_softc *);
int athn_stop_rx_dma(struct athn_softc *);
int athn_rx_abort(struct athn_softc *);
void athn_tx_reclaim(struct athn_softc *, int);
int athn_tx_pending(struct athn_softc *, int);
void athn_stop_tx_dma(struct athn_softc *, int);
int athn_txtime(struct athn_softc *, int, int, u_int);
void athn_set_sta_timers(struct athn_softc *);
void athn_set_hostap_timers(struct athn_softc *);
void athn_set_opmode(struct athn_softc *);
void athn_set_bss(struct athn_softc *, struct ieee80211_node *);
void athn_enable_interrupts(struct athn_softc *);
void athn_disable_interrupts(struct athn_softc *);
void athn_init_qos(struct athn_softc *);
int athn_hw_reset(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *, int);
struct ieee80211_node *athn_node_alloc(struct ieee80211com *);
void athn_newassoc(struct ieee80211com *, struct ieee80211_node *,
int);
int athn_media_change(struct ifnet *);
void athn_next_scan(void *);
int athn_newstate(struct ieee80211com *, enum ieee80211_state,
int);
void athn_updateedca(struct ieee80211com *);
int athn_clock_rate(struct athn_softc *);
int athn_chan_sifs(struct ieee80211_channel *);
void athn_setsifs(struct athn_softc *);
int athn_acktimeout(struct ieee80211_channel *, int);
void athn_setacktimeout(struct athn_softc *,
struct ieee80211_channel *, int);
void athn_setctstimeout(struct athn_softc *,
struct ieee80211_channel *, int);
void athn_setclockrate(struct athn_softc *);
void athn_updateslot(struct ieee80211com *);
void athn_start(struct ifnet *);
void athn_watchdog(struct ifnet *);
void athn_set_multi(struct athn_softc *);
int athn_ioctl(struct ifnet *, u_long, caddr_t);
int athn_init(struct ifnet *);
void athn_stop(struct ifnet *, int);
void athn_init_tx_queues(struct athn_softc *);
int32_t athn_ani_get_rssi(struct athn_softc *);
void athn_ani_ofdm_err_trigger(struct athn_softc *);
void athn_ani_cck_err_trigger(struct athn_softc *);
void athn_ani_lower_immunity(struct athn_softc *);
void athn_ani_restart(struct athn_softc *);
void athn_ani_monitor(struct athn_softc *);
/* Extern functions. */
int ar5416_attach(struct athn_softc *);
int ar9280_attach(struct athn_softc *);
int ar9285_attach(struct athn_softc *);
int ar9287_attach(struct athn_softc *);
int ar9380_attach(struct athn_softc *);
int ar5416_init_calib(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
int ar9285_init_calib(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
int ar9003_init_calib(struct athn_softc *);
void ar9285_pa_calib(struct athn_softc *);
void ar9271_pa_calib(struct athn_softc *);
void ar9287_1_3_enable_async_fifo(struct athn_softc *);
void ar9287_1_3_setup_async_fifo(struct athn_softc *);
void ar9003_reset_txsring(struct athn_softc *);
struct cfdriver athn_cd = {
NULL, "athn", DV_IFNET
};
void
athn_config_ht(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int i, ntxstreams, nrxstreams;
if ((sc->flags & ATHN_FLAG_11N) == 0)
return;
/* Set HT capabilities. */
ic->ic_htcaps = (IEEE80211_HTCAP_SMPS_DIS <<
IEEE80211_HTCAP_SMPS_SHIFT);
#ifdef notyet
ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_40 |
IEEE80211_HTCAP_SGI40 |
IEEE80211_HTCAP_DSSSCCK40;
#endif
ic->ic_htxcaps = 0;
#ifdef notyet
if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
if (AR_SREV_9380_10_OR_LATER(sc))
ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
if (AR_SREV_9280_10_OR_LATER(sc)) {
ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
}
#endif
ntxstreams = sc->ntxchains;
nrxstreams = sc->nrxchains;
if (!AR_SREV_9380_10_OR_LATER(sc)) {
ntxstreams = MIN(ntxstreams, 2);
nrxstreams = MIN(nrxstreams, 2);
}
/* Set supported HT rates. */
if (ic->ic_userflags & IEEE80211_F_NOMIMO)
ntxstreams = nrxstreams = 1;
memset(ic->ic_sup_mcs, 0, sizeof(ic->ic_sup_mcs));
for (i = 0; i < nrxstreams; i++)
ic->ic_sup_mcs[i] = 0xff;
ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED;
if (ntxstreams != nrxstreams) {
ic->ic_tx_mcs_set |= IEEE80211_TX_RX_MCS_NOT_EQUAL;
ic->ic_tx_mcs_set |= (ntxstreams - 1) << 2;
}
}
int
athn_attach(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int error;
/* Read hardware revision. */
athn_get_chipid(sc);
if ((error = athn_reset_power_on(sc)) != 0) {
printf("%s: could not reset chip\n", sc->sc_dev.dv_xname);
return (error);
}
if ((error = athn_set_power_awake(sc)) != 0) {
printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
return (error);
}
if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
error = ar5416_attach(sc);
else if (AR_SREV_9280(sc))
error = ar9280_attach(sc);
else if (AR_SREV_9285(sc))
error = ar9285_attach(sc);
#if NATHN_USB > 0
else if (AR_SREV_9271(sc))
error = ar9285_attach(sc);
#endif
else if (AR_SREV_9287(sc))
error = ar9287_attach(sc);
else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
error = ar9380_attach(sc);
else
error = ENOTSUP;
if (error != 0) {
printf("%s: could not attach chip\n", sc->sc_dev.dv_xname);
return (error);
}
/* We can put the chip in sleep state now. */
athn_set_power_sleep(sc);
if (!(sc->flags & ATHN_FLAG_USB)) {
error = sc->ops.dma_alloc(sc);
if (error != 0) {
printf("%s: could not allocate DMA resources\n",
sc->sc_dev.dv_xname);
return (error);
}
/* Steal one Tx buffer for beacons. */
sc->bcnbuf = SIMPLEQ_FIRST(&sc->txbufs);
SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list);
}
if (sc->flags & ATHN_FLAG_RFSILENT) {
DPRINTF(("found RF switch connected to GPIO pin %d\n",
sc->rfsilent_pin));
}
DPRINTF(("%d key cache entries\n", sc->kc_entries));
/*
* In HostAP mode, the number of STAs that we can handle is
* limited by the number of entries in the HW key cache.
* TKIP keys would consume 2 entries in this cache but we
* only use the hardware crypto engine for CCMP.
*/
ic->ic_max_nnodes = sc->kc_entries - IEEE80211_WEP_NKID;
if (ic->ic_max_nnodes > IEEE80211_CACHE_SIZE)
ic->ic_max_nnodes = IEEE80211_CACHE_SIZE;
DPRINTF(("using %s loop power control\n",
(sc->flags & ATHN_FLAG_OLPC) ? "open" : "closed"));
DPRINTF(("txchainmask=0x%x rxchainmask=0x%x\n",
sc->txchainmask, sc->rxchainmask));
/* Count the number of bits set (in lowest 3 bits). */
sc->ntxchains =
((sc->txchainmask >> 2) & 1) +
((sc->txchainmask >> 1) & 1) +
((sc->txchainmask >> 0) & 1);
sc->nrxchains =
((sc->rxchainmask >> 2) & 1) +
((sc->rxchainmask >> 1) & 1) +
((sc->rxchainmask >> 0) & 1);
if (AR_SINGLE_CHIP(sc)) {
printf("%s: %s rev %d (%dT%dR), ROM rev %d, address %s\n",
sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev,
sc->ntxchains, sc->nrxchains, sc->eep_rev,
ether_sprintf(ic->ic_myaddr));
} else {
printf("%s: MAC %s rev %d, RF %s (%dT%dR), ROM rev %d, "
"address %s\n",
sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev,
athn_get_rf_name(sc), sc->ntxchains, sc->nrxchains,
sc->eep_rev, ether_sprintf(ic->ic_myaddr));
}
timeout_set(&sc->scan_to, athn_next_scan, sc);
timeout_set(&sc->calib_to, athn_calib_to, sc);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 15;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_WEP | /* WEP. */
IEEE80211_C_RSN | /* WPA/RSN. */
#ifndef IEEE80211_STA_ONLY
IEEE80211_C_HOSTAP | /* Host AP mode supported. */
IEEE80211_C_APPMGT | /* Host AP power saving supported. */
#endif
IEEE80211_C_MONITOR | /* Monitor mode supported. */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_PMGT; /* Power saving supported. */
athn_config_ht(sc);
/* Set supported rates. */
if (sc->flags & ATHN_FLAG_11G) {
ic->ic_sup_rates[IEEE80211_MODE_11B] =
ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] =
ieee80211_std_rateset_11g;
}
if (sc->flags & ATHN_FLAG_11A) {
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
}
/* Get the list of authorized/supported channels. */
athn_get_chanlist(sc);
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = athn_ioctl;
ifp->if_start = athn_start;
ifp->if_watchdog = athn_watchdog;
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ic->ic_node_alloc = athn_node_alloc;
ic->ic_newassoc = athn_newassoc;
ic->ic_updateslot = athn_updateslot;
ic->ic_updateedca = athn_updateedca;
ic->ic_set_key = athn_set_key;
ic->ic_delete_key = athn_delete_key;
/* Override 802.11 state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = athn_newstate;
ieee80211_media_init(ifp, athn_media_change, ieee80211_media_status);
#if NBPFILTER > 0
athn_radiotap_attach(sc);
#endif
return (0);
}
void
athn_detach(struct athn_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
int qid;
timeout_del(&sc->scan_to);
timeout_del(&sc->calib_to);
if (!(sc->flags & ATHN_FLAG_USB)) {
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
athn_tx_reclaim(sc, qid);
/* Free Tx/Rx DMA resources. */
sc->ops.dma_free(sc);
}
/* Free ROM copy. */
if (sc->eep != NULL)
free(sc->eep, M_DEVBUF, 0);
ieee80211_ifdetach(ifp);
if_detach(ifp);
}
#if NBPFILTER > 0
/*
* Attach the interface to 802.11 radiotap.
*/
void
athn_radiotap_attach(struct athn_softc *sc)
{
bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
}
#endif
void
athn_get_chanlist(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t chan;
int i;
if (sc->flags & ATHN_FLAG_11G) {
for (i = 1; i <= 14; i++) {
chan = i;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
if (sc->flags & ATHN_FLAG_11N)
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_HT;
}
}
if (sc->flags & ATHN_FLAG_11A) {
for (i = 0; i < nitems(athn_5ghz_chans); i++) {
chan = athn_5ghz_chans[i];
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
if (sc->flags & ATHN_FLAG_11N)
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_HT;
}
}
}
void
athn_rx_start(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t rfilt;
/* Setup Rx DMA descriptors. */
sc->ops.rx_enable(sc);
/* Set Rx filter. */
rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
/* Want Compressed Block Ack Requests. */
rfilt |= AR_RX_FILTER_COMPR_BAR;
rfilt |= AR_RX_FILTER_BEACON;
if (ic->ic_opmode != IEEE80211_M_STA) {
rfilt |= AR_RX_FILTER_PROBEREQ;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
rfilt |= AR_RX_FILTER_PROM;
#ifndef IEEE80211_STA_ONLY
if (AR_SREV_9280_10_OR_LATER(sc) &&
ic->ic_opmode == IEEE80211_M_HOSTAP)
rfilt |= AR_RX_FILTER_PSPOLL;
#endif
}
athn_set_rxfilter(sc, rfilt);
/* Set BSSID mask. */
AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
AR_WRITE(sc, AR_BSSMSKU, 0xffff);
athn_set_opmode(sc);
/* Set multicast filter. */
AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
AR_WRITE(sc, AR_FILT_OFDM, 0);
AR_WRITE(sc, AR_FILT_CCK, 0);
AR_WRITE(sc, AR_MIBC, 0);
AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
/* XXX ANI. */
AR_WRITE(sc, AR_PHY_ERR_1, 0);
AR_WRITE(sc, AR_PHY_ERR_2, 0);
/* Disable HW crypto for now. */
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
/* Start PCU Rx. */
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
AR_WRITE_BARRIER(sc);
}
void
athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
{
AR_WRITE(sc, AR_RX_FILTER, rfilt);
#ifdef notyet
reg = AR_READ(sc, AR_PHY_ERR);
reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
AR_PHY_ERR_CCK_TIMING);
AR_WRITE(sc, AR_PHY_ERR, reg);
if (reg != 0)
AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
else
AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
#else
AR_WRITE(sc, AR_PHY_ERR, 0);
AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
#endif
AR_WRITE_BARRIER(sc);
}
int
athn_intr(void *xsc)
{
struct athn_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ic.ic_if;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING))
return (0);
return (sc->ops.intr(sc));
}
void
athn_get_chipid(struct athn_softc *sc)
{
uint32_t reg;
reg = AR_READ(sc, AR_SREV);
if (MS(reg, AR_SREV_ID) == 0xff) {
sc->mac_ver = MS(reg, AR_SREV_VERSION2);
sc->mac_rev = MS(reg, AR_SREV_REVISION2);
if (!(reg & AR_SREV_TYPE2_HOST_MODE))
sc->flags |= ATHN_FLAG_PCIE;
} else {
sc->mac_ver = MS(reg, AR_SREV_VERSION);
sc->mac_rev = MS(reg, AR_SREV_REVISION);
if (sc->mac_ver == AR_SREV_VERSION_5416_PCIE)
sc->flags |= ATHN_FLAG_PCIE;
}
}
const char *
athn_get_mac_name(struct athn_softc *sc)
{
switch (sc->mac_ver) {
case AR_SREV_VERSION_5416_PCI:
return ("AR5416");
case AR_SREV_VERSION_5416_PCIE:
return ("AR5418");
case AR_SREV_VERSION_9160:
return ("AR9160");
case AR_SREV_VERSION_9280:
return ("AR9280");
case AR_SREV_VERSION_9285:
return ("AR9285");
case AR_SREV_VERSION_9271:
return ("AR9271");
case AR_SREV_VERSION_9287:
return ("AR9287");
case AR_SREV_VERSION_9380:
return ("AR9380");
case AR_SREV_VERSION_9485:
return ("AR9485");
}
return ("unknown");
}
/*
* Return RF chip name (not for single-chip solutions).
*/
const char *
athn_get_rf_name(struct athn_softc *sc)
{
KASSERT(!AR_SINGLE_CHIP(sc));
switch (sc->rf_rev) {
case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */
return ("AR5133");
case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */
return ("AR2133");
case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */
return ("AR5122");
case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */
return ("AR2122");
}
return ("unknown");
}
int
athn_reset_power_on(struct athn_softc *sc)
{
int ntries;
/* Set force wake. */
AR_WRITE(sc, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
if (!AR_SREV_9380_10_OR_LATER(sc)) {
/* Make sure no DMA is active by doing an AHB reset. */
AR_WRITE(sc, AR_RC, AR_RC_AHB);
}
/* RTC reset and clear. */
AR_WRITE(sc, AR_RTC_RESET, 0);
AR_WRITE_BARRIER(sc);
DELAY(2);
if (!AR_SREV_9380_10_OR_LATER(sc))
AR_WRITE(sc, AR_RC, 0);
AR_WRITE(sc, AR_RTC_RESET, 1);
/* Poll until RTC is ON. */
for (ntries = 0; ntries < 1000; ntries++) {
if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
AR_RTC_STATUS_ON)
break;
DELAY(10);
}
if (ntries == 1000) {
DPRINTF(("RTC not waking up\n"));
return (ETIMEDOUT);
}
return (athn_reset(sc, 0));
}
int
athn_reset(struct athn_softc *sc, int cold)
{
int ntries;
/* Set force wake. */
AR_WRITE(sc, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
(AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
(!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
} else if (!AR_SREV_9380_10_OR_LATER(sc))
AR_WRITE(sc, AR_RC, AR_RC_AHB);
AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
(cold ? AR_RTC_RC_MAC_COLD : 0));
AR_WRITE_BARRIER(sc);
DELAY(50);
AR_WRITE(sc, AR_RTC_RC, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (!(AR_READ(sc, AR_RTC_RC) &
(AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
break;
DELAY(10);
}
if (ntries == 1000) {
DPRINTF(("RTC stuck in MAC reset\n"));
return (ETIMEDOUT);
}
AR_WRITE(sc, AR_RC, 0);
AR_WRITE_BARRIER(sc);
return (0);
}
int
athn_set_power_awake(struct athn_softc *sc)
{
int ntries, error;
/* Do a Power-On-Reset if shutdown. */
if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
AR_RTC_STATUS_SHUTDOWN) {
if ((error = athn_reset_power_on(sc)) != 0)
return (error);
if (!AR_SREV_9380_10_OR_LATER(sc))
athn_init_pll(sc, NULL);
}
AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
AR_WRITE_BARRIER(sc);
DELAY(50); /* Give chip the chance to awake. */
/* Poll until RTC is ON. */
for (ntries = 0; ntries < 4000; ntries++) {
if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
AR_RTC_STATUS_ON)
break;
DELAY(50);
AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
}
if (ntries == 4000) {
DPRINTF(("RTC not waking up\n"));
return (ETIMEDOUT);
}
AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
AR_WRITE_BARRIER(sc);
return (0);
}
void
athn_set_power_sleep(struct athn_softc *sc)
{
AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
/* Allow the MAC to go to sleep. */
AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
if (!AR_SREV_9380_10_OR_LATER(sc))
AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
/*
* NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
* results in high power consumption on AR5416 chipsets.
*/
if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
AR_WRITE_BARRIER(sc);
}
void
athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
{
uint32_t pll;
if (AR_SREV_9380_10_OR_LATER(sc)) {
if (AR_SREV_9485(sc))
AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
} else if (AR_SREV_9280_10_OR_LATER(sc)) {
pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
if (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)
pll = 0x142c;
else if (AR_SREV_9280_20(sc))
pll = 0x2850;
else
pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
} else
pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
} else if (AR_SREV_9160_10_OR_LATER(sc)) {
pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
else
pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
} else {
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
pll |= SM(AR_RTC_PLL_DIV, 0x0a);
else
pll |= SM(AR_RTC_PLL_DIV, 0x0b);
}
DPRINTFN(5, ("AR_RTC_PLL_CONTROL=0x%08x\n", pll));
AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
if (AR_SREV_9271(sc)) {
/* Switch core clock to 117MHz. */
AR_WRITE_BARRIER(sc);
DELAY(500);
AR_WRITE(sc, AR9271_CLOCK_CONTROL, 0x304);
}
AR_WRITE_BARRIER(sc);
DELAY(100);
AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
AR_WRITE_BARRIER(sc);
}
void
athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
{
int i;
/* Write sequence to Serializer/Deserializer. */
for (i = 0; i < serdes->nvals; i++)
AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
AR_WRITE_BARRIER(sc);
}
void
athn_config_pcie(struct athn_softc *sc)
{
/* Disable PLL when in L0s as well as receiver clock when in L1. */
athn_write_serdes(sc, sc->serdes);
DELAY(1000);
/* Allow forcing of PCIe core into L1 state. */
AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
#ifndef ATHN_PCIE_WAEN
AR_WRITE(sc, AR_WA, sc->workaround);
#else
AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
#endif
AR_WRITE_BARRIER(sc);
}
/*
* Serializer/Deserializer programming for non-PCIe devices.
*/
static const uint32_t ar_nonpcie_serdes_regs[] = {
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES,
AR_PCIE_SERDES2,
};
static const uint32_t ar_nonpcie_serdes_vals[] = {
0x9248fc00,
0x24924924,
0x28000029,
0x57160824,
0x25980579,
0x00000000,
0x1aaabe40,
0xbe105554,
0x000e1007,
0x00000000
};
static const struct athn_serdes ar_nonpcie_serdes = {
nitems(ar_nonpcie_serdes_vals),
ar_nonpcie_serdes_regs,
ar_nonpcie_serdes_vals
};
void
athn_config_nonpcie(struct athn_softc *sc)
{
athn_write_serdes(sc, &ar_nonpcie_serdes);
}
int
athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
struct athn_ops *ops = &sc->ops;
int error, qid;
/* Check that Tx is stopped, otherwise RF Bus grant will not work. */
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
if (athn_tx_pending(sc, qid))
return (EBUSY);
/* Request RF Bus grant. */
if ((error = ops->rf_bus_request(sc)) != 0)
return (error);
ops->set_phy(sc, c, extc);
/* Change the synthesizer. */
if ((error = ops->set_synth(sc, c, extc)) != 0)
return (error);
sc->curchan = c;
sc->curchanext = extc;
/* Set transmit power values for new channel. */
ops->set_txpower(sc, c, extc);
/* Release the RF Bus grant. */
ops->rf_bus_release(sc);
/* Write delta slope coeffs for modes where OFDM may be used. */
if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
ops->set_delta_slope(sc, c, extc);
ops->spur_mitigate(sc, c, extc);
return (0);
}
int
athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
int error, qid;
/* Disable interrupts. */
athn_disable_interrupts(sc);
/* Stop all Tx queues. */
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
athn_stop_tx_dma(sc, qid);
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
athn_tx_reclaim(sc, qid);
/* Stop Rx. */
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
AR_WRITE(sc, AR_FILT_OFDM, 0);
AR_WRITE(sc, AR_FILT_CCK, 0);
athn_set_rxfilter(sc, 0);
error = athn_stop_rx_dma(sc);
if (error != 0)
goto reset;
#ifdef notyet
/* AR9280 needs a full reset. */
if (AR_SREV_9280(sc))
#endif
goto reset;
/* If band or bandwidth changes, we need to do a full reset. */
if (c->ic_flags != sc->curchan->ic_flags ||
((extc != NULL) ^ (sc->curchanext != NULL))) {
DPRINTFN(2, ("channel band switch\n"));
goto reset;
}
error = athn_set_power_awake(sc);
if (error != 0)
goto reset;
error = athn_set_chan(sc, c, extc);
if (error != 0) {
reset: /* Error found, try a full reset. */
DPRINTFN(3, ("needs a full reset\n"));
error = athn_hw_reset(sc, c, extc, 0);
if (error != 0) /* Hopeless case. */
return (error);
}
athn_rx_start(sc);
/* Re-enable interrupts. */
athn_enable_interrupts(sc);
return (0);
}
void
athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
{
#define COEFF_SCALE_SHIFT 24
uint32_t exp, man;
/* exponent = 14 - floor(log2(coeff)) */
for (exp = 31; exp > 0; exp--)
if (coeff & (1 << exp))
break;
exp = 14 - (exp - COEFF_SCALE_SHIFT);
/* mantissa = floor(coeff * 2^exponent + 0.5) */
man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
*exponent = exp - 16;
#undef COEFF_SCALE_SHIFT
}
void
athn_reset_key(struct athn_softc *sc, int entry)
{
/*
* NB: Key cache registers access special memory area that requires
* two 32-bit writes to actually update the values in the internal
* memory. Consequently, writes must be grouped by pair.
*
* All writes to registers with an offset of 0x0 or 0x8 write to a
* temporary register. A write to a register with an offset of 0x4
* or 0xc writes concatenates the written value with the value in
* the temporary register and writes the result to key cache memory.
* The actual written memory area is 50 bits wide.
*/
AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
AR_WRITE_BARRIER(sc);
}
int
athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct athn_softc *sc = ic->ic_softc;
const uint8_t *key, *addr;
uintptr_t entry;
uint32_t lo, hi, unicast;
if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
/* Use software crypto for ciphers other than CCMP. */
return ieee80211_set_key(ic, ni, k);
}
if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
else
#endif
entry = IEEE80211_WEP_NKID;
if (entry >= sc->kc_entries - IEEE80211_WEP_NKID)
return ENOSPC;
} else {
entry = k->k_id;
if (entry >= IEEE80211_WEP_NKID)
return ENOSPC;
}
k->k_priv = (void *)entry;
/* NB: See note about key cache registers access above. */
key = k->k_key;
AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CCM);
unicast = AR_KEYTABLE_VALID;
if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
addr = ni->ni_macaddr;
lo = LE_READ_4(&addr[0]);
hi = LE_READ_2(&addr[4]);
lo = lo >> 1 | hi << 31;
hi = hi >> 1;
} else {
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
uint8_t groupaddr[ETHER_ADDR_LEN];
IEEE80211_ADDR_COPY(groupaddr, ic->ic_myaddr);
groupaddr[0] |= 0x01;
lo = LE_READ_4(&groupaddr[0]);
hi = LE_READ_2(&groupaddr[4]);
lo = lo >> 1 | hi << 31;
hi = hi >> 1;
/*
* KEYTABLE_VALID indicates that the address
* is a unicast address which must match the
* transmitter address when decrypting frames.
* Not setting KEYTABLE_VALID allows hardware to
* use this key for multicast frame decryption.
*/
unicast = 0;
} else
#endif
lo = hi = 0;
}
AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | unicast);
AR_WRITE_BARRIER(sc);
/* Enable HW crypto. */
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
AR_WRITE_BARRIER(sc);
return (0);
}
void
athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct athn_softc *sc = ic->ic_softc;
uintptr_t entry;
if (k->k_cipher == IEEE80211_CIPHER_CCMP) {
entry = (uintptr_t)k->k_priv;
athn_reset_key(sc, entry);
explicit_bzero(k, sizeof(*k));
} else
ieee80211_delete_key(ic, ni, k);
}
void
athn_led_init(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->ops;
ops->gpio_config_output(sc, sc->led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
/* LED off, active low. */
athn_set_led(sc, 0);
}
void
athn_set_led(struct athn_softc *sc, int on)
{
struct athn_ops *ops = &sc->ops;
sc->led_state = on;
ops->gpio_write(sc, sc->led_pin, !sc->led_state);
}
#ifdef ATHN_BT_COEXISTENCE
void
athn_btcoex_init(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->ops;
uint32_t reg;
if (sc->flags & ATHN_FLAG_BTCOEX2WIRE) {
/* Connect bt_active to baseband. */
AR_CLRBITS(sc, sc->gpio_input_en_off,
AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
AR_SETBITS(sc, sc->gpio_input_en_off,
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
AR_GPIO_BTACTIVE_PIN);
AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
AR_WRITE_BARRIER(sc);
ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
} else { /* 3-wire. */
AR_SETBITS(sc, sc->gpio_input_en_off,
AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
AR_GPIO_BTACTIVE_PIN);
reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
AR_GPIO_BTPRIORITY_PIN);
AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
AR_WRITE_BARRIER(sc);
ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
}
}
void
athn_btcoex_enable(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->ops;
uint32_t reg;
if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) {
AR_WRITE(sc, AR_BT_COEX_MODE,
SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
SM(AR_BT_PRIORITY_TIME, 2) |
SM(AR_BT_FIRST_SLOT_TIME, 5) |
SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
AR_WRITE(sc, AR_BT_COEX_WEIGHT,
SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
AR_WRITE(sc, AR_BT_COEX_MODE2,
SM(AR_BT_BCN_MISS_THRESH, 50) |
AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
AR_WRITE_BARRIER(sc);
ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
} else { /* 2-wire. */
ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
}
reg = AR_READ(sc, AR_GPIO_PDPU);
reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
AR_WRITE(sc, AR_GPIO_PDPU, reg);
AR_WRITE_BARRIER(sc);
/* Disable PCIe Active State Power Management (ASPM). */
if (sc->sc_disable_aspm != NULL)
sc->sc_disable_aspm(sc);
/* XXX Start periodic timer. */
}
void
athn_btcoex_disable(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->ops;
ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) {
AR_WRITE(sc, AR_BT_COEX_MODE,
SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
/* XXX Stop periodic timer. */
}
AR_WRITE_BARRIER(sc);
/* XXX Restore ASPM setting? */
}
#endif
void
athn_iter_calib(void *arg, struct ieee80211_node *ni)
{
struct athn_softc *sc = arg;
struct athn_node *an = (struct athn_node *)ni;
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
ieee80211_amrr_choose(&sc->amrr, ni, &an->amn);
}
int
athn_cap_noisefloor(struct athn_softc *sc, int nf)
{
int16_t min, max;
if (nf == 0 || nf == -1) /* invalid measurement */
return AR_DEFAULT_NOISE_FLOOR;
if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_bss->ni_chan)) {
min = sc->cca_min_2g;
max = sc->cca_max_2g;
} else {
min = sc->cca_min_5g;
max = sc->cca_max_5g;
}
if (nf < min)
return min;
if (nf > max)
return max;
return nf;
}
int
athn_nf_hist_mid(int *nf_vals, int nvalid)
{
int nf_sorted[ATHN_NF_CAL_HIST_MAX];
int i, j, nf;
if (nvalid <= 1)
return nf_vals[0];
for (i = 0; i < nvalid; i++)
nf_sorted[i] = nf_vals[i];
for (i = 0; i < nvalid; i++) {
for (j = 1; j < nvalid - i; j++) {
if (nf_sorted[j] > nf_sorted[j - 1]) {
nf = nf_sorted[j];
nf_sorted[j] = nf_sorted[j - 1];
nf_sorted[j - 1] = nf;
}
}
}
return nf_sorted[nvalid / 2];
}
void
athn_filter_noisefloor(struct athn_softc *sc)
{
int nf_vals[ATHN_NF_CAL_HIST_MAX];
int nf_ext_vals[ATHN_NF_CAL_HIST_MAX];
int i, cur, n;
for (i = 0; i < sc->nrxchains; i++) {
if (sc->nf_hist_cur > 0)
cur = sc->nf_hist_cur - 1;
else
cur = ATHN_NF_CAL_HIST_MAX - 1;
for (n = 0; n < sc->nf_hist_nvalid; n++) {
nf_vals[n] = sc->nf_hist[cur].nf[i];
nf_ext_vals[n] = sc->nf_hist[cur].nf_ext[i];
if (++cur >= ATHN_NF_CAL_HIST_MAX)
cur = 0;
}
sc->nf_priv[i] = athn_cap_noisefloor(sc,
athn_nf_hist_mid(nf_vals, sc->nf_hist_nvalid));
sc->nf_ext_priv[i] = athn_cap_noisefloor(sc,
athn_nf_hist_mid(nf_ext_vals, sc->nf_hist_nvalid));
}
}
void
athn_start_noisefloor_calib(struct athn_softc *sc, int reset_history)
{
extern int ticks;
if (reset_history)
sc->nf_hist_nvalid = 0;
sc->nf_calib_pending = 1;
sc->nf_calib_ticks = ticks;
sc->ops.noisefloor_calib(sc);
}
void
athn_calib_to(void *arg)
{
extern int ticks;
struct athn_softc *sc = arg;
struct athn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
/* Do periodic (every 4 minutes) PA calibration. */
if (AR_SREV_9285_11_OR_LATER(sc) &&
!AR_SREV_9380_10_OR_LATER(sc) &&
(ticks - (sc->pa_calib_ticks + 240 * hz)) >= 0) {
sc->pa_calib_ticks = ticks;
if (AR_SREV_9271(sc))
ar9271_pa_calib(sc);
else
ar9285_pa_calib(sc);
}
/* Do periodic (every 4 minutes) NF calibration. */
if (sc->nf_calib_pending && ops->get_noisefloor(sc)) {
if (sc->nf_hist_nvalid < ATHN_NF_CAL_HIST_MAX)
sc->nf_hist_nvalid++;
athn_filter_noisefloor(sc);
ops->apply_noisefloor(sc);
sc->nf_calib_pending = 0;
}
if (ticks - (sc->nf_calib_ticks + 240 * hz) >= 0)
athn_start_noisefloor_calib(sc, 0);
/* Do periodic (every 30 seconds) temperature compensation. */
if ((sc->flags & ATHN_FLAG_OLPC) &&
ticks >= sc->olpc_ticks + 30 * hz) {
sc->olpc_ticks = ticks;
ops->olpc_temp_compensation(sc);
}
#ifdef notyet
/* XXX ANI. */
athn_ani_monitor(sc);
#endif
/* Do periodic (every 30 seconds) ADC/IQ calibration. */
if (sc->cur_calib_mask != 0) {
ops->next_calib(sc);
sc->iqcal_ticks = ticks;
} else if (sc->sup_calib_mask != 0 &&
ticks >= sc->iqcal_ticks + 30 * hz) {
memset(&sc->calib, 0, sizeof(sc->calib));
sc->cur_calib_mask = sc->sup_calib_mask;
ops->do_calib(sc);
sc->iqcal_ticks = ticks;
}
if (ic->ic_fixed_rate == -1) {
if (ic->ic_opmode == IEEE80211_M_STA)
athn_iter_calib(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(ic, athn_iter_calib, sc);
}
timeout_add_msec(&sc->calib_to, 500);
splx(s);
}
int
athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
struct athn_ops *ops = &sc->ops;
int error;
if (AR_SREV_9380_10_OR_LATER(sc))
error = ar9003_init_calib(sc);
else if (AR_SREV_9285_10_OR_LATER(sc))
error = ar9285_init_calib(sc, c, extc);
else
error = ar5416_init_calib(sc, c, extc);
if (error != 0)
return (error);
if (!AR_SREV_9380_10_OR_LATER(sc)) {
/* Do PA calibration. */
if (AR_SREV_9285_11_OR_LATER(sc)) {
extern int ticks;
sc->pa_calib_ticks = ticks;
if (AR_SREV_9271(sc))
ar9271_pa_calib(sc);
else
ar9285_pa_calib(sc);
}
}
/* Do noisefloor calibration. */
ops->init_noisefloor_calib(sc);
if (AR_SREV_9160_10_OR_LATER(sc)) {
/* Support IQ calibration. */
sc->sup_calib_mask = ATHN_CAL_IQ;
if (AR_SREV_9380_10_OR_LATER(sc)) {
/* Support temperature compensation calibration. */
sc->sup_calib_mask |= ATHN_CAL_TEMP;
} else if (IEEE80211_IS_CHAN_5GHZ(c) || extc != NULL) {
/*
* ADC gain calibration causes uplink throughput
* drops in HT40 mode on AR9287.
*/
if (!AR_SREV_9287(sc)) {
/* Support ADC gain calibration. */
sc->sup_calib_mask |= ATHN_CAL_ADC_GAIN;
}
/* Support ADC DC offset calibration. */
sc->sup_calib_mask |= ATHN_CAL_ADC_DC;
}
}
return (0);
}
/*
* Adaptive noise immunity.
*/
int32_t
athn_ani_get_rssi(struct athn_softc *sc)
{
return (0); /* XXX */
}
void
athn_ani_ofdm_err_trigger(struct athn_softc *sc)
{
struct athn_ani *ani = &sc->ani;
struct athn_ops *ops = &sc->ops;
int32_t rssi;
/* First, raise noise immunity level, up to max. */
if (ani->noise_immunity_level < 4) {
ani->noise_immunity_level++;
ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
return;
}
/* Then, raise our spur immunity level, up to max. */
if (ani->spur_immunity_level < 7) {
ani->spur_immunity_level++;
ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
return;
}
#ifndef IEEE80211_STA_ONLY
if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
if (ani->firstep_level < 2) {
ani->firstep_level++;
ops->set_firstep_level(sc, ani->firstep_level);
}
return;
}
#endif
rssi = athn_ani_get_rssi(sc);
if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
/*
* Beacon RSSI is high, turn off OFDM weak signal detection
* or raise first step level as last resort.
*/
if (ani->ofdm_weak_signal) {
ani->ofdm_weak_signal = 0;
ops->disable_ofdm_weak_signal(sc);
ani->spur_immunity_level = 0;
ops->set_spur_immunity_level(sc, 0);
} else if (ani->firstep_level < 2) {
ani->firstep_level++;
ops->set_firstep_level(sc, ani->firstep_level);
}
} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
/*
* Beacon RSSI is in mid range, we need OFDM weak signal
* detection but we can raise first step level.
*/
if (!ani->ofdm_weak_signal) {
ani->ofdm_weak_signal = 1;
ops->enable_ofdm_weak_signal(sc);
}
if (ani->firstep_level < 2) {
ani->firstep_level++;
ops->set_firstep_level(sc, ani->firstep_level);
}
} else if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_bss->ni_chan)) {
/*
* Beacon RSSI is low, if in b/g mode, turn off OFDM weak
* signal detection and zero first step level to maximize
* CCK sensitivity.
*/
if (ani->ofdm_weak_signal) {
ani->ofdm_weak_signal = 0;
ops->disable_ofdm_weak_signal(sc);
}
if (ani->firstep_level > 0) {
ani->firstep_level = 0;
ops->set_firstep_level(sc, 0);
}
}
}
void
athn_ani_cck_err_trigger(struct athn_softc *sc)
{
struct athn_ani *ani = &sc->ani;
struct athn_ops *ops = &sc->ops;
int32_t rssi;
/* Raise noise immunity level, up to max. */
if (ani->noise_immunity_level < 4) {
ani->noise_immunity_level++;
ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
return;
}
#ifndef IEEE80211_STA_ONLY
if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
if (ani->firstep_level < 2) {
ani->firstep_level++;
ops->set_firstep_level(sc, ani->firstep_level);
}
return;
}
#endif
rssi = athn_ani_get_rssi(sc);
if (rssi > ATHN_ANI_RSSI_THR_LOW) {
/*
* Beacon RSSI is in mid or high range, raise first step
* level.
*/
if (ani->firstep_level < 2) {
ani->firstep_level++;
ops->set_firstep_level(sc, ani->firstep_level);
}
} else if (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_bss->ni_chan)) {
/*
* Beacon RSSI is low, zero first step level to maximize
* CCK sensitivity.
*/
if (ani->firstep_level > 0) {
ani->firstep_level = 0;
ops->set_firstep_level(sc, 0);
}
}
}
void
athn_ani_lower_immunity(struct athn_softc *sc)
{
struct athn_ani *ani = &sc->ani;
struct athn_ops *ops = &sc->ops;
int32_t rssi;
#ifndef IEEE80211_STA_ONLY
if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
if (ani->firstep_level > 0) {
ani->firstep_level--;
ops->set_firstep_level(sc, ani->firstep_level);
}
return;
}
#endif
rssi = athn_ani_get_rssi(sc);
if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
/*
* Beacon RSSI is high, leave OFDM weak signal detection
* off or it may oscillate.
*/
} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
/*
* Beacon RSSI is in mid range, turn on OFDM weak signal
* detection or lower first step level.
*/
if (!ani->ofdm_weak_signal) {
ani->ofdm_weak_signal = 1;
ops->enable_ofdm_weak_signal(sc);
return;
}
if (ani->firstep_level > 0) {
ani->firstep_level--;
ops->set_firstep_level(sc, ani->firstep_level);
return;
}
} else {
/* Beacon RSSI is low, lower first step level. */
if (ani->firstep_level > 0) {
ani->firstep_level--;
ops->set_firstep_level(sc, ani->firstep_level);
return;
}
}
/*
* Lower spur immunity level down to zero, or if all else fails,
* lower noise immunity level down to zero.
*/
if (ani->spur_immunity_level > 0) {
ani->spur_immunity_level--;
ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
} else if (ani->noise_immunity_level > 0) {
ani->noise_immunity_level--;
ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
}
}
void
athn_ani_restart(struct athn_softc *sc)
{
struct athn_ani *ani = &sc->ani;
AR_WRITE(sc, AR_PHY_ERR_1, 0);
AR_WRITE(sc, AR_PHY_ERR_2, 0);
AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
AR_WRITE_BARRIER(sc);
ani->listen_time = 0;
ani->ofdm_phy_err_count = 0;
ani->cck_phy_err_count = 0;
}
void
athn_ani_monitor(struct athn_softc *sc)
{
struct athn_ani *ani = &sc->ani;
uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
int32_t cycdelta, txfdelta, rxfdelta;
int32_t listen_time;
txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */
rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */
cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */
if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
cycdelta = cyccnt - ani->cyccnt;
txfdelta = txfcnt - ani->txfcnt;
rxfdelta = rxfcnt - ani->rxfcnt;
listen_time = (cycdelta - txfdelta - rxfdelta) /
(athn_clock_rate(sc) * 1000);
} else
listen_time = 0;
ani->cyccnt = cyccnt;
ani->txfcnt = txfcnt;
ani->rxfcnt = rxfcnt;
if (listen_time < 0) {
athn_ani_restart(sc);
return;
}
ani->listen_time += listen_time;
phy1 = AR_READ(sc, AR_PHY_ERR_1);
phy2 = AR_READ(sc, AR_PHY_ERR_2);
if (phy1 < ani->ofdm_phy_err_base) {
AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
}
if (phy2 < ani->cck_phy_err_base) {
AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
}
if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
AR_WRITE_BARRIER(sc);
return;
}
ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
/* Check to see if we need to lower immunity. */
if (ani->ofdm_phy_err_count <=
ani->listen_time * ani->ofdm_trig_low / 1000 &&
ani->cck_phy_err_count <=
ani->listen_time * ani->cck_trig_low / 1000)
athn_ani_lower_immunity(sc);
athn_ani_restart(sc);
} else if (ani->listen_time > ATHN_ANI_PERIOD) {
/* Check to see if we need to raise immunity. */
if (ani->ofdm_phy_err_count >
ani->listen_time * ani->ofdm_trig_high / 1000) {
athn_ani_ofdm_err_trigger(sc);
athn_ani_restart(sc);
} else if (ani->cck_phy_err_count >
ani->listen_time * ani->cck_trig_high / 1000) {
athn_ani_cck_err_trigger(sc);
athn_ani_restart(sc);
}
}
}
uint8_t
athn_chan2fbin(struct ieee80211_channel *c)
{
if (IEEE80211_IS_CHAN_2GHZ(c))
return (c->ic_freq - 2300);
else
return ((c->ic_freq - 4800) / 5);
}
int
athn_interpolate(int x, int x1, int y1, int x2, int y2)
{
if (x1 == x2) /* Prevents division by zero. */
return (y1);
/* Linear interpolation. */
return (y1 + ((x - x1) * (y2 - y1)) / (x2 - x1));
}
void
athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
int *lo, int *hi)
{
int i;
for (i = 0; i < npiers; i++)
if (pierfreq[i] == AR_BCHAN_UNUSED ||
pierfreq[i] > fbin)
break;
*hi = i;
*lo = *hi - 1;
if (*lo == -1)
*lo = *hi;
else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
*hi = *lo;
}
void
athn_init_dma(struct athn_softc *sc)
{
uint32_t reg;
if (!AR_SREV_9380_10_OR_LATER(sc)) {
/* Set AHB not to do cacheline prefetches. */
AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
}
reg = AR_READ(sc, AR_TXCFG);
/* Let MAC DMA reads be in 128-byte chunks. */
reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
/* Set initial Tx trigger level. */
if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
else if (!AR_SREV_9380_10_OR_LATER(sc))
reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
AR_WRITE(sc, AR_TXCFG, reg);
/* Let MAC DMA writes be in 128-byte chunks. */
reg = AR_READ(sc, AR_RXCFG);
reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
AR_WRITE(sc, AR_RXCFG, reg);
/* Setup Rx FIFO threshold to hold off Tx activities. */
AR_WRITE(sc, AR_RXFIFO_CFG, 512);
/* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
if (AR_SREV_9285(sc)) {
AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
} else if (!AR_SREV_9271(sc)) {
AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
AR_WRITE_BARRIER(sc);
/* Reset Tx status ring. */
if (AR_SREV_9380_10_OR_LATER(sc))
ar9003_reset_txsring(sc);
}
void
athn_inc_tx_trigger_level(struct athn_softc *sc)
{
uint32_t reg, ftrig;
reg = AR_READ(sc, AR_TXCFG);
ftrig = MS(reg, AR_TXCFG_FTRIG);
/*
* NB: The AR9285 and all single-stream parts have an issue that
* limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
*/
if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
return; /* Already at max. */
reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
AR_WRITE(sc, AR_TXCFG, reg);
AR_WRITE_BARRIER(sc);
}
int
athn_stop_rx_dma(struct athn_softc *sc)
{
int ntries;
AR_WRITE(sc, AR_CR, AR_CR_RXD);
/* Wait for Rx enable bit to go low. */
for (ntries = 0; ntries < 100; ntries++) {
if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
return (0);
DELAY(100);
}
DPRINTF(("Rx DMA failed to stop\n"));
return (ETIMEDOUT);
}
int
athn_rx_abort(struct athn_softc *sc)
{
int ntries;
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
for (ntries = 0; ntries < 1000; ntries++) {
if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
return (0);
DELAY(10);
}
DPRINTF(("Rx failed to go idle in 10ms\n"));
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
AR_WRITE_BARRIER(sc);
return (ETIMEDOUT);
}
void
athn_tx_reclaim(struct athn_softc *sc, int qid)
{
struct athn_txq *txq = &sc->txq[qid];
struct athn_tx_buf *bf;
/* Reclaim all buffers queued in the specified Tx queue. */
/* NB: Tx DMA must be stopped. */
while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
m_freem(bf->bf_m);
bf->bf_m = NULL;
bf->bf_ni = NULL; /* Nodes already freed! */
/* Link Tx buffer back to global free list. */
SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list);
}
}
int
athn_tx_pending(struct athn_softc *sc, int qid)
{
return (MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
(AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0);
}
void
athn_stop_tx_dma(struct athn_softc *sc, int qid)
{
uint32_t tsflo;
int ntries, i;
AR_WRITE(sc, AR_Q_TXD, 1 << qid);
for (ntries = 0; ntries < 40; ntries++) {
if (!athn_tx_pending(sc, qid))
break;
DELAY(100);
}
if (ntries == 40) {
for (i = 0; i < 2; i++) {
tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
AR_WRITE(sc, AR_QUIET2,
SM(AR_QUIET2_QUIET_DUR, 10));
AR_WRITE(sc, AR_QUIET_PERIOD, 100);
AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
break;
}
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
AR_WRITE_BARRIER(sc);
DELAY(200);
AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
AR_WRITE_BARRIER(sc);
for (ntries = 0; ntries < 40; ntries++) {
if (!athn_tx_pending(sc, qid))
break;
DELAY(100);
}
AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
}
AR_WRITE(sc, AR_Q_TXD, 0);
AR_WRITE_BARRIER(sc);
}
int
athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
{
struct ieee80211com *ic = &sc->sc_ic;
#define divround(a, b) (((a) + (b) - 1) / (b))
int txtime;
if (athn_rates[ridx].hwrate & 0x80) { /* MCS */
/* Assumes a 20MHz channel, HT-mixed frame format, no STBC. */
txtime = 8 + 8 + 4 + 4 + 4 * 4 + 8 /* HT PLCP */
+ 4 * ((8 * len + 16 + 6) / (athn_rates[ridx].rate * 2));
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan))
txtime += 6; /* aSignalExtension */
} else if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
/* SIFS is 10us for 11g but Signal Extension adds 6us. */
txtime = 16 + 4 + 4 * txtime + 16;
} else {
txtime = divround(16 * len, athn_rates[ridx].rate);
if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
txtime += 10; /* 10us SIFS. */
}
return (txtime);
#undef divround
}
void
athn_init_tx_queues(struct athn_softc *sc)
{
int qid;
for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
SIMPLEQ_INIT(&sc->txq[qid].head);
sc->txq[qid].lastds = NULL;
sc->txq[qid].wait = NULL;
sc->txq[qid].queued = 0;
AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
SM(AR_D_RETRY_LIMIT_FR_SH, 10));
AR_WRITE(sc, AR_QMISC(qid),
AR_Q_MISC_DCU_EARLY_TERM_REQ);
AR_WRITE(sc, AR_DMISC(qid),
SM(AR_D_MISC_BKOFF_THRESH, 2) |
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
}
/* Init beacon queue. */
AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
AR_Q_MISC_CBR_INCR_DIS1);
AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
AR_D_MISC_BEACON_USE |
AR_D_MISC_POST_FR_BKOFF_DIS);
AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
SM(AR_D_LCL_IFS_CWMIN, 0) |
SM(AR_D_LCL_IFS_CWMAX, 0) |
SM(AR_D_LCL_IFS_AIFS, 1));
/* Init CAB (Content After Beacon) queue. */
AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
AR_Q_MISC_CBR_INCR_DIS0);
AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
/* Init PS-Poll queue. */
AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
AR_Q_MISC_CBR_INCR_DIS1);
/* Init UAPSD queue. */
AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
AR_D_MISC_POST_FR_BKOFF_DIS);
if (AR_SREV_9380_10_OR_LATER(sc)) {
/* Enable MAC descriptor CRC check. */
AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
}
/* Enable DESC interrupts for all Tx queues. */
AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
/* Enable EOL interrupts for all Tx queues except UAPSD. */
AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
AR_WRITE_BARRIER(sc);
}
void
athn_set_sta_timers(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tsfhi, tsflo, tsftu, reg;
uint32_t intval, next_tbtt, next_dtim;
int dtim_period, dtim_count, rem_dtim_count;
tsfhi = AR_READ(sc, AR_TSF_U32);
tsflo = AR_READ(sc, AR_TSF_L32);
tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
/* Beacon interval in TU. */
intval = ic->ic_bss->ni_intval;
next_tbtt = roundup(tsftu, intval);
#ifdef notyet
dtim_period = ic->ic_dtim_period;
if (dtim_period <= 0)
#endif
dtim_period = 1; /* Assume all TIMs are DTIMs. */
#ifdef notyet
dtim_count = ic->ic_dtim_count;
if (dtim_count >= dtim_period) /* Should not happen. */
#endif
dtim_count = 0; /* Assume last TIM was a DTIM. */
/* Compute number of remaining TIMs until next DTIM. */
rem_dtim_count = 0; /* XXX */
next_dtim = next_tbtt + rem_dtim_count * intval;
AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
/*
* Set the number of consecutive beacons to miss before raising
* a BMISS interrupt to 10.
*/
reg = AR_READ(sc, AR_RSSI_THR);
reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
AR_WRITE(sc, AR_RSSI_THR, reg);
AR_WRITE(sc, AR_NEXT_DTIM,
(next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_NEXT_TIM,
(next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
/* CAB timeout is in 1/8 TU. */
AR_WRITE(sc, AR_SLEEP1,
SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
AR_SLEEP1_ASSUME_DTIM);
AR_WRITE(sc, AR_SLEEP2,
SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
AR_SETBITS(sc, AR_TIMER_MODE,
AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
/* Set TSF out-of-range threshold (fixed at 16k us). */
AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
AR_WRITE_BARRIER(sc);
}
#ifndef IEEE80211_STA_ONLY
void
athn_set_hostap_timers(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t intval, next_tbtt;
/* Beacon interval in TU. */
intval = ic->ic_bss->ni_intval;
next_tbtt = intval;
AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
(next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_NEXT_CFP,
(next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
AR_WRITE(sc, AR_TIMER_MODE,
AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
AR_WRITE_BARRIER(sc);
}
#endif
void
athn_set_opmode(struct athn_softc *sc)
{
uint32_t reg;
switch (sc->sc_ic.ic_opmode) {
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_HOSTAP:
reg = AR_READ(sc, AR_STA_ID1);
reg &= ~AR_STA_ID1_ADHOC;
reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
AR_WRITE(sc, AR_STA_ID1, reg);
AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
reg = AR_READ(sc, AR_STA_ID1);
reg &= ~AR_STA_ID1_STA_AP;
reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
AR_WRITE(sc, AR_STA_ID1, reg);
AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
#endif
default:
reg = AR_READ(sc, AR_STA_ID1);
reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
reg |= AR_STA_ID1_KSRCH_MODE;
AR_WRITE(sc, AR_STA_ID1, reg);
break;
}
AR_WRITE_BARRIER(sc);
}
void
athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
{
const uint8_t *bssid = ni->ni_bssid;
AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
AR_WRITE_BARRIER(sc);
}
void
athn_enable_interrupts(struct athn_softc *sc)
{
uint32_t mask2;
athn_disable_interrupts(sc); /* XXX */
AR_WRITE(sc, AR_IMR, sc->imask);
mask2 = AR_READ(sc, AR_IMR_S2);
mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
AR_WRITE(sc, AR_IMR_S2, mask2);
AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync);
AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->isync);
AR_WRITE_BARRIER(sc);
}
void
athn_disable_interrupts(struct athn_softc *sc)
{
AR_WRITE(sc, AR_IER, 0);
(void)AR_READ(sc, AR_IER);
AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
(void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
AR_WRITE(sc, AR_IMR, 0);
AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
AR_WRITE_BARRIER(sc);
}
void
athn_init_qos(struct athn_softc *sc)
{
/* Initialize QoS settings. */
AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
AR_WRITE(sc, AR_QOS_NO_ACK,
SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
/* Initialize TXOP for all TIDs. */
AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff);
AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff);
AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff);
AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
AR_WRITE_BARRIER(sc);
}
int
athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc, int init)
{
struct ieee80211com *ic = &sc->sc_ic;
struct athn_ops *ops = &sc->ops;
uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
int i, error;
/* XXX not if already awake */
if ((error = athn_set_power_awake(sc)) != 0) {
printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
return (error);
}
/* Preserve the antenna on a channel switch. */
if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
def_ant = 1;
/* Preserve other registers. */
sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
AR_CFG_LED_BLINK_SLOW);
/* Mark PHY as inactive. */
ops->disable_phy(sc);
if (init && AR_SREV_9271(sc)) {
AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
AR9271_RADIO_RF_RST);
DELAY(50);
}
if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) {
/* Save TSF before it gets cleared. */
tsfhi = AR_READ(sc, AR_TSF_U32);
tsflo = AR_READ(sc, AR_TSF_L32);
/* NB: RTC reset clears TSF. */
error = athn_reset_power_on(sc);
} else
error = athn_reset(sc, 0);
if (error != 0) {
printf("%s: could not reset chip (error=%d)\n",
sc->sc_dev.dv_xname, error);
return (error);
}
/* XXX not if already awake */
if ((error = athn_set_power_awake(sc)) != 0) {
printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname);
return (error);
}
athn_init_pll(sc, c);
ops->set_rf_mode(sc, c);
if (sc->flags & ATHN_FLAG_RFSILENT) {
/* Check that the radio is not disabled by hardware switch. */
reg = ops->gpio_read(sc, sc->rfsilent_pin);
if (sc->flags & ATHN_FLAG_RFSILENT_REVERSED)
reg = !reg;
if (!reg) {
printf("%s: radio is disabled by hardware switch\n",
sc->sc_dev.dv_xname);
return (EPERM);
}
}
if (init && AR_SREV_9271(sc)) {
AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
AR9271_GATE_MAC_CTL);
DELAY(50);
}
if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) {
/* Restore TSF if it got cleared. */
AR_WRITE(sc, AR_TSF_L32, tsflo);
AR_WRITE(sc, AR_TSF_U32, tsfhi);
}
if (AR_SREV_9280_10_OR_LATER(sc))
AR_SETBITS(sc, sc->gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
ar9287_1_3_enable_async_fifo(sc);
/* Write init values to hardware. */
ops->hw_init(sc, c, extc);
/*
* Only >=AR9280 2.0 parts are capable of encrypting unicast
* management frames using CCMP.
*/
if (AR_SREV_9280_20_OR_LATER(sc)) {
reg = AR_READ(sc, AR_AES_MUTE_MASK1);
/* Do not mask the subtype field in management frames. */
reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
IEEE80211_FC1_MORE_DATA));
AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
} else if (AR_SREV_9160_10_OR_LATER(sc)) {
/* Disable hardware crypto for management frames. */
AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
AR_SETBITS(sc, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
}
if (ic->ic_curmode != IEEE80211_MODE_11B)
ops->set_delta_slope(sc, c, extc);
ops->spur_mitigate(sc, c, extc);
ops->init_from_rom(sc, c, extc);
/* XXX */
AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
athn_set_opmode(sc);
AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
AR_WRITE(sc, AR_BSSMSKU, 0xffff);
/* Restore previous antenna. */
AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
AR_WRITE(sc, AR_BSS_ID0, 0);
AR_WRITE(sc, AR_BSS_ID1, 0);
AR_WRITE(sc, AR_ISR, 0xffffffff);
AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
if ((error = ops->set_synth(sc, c, extc)) != 0) {
printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
return (error);
}
sc->curchan = c;
sc->curchanext = extc;
for (i = 0; i < AR_NUM_DCU; i++)
AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
athn_init_tx_queues(sc);
/* Initialize interrupt mask. */
sc->imask =
AR_IMR_TXDESC | AR_IMR_TXEOL |
AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
AR_IMR_RXMINTR | AR_IMR_RXINTM |
AR_IMR_GENTMR | AR_IMR_BCNMISC;
if (AR_SREV_9380_10_OR_LATER(sc))
sc->imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
#ifndef IEEE80211_STA_ONLY
if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
sc->imask |= AR_IMR_MIB;
#endif
AR_WRITE(sc, AR_IMR, sc->imask);
AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
sc->isync = AR_INTR_SYNC_DEFAULT;
if (sc->flags & ATHN_FLAG_RFSILENT)
sc->isync |= AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin);
AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync);
AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
if (AR_SREV_9380_10_OR_LATER(sc)) {
AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
}
athn_init_qos(sc);
AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
athn_setsifs(sc);
athn_updateslot(ic);
athn_setclockrate(sc);
if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
ar9287_1_3_setup_async_fifo(sc);
/* Disable sequence number generation in hardware. */
AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
athn_init_dma(sc);
/* Program observation bus to see MAC interrupts. */
AR_WRITE(sc, sc->obs_off, 8);
/* Setup Rx interrupt mitigation. */
AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
/* Setup Tx interrupt mitigation. */
AR_WRITE(sc, AR_TIMT, SM(AR_TIMT_FIRST, 2000) | SM(AR_TIMT_LAST, 500));
/* Set maximum interrupt rate threshold (in micro seconds). */
AR_WRITE(sc, AR_MIRT, SM(AR_MIRT_RATE_THRES, 2000));
ops->init_baseband(sc);
if ((error = athn_init_calib(sc, c, extc)) != 0) {
printf("%s: could not initialize calibration\n",
sc->sc_dev.dv_xname);
return (error);
}
ops->set_rxchains(sc);
AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
if (sc->flags & ATHN_FLAG_USB) {
if (AR_SREV_9271(sc))
AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
else
AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
}
#if BYTE_ORDER == BIG_ENDIAN
else {
/* Default is LE, turn on swapping for BE. */
AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
}
#endif
AR_WRITE_BARRIER(sc);
return (0);
}
struct ieee80211_node *
athn_node_alloc(struct ieee80211com *ic)
{
struct athn_node *an;
an = malloc(sizeof(struct athn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
if (an && (ic->ic_flags & IEEE80211_F_HTON))
ieee80211_ra_node_init(&an->rn);
return (struct ieee80211_node *)an;
}
void
athn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
{
struct athn_softc *sc = ic->ic_softc;
struct athn_node *an = (void *)ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint8_t rate;
int ridx, i, j;
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
ieee80211_amrr_node_init(&sc->amrr, &an->amn);
else if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_ra_node_init(&an->rn);
/* Start at lowest available bit-rate, AMRR will raise. */
ni->ni_txrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
if (athn_rates[ridx].rate == rate)
break;
an->ridx[i] = ridx;
DPRINTFN(2, ("rate %d index %d\n", rate, ridx));
/* Compute fallback rate for retries. */
an->fallback[i] = i;
for (j = i - 1; j >= 0; j--) {
if (athn_rates[an->ridx[j]].phy ==
athn_rates[an->ridx[i]].phy) {
an->fallback[i] = j;
break;
}
}
DPRINTFN(2, ("%d fallbacks to %d\n", i, an->fallback[i]));
}
/* In 11n mode, start at lowest available bit-rate, MiRA will raise. */
ni->ni_txmcs = 0;
for (i = 0; i <= ATHN_MCS_MAX; i++) {
/* Map MCS index to HW rate index. */
ridx = ATHN_NUM_LEGACY_RATES + i;
an->ridx[ridx] = ATHN_RIDX_MCS0 + i;
DPRINTFN(2, ("mcs %d index %d ", i, ridx));
/* Compute fallback rate for retries. */
if (i == 0 || i == 8) {
/* MCS 0 and 8 fall back to the lowest legacy rate. */
if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
an->fallback[ridx] = ATHN_RIDX_OFDM6;
else
an->fallback[ridx] = ATHN_RIDX_CCK1;
} else {
/* Other MCS fall back to next supported lower MCS. */
an->fallback[ridx] = ATHN_NUM_LEGACY_RATES + i;
for (j = i - 1; j >= 0; j--) {
if (!isset(ni->ni_rxmcs, j))
continue;
an->fallback[ridx] = ATHN_NUM_LEGACY_RATES + j;
break;
}
}
DPRINTFN(2, (" fallback to %d\n", an->fallback[ridx]));
}
}
int
athn_media_change(struct ifnet *ifp)
{
struct athn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return (error);
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
if (athn_rates[ridx].rate == rate)
break;
sc->fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
athn_stop(ifp, 0);
error = athn_init(ifp);
}
return (error);
}
void
athn_next_scan(void *arg)
{
struct athn_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&ic->ic_if);
splx(s);
}
int
athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = &ic->ic_if;
struct athn_softc *sc = ifp->if_softc;
uint32_t reg;
int error;
timeout_del(&sc->calib_to);
switch (nstate) {
case IEEE80211_S_INIT:
athn_set_led(sc, 0);
break;
case IEEE80211_S_SCAN:
/* Make the LED blink while scanning. */
athn_set_led(sc, !sc->led_state);
error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
if (error != 0)
return (error);
timeout_add_msec(&sc->scan_to, 200);
break;
case IEEE80211_S_AUTH:
athn_set_led(sc, 0);
error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
if (error != 0)
return (error);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
athn_set_led(sc, 1);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL);
if (error != 0)
return (error);
} else
#endif
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
error = athn_switch_chan(sc, ic->ic_ibss_chan, NULL);
if (error != 0)
return (error);
break;
}
/* Fake a join to initialize the Tx rate. */
athn_newassoc(ic, ic->ic_bss, 1);
athn_set_bss(sc, ic->ic_bss);
athn_disable_interrupts(sc);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
athn_set_hostap_timers(sc);
/* Enable software beacon alert interrupts. */
sc->imask |= AR_IMR_SWBA;
} else
#endif
{
athn_set_sta_timers(sc);
/* Enable beacon miss interrupts. */
sc->imask |= AR_IMR_BMISS;
/* Stop receiving beacons from other BSS. */
reg = AR_READ(sc, AR_RX_FILTER);
reg = (reg & ~AR_RX_FILTER_BEACON) |
AR_RX_FILTER_MYBEACON;
AR_WRITE(sc, AR_RX_FILTER, reg);
AR_WRITE_BARRIER(sc);
}
athn_enable_interrupts(sc);
if (sc->sup_calib_mask != 0) {
memset(&sc->calib, 0, sizeof(sc->calib));
sc->cur_calib_mask = sc->sup_calib_mask;
sc->ops.do_calib(sc);
}
/* XXX Start ANI. */
athn_start_noisefloor_calib(sc, 1);
timeout_add_msec(&sc->calib_to, 500);
break;
}
return (sc->sc_newstate(ic, nstate, arg));
}
void
athn_updateedca(struct ieee80211com *ic)
{
#define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
struct athn_softc *sc = ic->ic_softc;
const struct ieee80211_edca_ac_params *ac;
int aci, qid;
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
ac = &ic->ic_edca_ac[aci];
qid = athn_ac2qid[aci];
AR_WRITE(sc, AR_DLCL_IFS(qid),
SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
if (ac->ac_txoplimit != 0) {
AR_WRITE(sc, AR_DCHNTIME(qid),
SM(AR_D_CHNTIME_DUR,
IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
AR_D_CHNTIME_EN);
} else
AR_WRITE(sc, AR_DCHNTIME(qid), 0);
}
AR_WRITE_BARRIER(sc);
#undef ATHN_EXP2
}
int
athn_clock_rate(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int clockrate; /* MHz. */
/*
* AR9287 v1.3+ MAC runs at 117MHz (instead of 88/44MHz) when
* ASYNC FIFO is enabled.
*/
if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
clockrate = 117;
else if (ic->ic_bss->ni_chan != IEEE80211_CHAN_ANYC &&
IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
if (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)
clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
else
clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
} else if (ic->ic_curmode == IEEE80211_MODE_11B) {
clockrate = AR_CLOCK_RATE_CCK;
} else
clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
if (sc->curchanext != NULL)
clockrate *= 2;
return (clockrate);
}
int
athn_chan_sifs(struct ieee80211_channel *c)
{
return IEEE80211_IS_CHAN_2GHZ(c) ? IEEE80211_DUR_DS_SIFS : 16;
}
void
athn_setsifs(struct athn_softc *sc)
{
int sifs = athn_chan_sifs(sc->sc_ic.ic_bss->ni_chan);
AR_WRITE(sc, AR_D_GBL_IFS_SIFS, (sifs - 2) * athn_clock_rate(sc));
AR_WRITE_BARRIER(sc);
}
int
athn_acktimeout(struct ieee80211_channel *c, int slot)
{
int sifs = athn_chan_sifs(c);
int ackto = sifs + slot;
/* Workaround for early ACK timeouts. */
if (IEEE80211_IS_CHAN_2GHZ(c))
ackto += 64 - sifs - slot;
return ackto;
}
void
athn_setacktimeout(struct athn_softc *sc, struct ieee80211_channel *c, int slot)
{
int ackto = athn_acktimeout(c, slot);
uint32_t reg = AR_READ(sc, AR_TIME_OUT);
reg = RW(reg, AR_TIME_OUT_ACK, ackto * athn_clock_rate(sc));
AR_WRITE(sc, AR_TIME_OUT, reg);
AR_WRITE_BARRIER(sc);
}
void
athn_setctstimeout(struct athn_softc *sc, struct ieee80211_channel *c, int slot)
{
int ctsto = athn_acktimeout(c, slot);
int sifs = athn_chan_sifs(c);
uint32_t reg = AR_READ(sc, AR_TIME_OUT);
/* Workaround for early CTS timeouts. */
if (IEEE80211_IS_CHAN_2GHZ(c))
ctsto += 48 - sifs - slot;
reg = RW(reg, AR_TIME_OUT_CTS, ctsto * athn_clock_rate(sc));
AR_WRITE(sc, AR_TIME_OUT, reg);
AR_WRITE_BARRIER(sc);
}
void
athn_setclockrate(struct athn_softc *sc)
{
int clockrate = athn_clock_rate(sc);
uint32_t reg = AR_READ(sc, AR_USEC);
reg = RW(reg, AR_USEC_USEC, clockrate - 1);
AR_WRITE(sc, AR_USEC, reg);
AR_WRITE_BARRIER(sc);
}
void
athn_updateslot(struct ieee80211com *ic)
{
struct athn_softc *sc = ic->ic_softc;
int slot;
slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
AR_WRITE_BARRIER(sc);
athn_setacktimeout(sc, ic->ic_bss->ni_chan, slot);
athn_setctstimeout(sc, ic->ic_bss->ni_chan, slot);
}
void
athn_start(struct ifnet *ifp)
{
struct athn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m;
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
for (;;) {
if (SIMPLEQ_EMPTY(&sc->txbufs)) {
ifq_set_oactive(&ifp->if_snd);
break;
}
/* Send pending management frames first. */
m = mq_dequeue(&ic->ic_mgtq);
if (m != NULL) {
ni = m->m_pkthdr.ph_cookie;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
m = mq_dequeue(&ic->ic_pwrsaveq);
if (m != NULL) {
ni = m->m_pkthdr.ph_cookie;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
continue;
sendit:
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (sc->ops.tx(sc, m, ni, 0) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
athn_watchdog(struct ifnet *ifp)
{
struct athn_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
athn_stop(ifp, 1);
(void)athn_init(ifp);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
void
athn_set_multi(struct athn_softc *sc)
{
struct arpcom *ac = &sc->sc_ic.ic_ac;
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
struct ether_multistep step;
const uint8_t *addr;
uint32_t val, lo, hi;
uint8_t bit;
if (ac->ac_multirangecnt > 0)
ifp->if_flags |= IFF_ALLMULTI;
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
lo = hi = 0xffffffff;
goto done;
}
lo = hi = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
addr = enm->enm_addrlo;
/* Calculate the XOR value of all eight 6-bit words. */
val = addr[0] | addr[1] << 8 | addr[2] << 16;
bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
val = addr[3] | addr[4] << 8 | addr[5] << 16;
bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
bit &= 0x3f;
if (bit < 32)
lo |= 1 << bit;
else
hi |= 1 << (bit - 32);
ETHER_NEXT_MULTI(step, enm);
}
done:
AR_WRITE(sc, AR_MCAST_FIL0, lo);
AR_WRITE(sc, AR_MCAST_FIL1, hi);
AR_WRITE_BARRIER(sc);
}
int
athn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct athn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) &&
((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0) {
athn_set_multi(sc);
} else if (!(ifp->if_flags & IFF_RUNNING))
error = athn_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
athn_stop(ifp, 1);
}
sc->sc_if_flags = ifp->if_flags;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ifr = (struct ifreq *)data;
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &ic->ic_ac) :
ether_delmulti(ifr, &ic->ic_ac);
if (error == ENETRESET) {
athn_set_multi(sc);
error = 0;
}
break;
case SIOCS80211CHANNEL:
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
athn_switch_chan(sc, ic->ic_ibss_chan, NULL);
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
error = 0;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
athn_stop(ifp, 0);
error = athn_init(ifp);
}
}
splx(s);
return (error);
}
int
athn_init(struct ifnet *ifp)
{
struct athn_softc *sc = ifp->if_softc;
struct athn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c, *extc;
int i, error;
c = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
extc = NULL;
/* In case a new MAC address has been configured. */
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
/* For CardBus, power on the socket. */
if (sc->sc_enable != NULL) {
if ((error = sc->sc_enable(sc)) != 0) {
printf("%s: could not enable device\n",
sc->sc_dev.dv_xname);
goto fail;
}
if ((error = athn_reset_power_on(sc)) != 0) {
printf("%s: could not power on device\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
if (!(sc->flags & ATHN_FLAG_PCIE))
athn_config_nonpcie(sc);
else
athn_config_pcie(sc);
ops->enable_antenna_diversity(sc);
#ifdef ATHN_BT_COEXISTENCE
/* Configure bluetooth coexistence for combo chips. */
if (sc->flags & ATHN_FLAG_BTCOEX)
athn_btcoex_init(sc);
#endif
/* Configure LED. */
athn_led_init(sc);
/* Configure hardware radio switch. */
if (sc->flags & ATHN_FLAG_RFSILENT)
ops->rfsilent_init(sc);
if ((error = athn_hw_reset(sc, c, extc, 1)) != 0) {
printf("%s: unable to reset hardware; reset status %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
athn_config_ht(sc);
/* Enable Rx. */
athn_rx_start(sc);
/* Reset HW key cache entries. */
for (i = 0; i < sc->kc_entries; i++)
athn_reset_key(sc, i);
/* Enable interrupts. */
athn_enable_interrupts(sc);
#ifdef ATHN_BT_COEXISTENCE
/* Enable bluetooth coexistence for combo chips. */
if (sc->flags & ATHN_FLAG_BTCOEX)
athn_btcoex_enable(sc);
#endif
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
#ifdef notyet
if (ic->ic_flags & IEEE80211_F_WEPON) {
/* Configure WEP keys. */
for (i = 0; i < IEEE80211_WEP_NKID; i++)
athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
}
#endif
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return (0);
fail:
athn_stop(ifp, 1);
return (error);
}
void
athn_stop(struct ifnet *ifp, int disable)
{
struct athn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int qid, i;
ifp->if_timer = sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
timeout_del(&sc->scan_to);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
#ifdef ATHN_BT_COEXISTENCE
/* Disable bluetooth coexistence for combo chips. */
if (sc->flags & ATHN_FLAG_BTCOEX)
athn_btcoex_disable(sc);
#endif
/* Disable interrupts. */
athn_disable_interrupts(sc);
/* Acknowledge interrupts (avoids interrupt storms). */
AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
athn_stop_tx_dma(sc, qid);
/* XXX call athn_hw_reset if Tx still pending? */
for (qid = 0; qid < ATHN_QID_COUNT; qid++)
athn_tx_reclaim(sc, qid);
/* Stop Rx. */
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
AR_WRITE(sc, AR_FILT_OFDM, 0);
AR_WRITE(sc, AR_FILT_CCK, 0);
AR_WRITE_BARRIER(sc);
athn_set_rxfilter(sc, 0);
athn_stop_rx_dma(sc);
/* Reset HW key cache entries. */
for (i = 0; i < sc->kc_entries; i++)
athn_reset_key(sc, i);
athn_reset(sc, 0);
athn_init_pll(sc, NULL);
athn_set_power_awake(sc);
athn_reset(sc, 1);
athn_init_pll(sc, NULL);
athn_set_power_sleep(sc);
/* For CardBus, power down the socket. */
if (disable && sc->sc_disable != NULL)
sc->sc_disable(sc);
}
void
athn_suspend(struct athn_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
if (ifp->if_flags & IFF_RUNNING)
athn_stop(ifp, 1);
}
void
athn_wakeup(struct athn_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
if (ifp->if_flags & IFF_UP)
athn_init(ifp);
}