src/sys/dev/ic/ami.c

2490 lines
59 KiB
C

/* $OpenBSD: ami.c,v 1.262 2022/04/16 19:19:58 naddy Exp $ */
/*
* Copyright (c) 2001 Michael Shalayeff
* Copyright (c) 2005 Marco Peereboom
* Copyright (c) 2006 David Gwynne
* All rights reserved.
*
* The SCSI emulation layer is derived from gdt(4) driver,
* Copyright (c) 1999, 2000 Niklas Hallqvist. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* American Megatrends Inc. MegaRAID controllers driver
*
* This driver was made because these ppl and organizations
* donated hardware and provided documentation:
*
* - 428 model card
* John Kerbawy, Stephan Matis, Mark Stovall;
*
* - 467 and 475 model cards, docs
* American Megatrends Inc.;
*
* - uninterruptible electric power for cvs
* Theo de Raadt.
*/
#include "bio.h"
/* #define AMI_DEBUG */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/rwlock.h>
#include <sys/pool.h>
#include <sys/sensors.h>
#include <machine/bus.h>
#include <scsi/scsi_all.h>
#include <scsi/scsi_disk.h>
#include <scsi/scsiconf.h>
#include <dev/biovar.h>
#include <dev/ic/amireg.h>
#include <dev/ic/amivar.h>
#ifdef AMI_DEBUG
#define AMI_DPRINTF(m,a) do { if (ami_debug & (m)) printf a; } while (0)
#define AMI_D_CMD 0x0001
#define AMI_D_INTR 0x0002
#define AMI_D_MISC 0x0004
#define AMI_D_DMA 0x0008
#define AMI_D_IOCTL 0x0010
int ami_debug = 0
/* | AMI_D_CMD */
/* | AMI_D_INTR */
/* | AMI_D_MISC */
/* | AMI_D_DMA */
/* | AMI_D_IOCTL */
;
#else
#define AMI_DPRINTF(m,a) /* m, a */
#endif
struct cfdriver ami_cd = {
NULL, "ami", DV_DULL
};
void ami_scsi_cmd(struct scsi_xfer *);
int ami_scsi_ioctl(struct scsi_link *, u_long, caddr_t, int);
const struct scsi_adapter ami_switch = {
ami_scsi_cmd, NULL, NULL, NULL, ami_scsi_ioctl
};
void ami_scsi_raw_cmd(struct scsi_xfer *);
const struct scsi_adapter ami_raw_switch = {
ami_scsi_raw_cmd, NULL, NULL, NULL, NULL
};
void * ami_get_ccb(void *);
void ami_put_ccb(void *, void *);
u_int32_t ami_read(struct ami_softc *, bus_size_t);
void ami_write(struct ami_softc *, bus_size_t, u_int32_t);
void ami_copyhds(struct ami_softc *, const u_int32_t *,
const u_int8_t *, const u_int8_t *);
struct ami_mem *ami_allocmem(struct ami_softc *, size_t);
void ami_freemem(struct ami_softc *, struct ami_mem *);
int ami_alloc_ccbs(struct ami_softc *, int);
int ami_poll(struct ami_softc *, struct ami_ccb *);
void ami_start(struct ami_softc *, struct ami_ccb *);
void ami_complete(struct ami_softc *, struct ami_ccb *, int);
void ami_runqueue_tick(void *);
void ami_runqueue(struct ami_softc *);
void ami_start_xs(struct ami_softc *sc, struct ami_ccb *,
struct scsi_xfer *);
void ami_done_xs(struct ami_softc *, struct ami_ccb *);
void ami_done_pt(struct ami_softc *, struct ami_ccb *);
void ami_done_flush(struct ami_softc *, struct ami_ccb *);
void ami_done_sysflush(struct ami_softc *, struct ami_ccb *);
void ami_done_dummy(struct ami_softc *, struct ami_ccb *);
void ami_done_ioctl(struct ami_softc *, struct ami_ccb *);
void ami_done_init(struct ami_softc *, struct ami_ccb *);
int ami_load_ptmem(struct ami_softc*, struct ami_ccb *,
void *, size_t, int, int);
#if NBIO > 0
int ami_mgmt(struct ami_softc *, u_int8_t, u_int8_t, u_int8_t,
u_int8_t, size_t, void *);
int ami_drv_pt(struct ami_softc *, u_int8_t, u_int8_t, u_int8_t *,
int, int, void *);
int ami_drv_readcap(struct ami_softc *, u_int8_t, u_int8_t,
daddr_t *);
int ami_drv_inq(struct ami_softc *, u_int8_t, u_int8_t, u_int8_t,
void *);
int ami_ioctl(struct device *, u_long, caddr_t);
int ami_ioctl_inq(struct ami_softc *, struct bioc_inq *);
int ami_vol(struct ami_softc *, struct bioc_vol *,
struct ami_big_diskarray *);
int ami_disk(struct ami_softc *, struct bioc_disk *,
struct ami_big_diskarray *);
int ami_ioctl_vol(struct ami_softc *, struct bioc_vol *);
int ami_ioctl_disk(struct ami_softc *, struct bioc_disk *);
int ami_ioctl_alarm(struct ami_softc *, struct bioc_alarm *);
int ami_ioctl_setstate(struct ami_softc *, struct bioc_setstate *);
#ifndef SMALL_KERNEL
int ami_create_sensors(struct ami_softc *);
void ami_refresh_sensors(void *);
#endif
#endif /* NBIO > 0 */
#define DEVNAME(_s) ((_s)->sc_dev.dv_xname)
void *
ami_get_ccb(void *xsc)
{
struct ami_softc *sc = xsc;
struct ami_ccb *ccb;
mtx_enter(&sc->sc_ccb_freeq_mtx);
ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
if (ccb != NULL) {
TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
ccb->ccb_state = AMI_CCB_READY;
}
mtx_leave(&sc->sc_ccb_freeq_mtx);
return (ccb);
}
void
ami_put_ccb(void *xsc, void *xccb)
{
struct ami_softc *sc = xsc;
struct ami_ccb *ccb = xccb;
ccb->ccb_state = AMI_CCB_FREE;
ccb->ccb_xs = NULL;
ccb->ccb_flags = 0;
ccb->ccb_done = NULL;
mtx_enter(&sc->sc_ccb_freeq_mtx);
TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
mtx_leave(&sc->sc_ccb_freeq_mtx);
}
u_int32_t
ami_read(struct ami_softc *sc, bus_size_t r)
{
u_int32_t rv;
bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
BUS_SPACE_BARRIER_READ);
rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
AMI_DPRINTF(AMI_D_CMD, ("ari 0x%lx 0x08%x ", r, rv));
return (rv);
}
void
ami_write(struct ami_softc *sc, bus_size_t r, u_int32_t v)
{
AMI_DPRINTF(AMI_D_CMD, ("awo 0x%lx 0x%08x ", r, v));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
BUS_SPACE_BARRIER_WRITE);
}
struct ami_mem *
ami_allocmem(struct ami_softc *sc, size_t size)
{
struct ami_mem *am;
int nsegs;
am = malloc(sizeof(struct ami_mem), M_DEVBUF, M_NOWAIT|M_ZERO);
if (am == NULL)
return (NULL);
am->am_size = size;
if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &am->am_map) != 0)
goto amfree;
if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &am->am_seg, 1,
&nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0)
goto destroy;
if (bus_dmamem_map(sc->sc_dmat, &am->am_seg, nsegs, size, &am->am_kva,
BUS_DMA_NOWAIT) != 0)
goto free;
if (bus_dmamap_load(sc->sc_dmat, am->am_map, am->am_kva, size, NULL,
BUS_DMA_NOWAIT) != 0)
goto unmap;
return (am);
unmap:
bus_dmamem_unmap(sc->sc_dmat, am->am_kva, size);
free:
bus_dmamem_free(sc->sc_dmat, &am->am_seg, 1);
destroy:
bus_dmamap_destroy(sc->sc_dmat, am->am_map);
amfree:
free(am, M_DEVBUF, sizeof *am);
return (NULL);
}
void
ami_freemem(struct ami_softc *sc, struct ami_mem *am)
{
bus_dmamap_unload(sc->sc_dmat, am->am_map);
bus_dmamem_unmap(sc->sc_dmat, am->am_kva, am->am_size);
bus_dmamem_free(sc->sc_dmat, &am->am_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, am->am_map);
free(am, M_DEVBUF, sizeof *am);
}
void
ami_copyhds(struct ami_softc *sc, const u_int32_t *sizes,
const u_int8_t *props, const u_int8_t *stats)
{
int i;
for (i = 0; i < sc->sc_nunits; i++) {
sc->sc_hdr[i].hd_present = 1;
sc->sc_hdr[i].hd_is_logdrv = 1;
sc->sc_hdr[i].hd_size = letoh32(sizes[i]);
sc->sc_hdr[i].hd_prop = props[i];
sc->sc_hdr[i].hd_stat = stats[i];
}
}
int
ami_alloc_ccbs(struct ami_softc *sc, int nccbs)
{
struct ami_ccb *ccb;
struct ami_ccbmem *ccbmem, *mem;
int i, error;
sc->sc_ccbs = mallocarray(nccbs, sizeof(struct ami_ccb),
M_DEVBUF, M_NOWAIT);
if (sc->sc_ccbs == NULL) {
printf(": unable to allocate ccbs\n");
return (1);
}
sc->sc_ccbmem_am = ami_allocmem(sc, sizeof(struct ami_ccbmem) * nccbs);
if (sc->sc_ccbmem_am == NULL) {
printf(": unable to allocate ccb dmamem\n");
goto free_ccbs;
}
ccbmem = AMIMEM_KVA(sc->sc_ccbmem_am);
TAILQ_INIT(&sc->sc_ccb_freeq);
mtx_init(&sc->sc_ccb_freeq_mtx, IPL_BIO);
TAILQ_INIT(&sc->sc_ccb_preq);
TAILQ_INIT(&sc->sc_ccb_runq);
timeout_set(&sc->sc_run_tmo, ami_runqueue_tick, sc);
scsi_iopool_init(&sc->sc_iopool, sc, ami_get_ccb, ami_put_ccb);
for (i = 0; i < nccbs; i++) {
ccb = &sc->sc_ccbs[i];
mem = &ccbmem[i];
error = bus_dmamap_create(sc->sc_dmat, AMI_MAXFER,
AMI_MAXOFFSETS, AMI_MAXFER, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
if (error) {
printf(": cannot create ccb dmamap (%d)\n", error);
goto free_list;
}
ccb->ccb_sc = sc;
ccb->ccb_cmd.acc_id = i + 1;
ccb->ccb_offset = sizeof(struct ami_ccbmem) * i;
ccb->ccb_pt = &mem->cd_pt;
ccb->ccb_ptpa = htole32(AMIMEM_DVA(sc->sc_ccbmem_am) +
ccb->ccb_offset);
ccb->ccb_sglist = mem->cd_sg;
ccb->ccb_sglistpa = htole32(AMIMEM_DVA(sc->sc_ccbmem_am) +
ccb->ccb_offset + sizeof(struct ami_passthrough));
/* override last command for management */
if (i == nccbs - 1) {
ccb->ccb_cmd.acc_id = 0xfe;
sc->sc_mgmtccb = ccb;
} else {
ami_put_ccb(sc, ccb);
}
}
return (0);
free_list:
while ((ccb = ami_get_ccb(sc)) != NULL)
bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
ami_freemem(sc, sc->sc_ccbmem_am);
free_ccbs:
free(sc->sc_ccbs, M_DEVBUF, 0);
return (1);
}
int
ami_attach(struct ami_softc *sc)
{
struct scsibus_attach_args saa;
struct ami_rawsoftc *rsc;
struct ami_ccb iccb;
struct ami_iocmd *cmd;
struct ami_mem *am;
struct ami_inquiry *inq;
struct ami_fc_einquiry *einq;
struct ami_fc_prodinfo *pi;
const char *p;
paddr_t pa;
mtx_init(&sc->sc_cmd_mtx, IPL_BIO);
am = ami_allocmem(sc, NBPG);
if (am == NULL) {
printf(": unable to allocate init data\n");
return (1);
}
pa = htole32(AMIMEM_DVA(am));
sc->sc_mbox_am = ami_allocmem(sc, sizeof(struct ami_iocmd));
if (sc->sc_mbox_am == NULL) {
printf(": unable to allocate mbox\n");
goto free_idata;
}
sc->sc_mbox = (volatile struct ami_iocmd *)AMIMEM_KVA(sc->sc_mbox_am);
sc->sc_mbox_pa = htole32(AMIMEM_DVA(sc->sc_mbox_am));
AMI_DPRINTF(AMI_D_CMD, ("mbox=%p ", sc->sc_mbox));
AMI_DPRINTF(AMI_D_CMD, ("mbox_pa=0x%llx ", (long long)sc->sc_mbox_pa));
/* create a spartan ccb for use with ami_poll */
bzero(&iccb, sizeof(iccb));
iccb.ccb_sc = sc;
iccb.ccb_done = ami_done_init;
cmd = &iccb.ccb_cmd;
(sc->sc_init)(sc);
/* try FC inquiry first */
cmd->acc_cmd = AMI_FCOP;
cmd->acc_io.aio_channel = AMI_FC_EINQ3;
cmd->acc_io.aio_param = AMI_FC_EINQ3_SOLICITED_FULL;
cmd->acc_io.aio_data = pa;
if (ami_poll(sc, &iccb) == 0) {
einq = AMIMEM_KVA(am);
pi = AMIMEM_KVA(am);
sc->sc_nunits = einq->ain_nlogdrv;
sc->sc_drvinscnt = einq->ain_drvinscnt + 1; /* force scan */
ami_copyhds(sc, einq->ain_ldsize, einq->ain_ldprop,
einq->ain_ldstat);
cmd->acc_cmd = AMI_FCOP;
cmd->acc_io.aio_channel = AMI_FC_PRODINF;
cmd->acc_io.aio_param = 0;
cmd->acc_io.aio_data = pa;
if (ami_poll(sc, &iccb) == 0) {
sc->sc_maxunits = AMI_BIG_MAX_LDRIVES;
bcopy (pi->api_fwver, sc->sc_fwver, 16);
sc->sc_fwver[15] = '\0';
bcopy (pi->api_biosver, sc->sc_biosver, 16);
sc->sc_biosver[15] = '\0';
sc->sc_channels = pi->api_channels;
sc->sc_targets = pi->api_fcloops;
sc->sc_memory = letoh16(pi->api_ramsize);
sc->sc_maxcmds = pi->api_maxcmd;
p = "FC loop";
}
}
if (sc->sc_maxunits == 0) {
inq = AMIMEM_KVA(am);
cmd->acc_cmd = AMI_EINQUIRY;
cmd->acc_io.aio_channel = 0;
cmd->acc_io.aio_param = 0;
cmd->acc_io.aio_data = pa;
if (ami_poll(sc, &iccb) != 0) {
cmd->acc_cmd = AMI_INQUIRY;
cmd->acc_io.aio_channel = 0;
cmd->acc_io.aio_param = 0;
cmd->acc_io.aio_data = pa;
if (ami_poll(sc, &iccb) != 0) {
printf(": cannot do inquiry\n");
goto free_mbox;
}
}
sc->sc_maxunits = AMI_MAX_LDRIVES;
sc->sc_nunits = inq->ain_nlogdrv;
ami_copyhds(sc, inq->ain_ldsize, inq->ain_ldprop,
inq->ain_ldstat);
bcopy (inq->ain_fwver, sc->sc_fwver, 4);
sc->sc_fwver[4] = '\0';
bcopy (inq->ain_biosver, sc->sc_biosver, 4);
sc->sc_biosver[4] = '\0';
sc->sc_channels = inq->ain_channels;
sc->sc_targets = inq->ain_targets;
sc->sc_memory = inq->ain_ramsize;
sc->sc_maxcmds = inq->ain_maxcmd;
sc->sc_drvinscnt = inq->ain_drvinscnt + 1; /* force scan */
p = "target";
}
if (sc->sc_flags & AMI_BROKEN) {
sc->sc_maxcmds = 1;
sc->sc_maxunits = 1;
} else {
sc->sc_maxunits = AMI_BIG_MAX_LDRIVES;
if (sc->sc_maxcmds > AMI_MAXCMDS)
sc->sc_maxcmds = AMI_MAXCMDS;
/*
* Reserve ccb's for ioctl's and raw commands to
* processors/enclosures by lowering the number of
* openings available for logical units.
*/
sc->sc_maxcmds -= AMI_MAXIOCTLCMDS + AMI_MAXPROCS *
AMI_MAXRAWCMDS * sc->sc_channels;
}
if (ami_alloc_ccbs(sc, AMI_MAXCMDS + 1) != 0) {
/* error already printed */
goto free_mbox;
}
ami_freemem(sc, am);
/* hack for hp netraid version encoding */
if ('A' <= sc->sc_fwver[2] && sc->sc_fwver[2] <= 'Z' &&
sc->sc_fwver[1] < ' ' && sc->sc_fwver[0] < ' ' &&
'A' <= sc->sc_biosver[2] && sc->sc_biosver[2] <= 'Z' &&
sc->sc_biosver[1] < ' ' && sc->sc_biosver[0] < ' ') {
snprintf(sc->sc_fwver, sizeof sc->sc_fwver, "%c.%02d.%02d",
sc->sc_fwver[2], sc->sc_fwver[1], sc->sc_fwver[0]);
snprintf(sc->sc_biosver, sizeof sc->sc_biosver, "%c.%02d.%02d",
sc->sc_biosver[2], sc->sc_biosver[1], sc->sc_biosver[0]);
}
/* TODO: fetch & print cache strategy */
/* TODO: fetch & print scsi and raid info */
#ifdef AMI_DEBUG
printf(", FW %s, BIOS v%s, %dMB RAM\n"
"%s: %d channels, %d %ss, %d logical drives, "
"max commands %d, quirks: %04x\n",
sc->sc_fwver, sc->sc_biosver, sc->sc_memory, DEVNAME(sc),
sc->sc_channels, sc->sc_targets, p, sc->sc_nunits,
sc->sc_maxcmds, sc->sc_flags);
#else
printf(", FW %s, BIOS v%s, %dMB RAM\n"
"%s: %d channels, %d %ss, %d logical drives\n",
sc->sc_fwver, sc->sc_biosver, sc->sc_memory, DEVNAME(sc),
sc->sc_channels, sc->sc_targets, p, sc->sc_nunits);
#endif /* AMI_DEBUG */
if (sc->sc_flags & AMI_BROKEN && sc->sc_nunits > 1)
printf("%s: firmware buggy, limiting access to first logical "
"disk\n", DEVNAME(sc));
/* lock around ioctl requests */
rw_init(&sc->sc_lock, NULL);
saa.saa_adapter_softc = sc;
saa.saa_adapter = &ami_switch;
saa.saa_adapter_target = SDEV_NO_ADAPTER_TARGET;
saa.saa_adapter_buswidth = sc->sc_maxunits;
saa.saa_luns = 8;
saa.saa_openings = sc->sc_maxcmds;
saa.saa_pool = &sc->sc_iopool;
saa.saa_quirks = saa.saa_flags = 0;
saa.saa_wwpn = saa.saa_wwnn = 0;
sc->sc_scsibus = (struct scsibus_softc *)config_found(&sc->sc_dev, &saa,
scsiprint);
/* can't do bioctls, sensors, or pass-through on broken devices */
if (sc->sc_flags & AMI_BROKEN)
return (0);
#if NBIO > 0
if (bio_register(&sc->sc_dev, ami_ioctl) != 0)
printf("%s: controller registration failed\n", DEVNAME(sc));
else
sc->sc_ioctl = ami_ioctl;
#ifndef SMALL_KERNEL
if (ami_create_sensors(sc) != 0)
printf("%s: unable to create sensors\n", DEVNAME(sc));
#endif
#endif
rsc = mallocarray(sc->sc_channels, sizeof(struct ami_rawsoftc),
M_DEVBUF, M_NOWAIT|M_ZERO);
if (!rsc) {
printf("%s: no memory for raw interface\n", DEVNAME(sc));
return (0);
}
for (sc->sc_rawsoftcs = rsc;
rsc < &sc->sc_rawsoftcs[sc->sc_channels]; rsc++) {
struct scsibus_softc *ptbus;
struct scsi_link *proclink;
struct device *procdev;
rsc->sc_softc = sc;
rsc->sc_channel = rsc - sc->sc_rawsoftcs;
rsc->sc_proctarget = -1;
/* TODO fetch adapter_target from the controller */
saa.saa_adapter_softc = rsc;
saa.saa_adapter = &ami_raw_switch;
saa.saa_adapter_target = SDEV_NO_ADAPTER_TARGET;
saa.saa_adapter_buswidth = 16;
saa.saa_luns = 8;
saa.saa_openings = sc->sc_maxcmds;
saa.saa_pool = &sc->sc_iopool;
saa.saa_quirks = saa.saa_flags = 0;
saa.saa_wwpn = saa.saa_wwnn = 0;
ptbus = (struct scsibus_softc *)config_found(&sc->sc_dev,
&saa, scsiprint);
if (ptbus == NULL || rsc->sc_proctarget == -1)
continue;
proclink = scsi_get_link(ptbus, rsc->sc_proctarget, 0);
if (proclink == NULL)
continue;
procdev = proclink->device_softc;
strlcpy(rsc->sc_procdev, procdev->dv_xname,
sizeof(rsc->sc_procdev));
}
return (0);
free_mbox:
ami_freemem(sc, sc->sc_mbox_am);
free_idata:
ami_freemem(sc, am);
return (1);
}
int
ami_quartz_init(struct ami_softc *sc)
{
ami_write(sc, AMI_QIDB, 0);
return (0);
}
int
ami_quartz_exec(struct ami_softc *sc, struct ami_iocmd *cmd)
{
if (sc->sc_mbox->acc_busy) {
AMI_DPRINTF(AMI_D_CMD, ("mbox_busy "));
return (EBUSY);
}
memcpy((struct ami_iocmd *)sc->sc_mbox, cmd, 16);
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0,
sizeof(struct ami_iocmd), BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->sc_mbox->acc_busy = 1;
sc->sc_mbox->acc_poll = 0;
sc->sc_mbox->acc_ack = 0;
ami_write(sc, AMI_QIDB, sc->sc_mbox_pa | htole32(AMI_QIDB_EXEC));
return (0);
}
int
ami_quartz_done(struct ami_softc *sc, struct ami_iocmd *mbox)
{
u_int32_t i, n;
u_int8_t nstat, status;
u_int8_t completed[AMI_MAXSTATACK];
if (ami_read(sc, AMI_QODB) != AMI_QODB_READY)
return (0); /* nothing to do */
ami_write(sc, AMI_QODB, AMI_QODB_READY);
/*
* The following sequence is not supposed to have a timeout clause
* since the firmware has a "guarantee" that all commands will
* complete. The choice is either panic or hoping for a miracle
* and that the IOs will complete much later.
*/
i = 0;
while ((nstat = sc->sc_mbox->acc_nstat) == 0xff) {
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0,
sizeof(struct ami_iocmd), BUS_DMASYNC_POSTREAD);
delay(1);
if (i++ > 1000000)
return (0); /* nothing to do */
}
sc->sc_mbox->acc_nstat = 0xff;
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0,
sizeof(struct ami_iocmd), BUS_DMASYNC_POSTWRITE);
/* wait until fw wrote out all completions */
i = 0;
AMI_DPRINTF(AMI_D_CMD, ("aqd %d ", nstat));
for (n = 0; n < nstat; n++) {
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0,
sizeof(struct ami_iocmd), BUS_DMASYNC_PREREAD);
while ((completed[n] = sc->sc_mbox->acc_cmplidl[n]) == 0xff) {
delay(1);
if (i++ > 1000000)
return (0); /* nothing to do */
}
sc->sc_mbox->acc_cmplidl[n] = 0xff;
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0,
sizeof(struct ami_iocmd), BUS_DMASYNC_POSTWRITE);
}
/* this should never happen, someone screwed up the completion status */
if ((status = sc->sc_mbox->acc_status) == 0xff)
panic("%s: status 0xff from the firmware", DEVNAME(sc));
sc->sc_mbox->acc_status = 0xff;
/* copy mailbox to temporary one and fixup other changed values */
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0, 16,
BUS_DMASYNC_POSTWRITE);
memcpy(mbox, (struct ami_iocmd *)sc->sc_mbox, 16);
mbox->acc_nstat = nstat;
mbox->acc_status = status;
for (n = 0; n < nstat; n++)
mbox->acc_cmplidl[n] = completed[n];
/* ack interrupt */
ami_write(sc, AMI_QIDB, AMI_QIDB_ACK);
return (1); /* ready to complete all IOs in acc_cmplidl */
}
int
ami_quartz_poll(struct ami_softc *sc, struct ami_iocmd *cmd)
{
/* struct scsi_xfer *xs = ccb->ccb_xs; */
u_int32_t i;
u_int8_t status;
splassert(IPL_BIO);
if (sc->sc_dis_poll)
return (-1); /* fail */
i = 0;
while (sc->sc_mbox->acc_busy && (i < AMI_MAX_BUSYWAIT)) {
delay(1);
i++;
}
if (sc->sc_mbox->acc_busy) {
AMI_DPRINTF(AMI_D_CMD, ("mbox_busy "));
return (-1);
}
memcpy((struct ami_iocmd *)sc->sc_mbox, cmd, 16);
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0, 16,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->sc_mbox->acc_id = 0xfe;
sc->sc_mbox->acc_busy = 1;
sc->sc_mbox->acc_poll = 0;
sc->sc_mbox->acc_ack = 0;
sc->sc_mbox->acc_nstat = 0xff;
sc->sc_mbox->acc_status = 0xff;
/* send command to firmware */
ami_write(sc, AMI_QIDB, sc->sc_mbox_pa | htole32(AMI_QIDB_EXEC));
i = 0;
while ((sc->sc_mbox->acc_nstat == 0xff) && (i < AMI_MAX_POLLWAIT)) {
delay(1);
i++;
}
if (i >= AMI_MAX_POLLWAIT) {
printf("%s: command not accepted, polling disabled\n",
DEVNAME(sc));
sc->sc_dis_poll = 1;
return (-1);
}
/* poll firmware */
i = 0;
while ((sc->sc_mbox->acc_poll != 0x77) && (i < AMI_MAX_POLLWAIT)) {
delay(1);
i++;
}
if (i >= AMI_MAX_POLLWAIT) {
printf("%s: firmware didn't reply, polling disabled\n",
DEVNAME(sc));
sc->sc_dis_poll = 1;
return (-1);
}
/* ack */
ami_write(sc, AMI_QIDB, sc->sc_mbox_pa | htole32(AMI_QIDB_ACK));
i = 0;
while((ami_read(sc, AMI_QIDB) & AMI_QIDB_ACK) &&
(i < AMI_MAX_POLLWAIT)) {
delay(1);
i++;
}
if (i >= AMI_MAX_POLLWAIT) {
printf("%s: firmware didn't ack the ack, polling disabled\n",
DEVNAME(sc));
sc->sc_dis_poll = 1;
return (-1);
}
sc->sc_mbox->acc_poll = 0;
sc->sc_mbox->acc_ack = 0x77;
status = sc->sc_mbox->acc_status;
sc->sc_mbox->acc_nstat = 0xff;
sc->sc_mbox->acc_status = 0xff;
for (i = 0; i < AMI_MAXSTATACK; i++)
sc->sc_mbox->acc_cmplidl[i] = 0xff;
return (status);
}
int
ami_schwartz_init(struct ami_softc *sc)
{
u_int32_t a = (u_int32_t)sc->sc_mbox_pa;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, AMI_SMBADDR, a);
/* XXX 40bit address ??? */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_SMBENA, 0);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_SCMD, AMI_SCMD_ACK);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_SIEM, AMI_SEIM_ENA |
bus_space_read_1(sc->sc_iot, sc->sc_ioh, AMI_SIEM));
return (0);
}
int
ami_schwartz_exec(struct ami_softc *sc, struct ami_iocmd *cmd)
{
if (bus_space_read_1(sc->sc_iot, sc->sc_ioh, AMI_SMBSTAT) &
AMI_SMBST_BUSY) {
AMI_DPRINTF(AMI_D_CMD, ("mbox_busy "));
return (EBUSY);
}
memcpy((struct ami_iocmd *)sc->sc_mbox, cmd, 16);
sc->sc_mbox->acc_busy = 1;
sc->sc_mbox->acc_poll = 0;
sc->sc_mbox->acc_ack = 0;
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_SCMD, AMI_SCMD_EXEC);
return (0);
}
int
ami_schwartz_done(struct ami_softc *sc, struct ami_iocmd *mbox)
{
u_int8_t stat;
#if 0
/* do not scramble the busy mailbox */
if (sc->sc_mbox->acc_busy)
return (0);
#endif
if (bus_space_read_1(sc->sc_iot, sc->sc_ioh, AMI_SMBSTAT) &
AMI_SMBST_BUSY)
return (0);
stat = bus_space_read_1(sc->sc_iot, sc->sc_ioh, AMI_ISTAT);
if (stat & AMI_ISTAT_PEND) {
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_ISTAT, stat);
*mbox = *sc->sc_mbox;
AMI_DPRINTF(AMI_D_CMD, ("asd %d ", mbox->acc_nstat));
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_SCMD,
AMI_SCMD_ACK);
return (1);
}
return (0);
}
int
ami_schwartz_poll(struct ami_softc *sc, struct ami_iocmd *mbox)
{
u_int8_t status;
u_int32_t i;
int rv;
splassert(IPL_BIO);
if (sc->sc_dis_poll)
return (-1); /* fail */
for (i = 0; i < AMI_MAX_POLLWAIT; i++) {
if (!(bus_space_read_1(sc->sc_iot, sc->sc_ioh, AMI_SMBSTAT) &
AMI_SMBST_BUSY))
break;
delay(1);
}
if (i >= AMI_MAX_POLLWAIT) {
AMI_DPRINTF(AMI_D_CMD, ("mbox_busy "));
return (-1);
}
memcpy((struct ami_iocmd *)sc->sc_mbox, mbox, 16);
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0, 16,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->sc_mbox->acc_busy = 1;
sc->sc_mbox->acc_poll = 0;
sc->sc_mbox->acc_ack = 0;
/* send command to firmware */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_SCMD, AMI_SCMD_EXEC);
/* wait until no longer busy */
for (i = 0; i < AMI_MAX_POLLWAIT; i++) {
if (!(bus_space_read_1(sc->sc_iot, sc->sc_ioh, AMI_SMBSTAT) &
AMI_SMBST_BUSY))
break;
delay(1);
}
if (i >= AMI_MAX_POLLWAIT) {
printf("%s: command not accepted, polling disabled\n",
DEVNAME(sc));
sc->sc_dis_poll = 1;
return (-1);
}
/* wait for interrupt bit */
for (i = 0; i < AMI_MAX_POLLWAIT; i++) {
status = bus_space_read_1(sc->sc_iot, sc->sc_ioh, AMI_ISTAT);
if (status & AMI_ISTAT_PEND)
break;
delay(1);
}
if (i >= AMI_MAX_POLLWAIT) {
printf("%s: interrupt didn't arrive, polling disabled\n",
DEVNAME(sc));
sc->sc_dis_poll = 1;
return (-1);
}
/* write ststus back to firmware */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_ISTAT, status);
/* copy mailbox and status back */
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_mbox_am), 0,
sizeof(struct ami_iocmd), BUS_DMASYNC_PREREAD);
*mbox = *sc->sc_mbox;
rv = sc->sc_mbox->acc_status;
/* ack interrupt */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, AMI_SCMD, AMI_SCMD_ACK);
return (rv);
}
void
ami_start_xs(struct ami_softc *sc, struct ami_ccb *ccb, struct scsi_xfer *xs)
{
if (xs->flags & SCSI_POLL)
ami_complete(sc, ccb, xs->timeout);
else
ami_start(sc, ccb);
}
void
ami_start(struct ami_softc *sc, struct ami_ccb *ccb)
{
mtx_enter(&sc->sc_cmd_mtx);
ccb->ccb_state = AMI_CCB_PREQUEUED;
TAILQ_INSERT_TAIL(&sc->sc_ccb_preq, ccb, ccb_link);
mtx_leave(&sc->sc_cmd_mtx);
ami_runqueue(sc);
}
void
ami_runqueue_tick(void *arg)
{
ami_runqueue(arg);
}
void
ami_runqueue(struct ami_softc *sc)
{
struct ami_ccb *ccb;
int add = 0;
mtx_enter(&sc->sc_cmd_mtx);
if (!sc->sc_drainio) {
while ((ccb = TAILQ_FIRST(&sc->sc_ccb_preq)) != NULL) {
if (sc->sc_exec(sc, &ccb->ccb_cmd) != 0) {
add = 1;
break;
}
TAILQ_REMOVE(&sc->sc_ccb_preq, ccb, ccb_link);
ccb->ccb_state = AMI_CCB_QUEUED;
TAILQ_INSERT_TAIL(&sc->sc_ccb_runq, ccb, ccb_link);
}
}
mtx_leave(&sc->sc_cmd_mtx);
if (add)
timeout_add(&sc->sc_run_tmo, 1);
}
int
ami_poll(struct ami_softc *sc, struct ami_ccb *ccb)
{
int error;
mtx_enter(&sc->sc_cmd_mtx);
error = sc->sc_poll(sc, &ccb->ccb_cmd);
if (error == -1)
ccb->ccb_flags |= AMI_CCB_F_ERR;
mtx_leave(&sc->sc_cmd_mtx);
ccb->ccb_done(sc, ccb);
return (error);
}
void
ami_complete(struct ami_softc *sc, struct ami_ccb *ccb, int timeout)
{
void (*done)(struct ami_softc *, struct ami_ccb *);
int ready;
int i = 0;
int s;
done = ccb->ccb_done;
ccb->ccb_done = ami_done_dummy;
/*
* since exec will return if the mbox is busy we have to busy wait
* ourselves. once its in, jam it into the runq.
*/
mtx_enter(&sc->sc_cmd_mtx);
while (i < AMI_MAX_BUSYWAIT) {
if (sc->sc_exec(sc, &ccb->ccb_cmd) == 0) {
ccb->ccb_state = AMI_CCB_QUEUED;
TAILQ_INSERT_TAIL(&sc->sc_ccb_runq, ccb, ccb_link);
break;
}
DELAY(1000);
i++;
}
ready = (ccb->ccb_state == AMI_CCB_QUEUED);
mtx_leave(&sc->sc_cmd_mtx);
if (!ready) {
ccb->ccb_flags |= AMI_CCB_F_ERR;
ccb->ccb_state = AMI_CCB_READY;
goto done;
}
/*
* Override timeout for PERC3. The first command triggers a chip
* reset on the QL12160 chip which causes the firmware to reload.
* 30000 is slightly less than double of how long it takes for the
* firmware to be up again. After the first two commands the
* timeouts are as expected.
*/
timeout = MAX(30000, timeout); /* timeout */
while (ccb->ccb_state == AMI_CCB_QUEUED) {
s = splbio(); /* interrupt handlers are called at their IPL */
ready = ami_intr(sc);
splx(s);
if (ready == 0) {
if (timeout-- == 0) {
/* XXX */
printf("%s: timeout\n", DEVNAME(sc));
return;
}
delay(1000);
continue;
}
}
done:
done(sc, ccb);
}
void
ami_done_pt(struct ami_softc *sc, struct ami_ccb *ccb)
{
struct scsi_xfer *xs = ccb->ccb_xs;
struct scsi_link *link = xs->sc_link;
struct ami_rawsoftc *rsc = link->bus->sb_adapter_softc;
u_int8_t target = link->target, type;
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_ccbmem_am),
ccb->ccb_offset, sizeof(struct ami_ccbmem),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (xs->data != NULL) {
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize,
(xs->flags & SCSI_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
}
xs->resid = 0;
if (ccb->ccb_flags & AMI_CCB_F_ERR)
xs->error = XS_DRIVER_STUFFUP;
else if (ccb->ccb_status != 0x00)
xs->error = XS_DRIVER_STUFFUP;
else if (xs->flags & SCSI_POLL && xs->cmd.opcode == INQUIRY) {
type = ((struct scsi_inquiry_data *)xs->data)->device &
SID_TYPE;
if (!(type == T_PROCESSOR || type == T_ENCLOSURE))
xs->error = XS_DRIVER_STUFFUP;
else
rsc->sc_proctarget = target;
}
scsi_done(xs);
}
void
ami_done_xs(struct ami_softc *sc, struct ami_ccb *ccb)
{
struct scsi_xfer *xs = ccb->ccb_xs;
if (xs->data != NULL) {
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize,
(xs->flags & SCSI_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_ccbmem_am),
ccb->ccb_offset, sizeof(struct ami_ccbmem),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
}
xs->resid = 0;
if (ccb->ccb_flags & AMI_CCB_F_ERR)
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
}
void
ami_done_flush(struct ami_softc *sc, struct ami_ccb *ccb)
{
struct scsi_xfer *xs = ccb->ccb_xs;
struct ami_iocmd *cmd = &ccb->ccb_cmd;
if (ccb->ccb_flags & AMI_CCB_F_ERR) {
xs->error = XS_DRIVER_STUFFUP;
xs->resid = 0;
scsi_done(xs);
return;
}
/* reuse the ccb for the sysflush command */
ccb->ccb_done = ami_done_sysflush;
cmd->acc_cmd = AMI_SYSFLUSH;
ami_start_xs(sc, ccb, xs);
}
void
ami_done_sysflush(struct ami_softc *sc, struct ami_ccb *ccb)
{
struct scsi_xfer *xs = ccb->ccb_xs;
xs->resid = 0;
if (ccb->ccb_flags & AMI_CCB_F_ERR)
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
}
void
ami_done_dummy(struct ami_softc *sc, struct ami_ccb *ccb)
{
}
void
ami_done_ioctl(struct ami_softc *sc, struct ami_ccb *ccb)
{
wakeup(ccb);
}
void
ami_done_init(struct ami_softc *sc, struct ami_ccb *ccb)
{
/* the ccb is going to be reused, so do nothing with it */
}
void
ami_scsi_raw_cmd(struct scsi_xfer *xs)
{
struct scsi_link *link = xs->sc_link;
struct ami_rawsoftc *rsc = link->bus->sb_adapter_softc;
struct ami_softc *sc = rsc->sc_softc;
u_int8_t channel = rsc->sc_channel, target = link->target;
struct ami_ccb *ccb;
AMI_DPRINTF(AMI_D_CMD, ("ami_scsi_raw_cmd "));
if (xs->cmdlen > AMI_MAX_CDB) {
AMI_DPRINTF(AMI_D_CMD, ("CDB too big %p ", xs));
bzero(&xs->sense, sizeof(xs->sense));
xs->sense.error_code = SSD_ERRCODE_VALID | SSD_ERRCODE_CURRENT;
xs->sense.flags = SKEY_ILLEGAL_REQUEST;
xs->sense.add_sense_code = 0x20; /* illcmd, 0x24 illfield */
xs->error = XS_SENSE;
scsi_done(xs);
return;
}
xs->error = XS_NOERROR;
ccb = xs->io;
memset(ccb->ccb_pt, 0, sizeof(struct ami_passthrough));
ccb->ccb_xs = xs;
ccb->ccb_done = ami_done_pt;
ccb->ccb_cmd.acc_cmd = AMI_PASSTHRU;
ccb->ccb_cmd.acc_passthru.apt_data = ccb->ccb_ptpa;
ccb->ccb_pt->apt_param = AMI_PTPARAM(AMI_TIMEOUT_6,1,0);
ccb->ccb_pt->apt_channel = channel;
ccb->ccb_pt->apt_target = target;
bcopy(&xs->cmd, ccb->ccb_pt->apt_cdb, AMI_MAX_CDB);
ccb->ccb_pt->apt_ncdb = xs->cmdlen;
ccb->ccb_pt->apt_nsense = AMI_MAX_SENSE;
ccb->ccb_pt->apt_datalen = xs->datalen;
ccb->ccb_pt->apt_data = 0;
if (ami_load_ptmem(sc, ccb, xs->data, xs->datalen,
xs->flags & SCSI_DATA_IN, xs->flags & SCSI_NOSLEEP) != 0) {
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
return;
}
ami_start_xs(sc, ccb, xs);
}
int
ami_load_ptmem(struct ami_softc *sc, struct ami_ccb *ccb, void *data,
size_t len, int read, int nowait)
{
bus_dmamap_t dmap = ccb->ccb_dmamap;
bus_dma_segment_t *sgd;
int error, i;
if (data != NULL) {
error = bus_dmamap_load(sc->sc_dmat, dmap, data, len, NULL,
nowait ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
if (error) {
if (error == EFBIG)
printf("more than %d dma segs\n",
AMI_MAXOFFSETS);
else
printf("error %d loading dma map\n", error);
return (1);
}
sgd = dmap->dm_segs;
if (dmap->dm_nsegs > 1) {
struct ami_sgent *sgl = ccb->ccb_sglist;
ccb->ccb_pt->apt_nsge = dmap->dm_nsegs;
ccb->ccb_pt->apt_data = ccb->ccb_sglistpa;
for (i = 0; i < dmap->dm_nsegs; i++) {
sgl[i].asg_addr = htole32(sgd[i].ds_addr);
sgl[i].asg_len = htole32(sgd[i].ds_len);
}
} else {
ccb->ccb_pt->apt_nsge = 0;
ccb->ccb_pt->apt_data = htole32(sgd->ds_addr);
}
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
}
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_ccbmem_am),
ccb->ccb_offset, sizeof(struct ami_ccbmem),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
void
ami_scsi_cmd(struct scsi_xfer *xs)
{
struct scsi_link *link = xs->sc_link;
struct ami_softc *sc = link->bus->sb_adapter_softc;
struct device *dev = link->device_softc;
struct ami_ccb *ccb;
struct ami_iocmd *cmd;
struct scsi_inquiry_data inq;
struct scsi_sense_data sd;
struct scsi_read_cap_data rcd;
u_int8_t target = link->target;
u_int32_t blockno, blockcnt;
struct scsi_rw *rw;
struct scsi_rw_10 *rw10;
bus_dma_segment_t *sgd;
int error;
int i;
AMI_DPRINTF(AMI_D_CMD, ("ami_scsi_cmd "));
if (target >= sc->sc_nunits || !sc->sc_hdr[target].hd_present ||
link->lun != 0) {
AMI_DPRINTF(AMI_D_CMD, ("no target %d ", target));
/* XXX should be XS_SENSE and sense filled out */
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
return;
}
xs->error = XS_NOERROR;
switch (xs->cmd.opcode) {
case READ_COMMAND:
case READ_10:
case WRITE_COMMAND:
case WRITE_10:
/* deal with io outside the switch */
break;
case SYNCHRONIZE_CACHE:
ccb = xs->io;
ccb->ccb_xs = xs;
ccb->ccb_done = ami_done_flush;
if (xs->timeout < 30000)
xs->timeout = 30000; /* at least 30sec */
cmd = &ccb->ccb_cmd;
cmd->acc_cmd = AMI_FLUSH;
ami_start_xs(sc, ccb, xs);
return;
case TEST_UNIT_READY:
/* save off sd? after autoconf */
if (!cold) /* XXX bogus */
strlcpy(sc->sc_hdr[target].dev, dev->dv_xname,
sizeof(sc->sc_hdr[target].dev));
case START_STOP:
#if 0
case VERIFY:
#endif
case PREVENT_ALLOW:
AMI_DPRINTF(AMI_D_CMD, ("opc %d tgt %d ", xs->cmd.opcode,
target));
xs->error = XS_NOERROR;
scsi_done(xs);
return;
case REQUEST_SENSE:
AMI_DPRINTF(AMI_D_CMD, ("REQUEST SENSE tgt %d ", target));
bzero(&sd, sizeof(sd));
sd.error_code = SSD_ERRCODE_CURRENT;
sd.segment = 0;
sd.flags = SKEY_NO_SENSE;
*(u_int32_t*)sd.info = htole32(0);
sd.extra_len = 0;
scsi_copy_internal_data(xs, &sd, sizeof(sd));
xs->error = XS_NOERROR;
scsi_done(xs);
return;
case INQUIRY:
if (ISSET(((struct scsi_inquiry *)&xs->cmd)->flags, SI_EVPD)) {
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
return;
}
AMI_DPRINTF(AMI_D_CMD, ("INQUIRY tgt %d ", target));
bzero(&inq, sizeof(inq));
inq.device = T_DIRECT;
inq.dev_qual2 = 0;
inq.version = SCSI_REV_2;
inq.response_format = SID_SCSI2_RESPONSE;
inq.additional_length = SID_SCSI2_ALEN;
inq.flags |= SID_CmdQue;
strlcpy(inq.vendor, "AMI ", sizeof(inq.vendor));
snprintf(inq.product, sizeof(inq.product),
"Host drive #%02d", target);
strlcpy(inq.revision, " ", sizeof(inq.revision));
scsi_copy_internal_data(xs, &inq, sizeof(inq));
xs->error = XS_NOERROR;
scsi_done(xs);
return;
case READ_CAPACITY:
AMI_DPRINTF(AMI_D_CMD, ("READ CAPACITY tgt %d ", target));
bzero(&rcd, sizeof(rcd));
_lto4b(sc->sc_hdr[target].hd_size - 1, rcd.addr);
_lto4b(AMI_SECTOR_SIZE, rcd.length);
scsi_copy_internal_data(xs, &rcd, sizeof(rcd));
xs->error = XS_NOERROR;
scsi_done(xs);
return;
default:
AMI_DPRINTF(AMI_D_CMD, ("unsupported scsi command %#x tgt %d ",
xs->cmd.opcode, target));
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
return;
}
/* A read or write operation. */
if (xs->cmdlen == 6) {
rw = (struct scsi_rw *)&xs->cmd;
blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
blockcnt = rw->length ? rw->length : 0x100;
} else {
rw10 = (struct scsi_rw_10 *)&xs->cmd;
blockno = _4btol(rw10->addr);
blockcnt = _2btol(rw10->length);
}
if (blockno >= sc->sc_hdr[target].hd_size ||
blockno + blockcnt > sc->sc_hdr[target].hd_size) {
printf("%s: out of bounds %u-%u >= %u\n", DEVNAME(sc),
blockno, blockcnt, sc->sc_hdr[target].hd_size);
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
return;
}
ccb = xs->io;
ccb->ccb_xs = xs;
ccb->ccb_done = ami_done_xs;
cmd = &ccb->ccb_cmd;
cmd->acc_cmd = (xs->flags & SCSI_DATA_IN) ? AMI_READ : AMI_WRITE;
cmd->acc_mbox.amb_nsect = htole16(blockcnt);
cmd->acc_mbox.amb_lba = htole32(blockno);
cmd->acc_mbox.amb_ldn = target;
error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap,
xs->data, xs->datalen, NULL,
(xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
if (error) {
if (error == EFBIG)
printf("more than %d dma segs\n", AMI_MAXOFFSETS);
else
printf("error %d loading dma map\n", error);
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
return;
}
sgd = ccb->ccb_dmamap->dm_segs;
if (ccb->ccb_dmamap->dm_nsegs > 1) {
struct ami_sgent *sgl = ccb->ccb_sglist;
cmd->acc_mbox.amb_nsge = ccb->ccb_dmamap->dm_nsegs;
cmd->acc_mbox.amb_data = ccb->ccb_sglistpa;
for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
sgl[i].asg_addr = htole32(sgd[i].ds_addr);
sgl[i].asg_len = htole32(sgd[i].ds_len);
}
} else {
cmd->acc_mbox.amb_nsge = 0;
cmd->acc_mbox.amb_data = htole32(sgd->ds_addr);
}
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_ccbmem_am),
ccb->ccb_offset, sizeof(struct ami_ccbmem),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
ami_start_xs(sc, ccb, xs);
}
int
ami_intr(void *v)
{
struct ami_iocmd mbox;
struct ami_softc *sc = v;
struct ami_ccb *ccb;
int i, rv = 0, ready;
mtx_enter(&sc->sc_cmd_mtx);
while (!TAILQ_EMPTY(&sc->sc_ccb_runq) && sc->sc_done(sc, &mbox)) {
AMI_DPRINTF(AMI_D_CMD, ("got#%d ", mbox.acc_nstat));
for (i = 0; i < mbox.acc_nstat; i++ ) {
ready = mbox.acc_cmplidl[i] - 1;
AMI_DPRINTF(AMI_D_CMD, ("ready=%d ", ready));
ccb = &sc->sc_ccbs[ready];
ccb->ccb_status = mbox.acc_status;
ccb->ccb_state = AMI_CCB_READY;
TAILQ_REMOVE(&ccb->ccb_sc->sc_ccb_runq, ccb, ccb_link);
mtx_leave(&sc->sc_cmd_mtx);
ccb->ccb_done(sc, ccb);
mtx_enter(&sc->sc_cmd_mtx);
rv = 1;
}
}
ready = (sc->sc_drainio && TAILQ_EMPTY(&sc->sc_ccb_runq));
mtx_leave(&sc->sc_cmd_mtx);
if (ready)
wakeup(sc);
else if (rv)
ami_runqueue(sc);
AMI_DPRINTF(AMI_D_INTR, ("exit "));
return (rv);
}
int
ami_scsi_ioctl(struct scsi_link *link, u_long cmd, caddr_t addr, int flag)
{
struct ami_softc *sc = link->bus->sb_adapter_softc;
/* struct device *dev = (struct device *)link->device_softc; */
/* u_int8_t target = link->target; */
if (sc->sc_ioctl)
return (sc->sc_ioctl(&sc->sc_dev, cmd, addr));
else
return (ENOTTY);
}
#if NBIO > 0
int
ami_ioctl(struct device *dev, u_long cmd, caddr_t addr)
{
struct ami_softc *sc = (struct ami_softc *)dev;
int error = 0;
AMI_DPRINTF(AMI_D_IOCTL, ("%s: ioctl ", DEVNAME(sc)));
if (sc->sc_flags & AMI_BROKEN)
return (ENODEV); /* can't do this to broken device for now */
switch (cmd) {
case BIOCINQ:
AMI_DPRINTF(AMI_D_IOCTL, ("inq "));
error = ami_ioctl_inq(sc, (struct bioc_inq *)addr);
break;
case BIOCVOL:
AMI_DPRINTF(AMI_D_IOCTL, ("vol "));
error = ami_ioctl_vol(sc, (struct bioc_vol *)addr);
break;
case BIOCDISK:
AMI_DPRINTF(AMI_D_IOCTL, ("disk "));
error = ami_ioctl_disk(sc, (struct bioc_disk *)addr);
break;
case BIOCALARM:
AMI_DPRINTF(AMI_D_IOCTL, ("alarm "));
error = ami_ioctl_alarm(sc, (struct bioc_alarm *)addr);
break;
case BIOCSETSTATE:
AMI_DPRINTF(AMI_D_IOCTL, ("setstate "));
error = ami_ioctl_setstate(sc, (struct bioc_setstate *)addr);
break;
default:
AMI_DPRINTF(AMI_D_IOCTL, (" invalid ioctl\n"));
error = ENOTTY;
}
return (error);
}
int
ami_drv_pt(struct ami_softc *sc, u_int8_t ch, u_int8_t tg, u_int8_t *cmd,
int clen, int blen, void *buf)
{
struct ami_ccb *ccb;
struct ami_passthrough *pt;
int error = 0;
rw_enter_write(&sc->sc_lock);
ccb = scsi_io_get(&sc->sc_iopool, 0);
if (ccb == NULL) {
error = ENOMEM;
goto err;
}
ccb->ccb_done = ami_done_ioctl;
ccb->ccb_cmd.acc_cmd = AMI_PASSTHRU;
ccb->ccb_cmd.acc_passthru.apt_data = ccb->ccb_ptpa;
pt = ccb->ccb_pt;
memset(pt, 0, sizeof *pt);
pt->apt_channel = ch;
pt->apt_target = tg;
pt->apt_ncdb = clen;
pt->apt_nsense = sizeof(struct scsi_sense_data);
pt->apt_datalen = blen;
pt->apt_data = 0;
bcopy(cmd, pt->apt_cdb, clen);
if (ami_load_ptmem(sc, ccb, buf, blen, 1, 0) != 0) {
error = ENOMEM;
goto ptmemerr;
}
ami_start(sc, ccb);
while (ccb->ccb_state != AMI_CCB_READY)
tsleep_nsec(ccb, PRIBIO, "ami_drv_pt", INFSLP);
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, AMIMEM_MAP(sc->sc_ccbmem_am),
ccb->ccb_offset, sizeof(struct ami_ccbmem),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
if (ccb->ccb_flags & AMI_CCB_F_ERR)
error = EIO;
else if (pt->apt_scsistat != 0x00)
error = EIO;
ptmemerr:
scsi_io_put(&sc->sc_iopool, ccb);
err:
rw_exit_write(&sc->sc_lock);
return (error);
}
int
ami_drv_inq(struct ami_softc *sc, u_int8_t ch, u_int8_t tg, u_int8_t page,
void *inqbuf)
{
struct scsi_inquiry_data *inq = inqbuf;
u_int8_t cdb[6];
int error = 0;
bzero(&cdb, sizeof cdb);
cdb[0] = INQUIRY;
cdb[1] = 0;
cdb[2] = 0;
cdb[3] = 0;
cdb[4] = sizeof(struct scsi_inquiry_data);
cdb[5] = 0;
if (page != 0) {
cdb[1] = SI_EVPD;
cdb[2] = page;
}
error = ami_drv_pt(sc, ch, tg, cdb, 6, sizeof *inq, inqbuf);
if (error)
return (error);
if ((inq->device & SID_TYPE) != T_DIRECT)
error = EINVAL;
return (error);
}
int
ami_drv_readcap(struct ami_softc *sc, u_int8_t ch, u_int8_t tg, daddr_t *sz)
{
struct scsi_read_cap_data *rcd = NULL;
struct scsi_read_cap_data_16 *rcd16 = NULL;
u_int8_t cdb[16];
u_int32_t blksz;
daddr_t noblk;
int error = 0;
bzero(&cdb, sizeof cdb);
cdb[0] = READ_CAPACITY;
rcd = dma_alloc(sizeof(*rcd), PR_WAITOK);
error = ami_drv_pt(sc, ch, tg, cdb, 10, sizeof(*rcd), rcd);
if (error)
goto fail;
noblk = _4btol(rcd->addr);
if (noblk == 0xffffffffllu) {
/* huge disk */
bzero(&cdb, sizeof cdb);
cdb[0] = READ_CAPACITY_16;
rcd16 = dma_alloc(sizeof(*rcd16), PR_WAITOK);
error = ami_drv_pt(sc, ch, tg, cdb, 16, sizeof(*rcd16), rcd16);
if (error)
goto fail;
noblk = _8btol(rcd16->addr);
blksz = _4btol(rcd16->length);
} else
blksz = _4btol(rcd->length);
if (blksz == 0)
blksz = 512;
*sz = noblk * blksz;
fail:
if (rcd16)
dma_free(rcd16, sizeof(*rcd16));
dma_free(rcd, sizeof(*rcd));
return (error);
}
int
ami_mgmt(struct ami_softc *sc, u_int8_t opcode, u_int8_t par1, u_int8_t par2,
u_int8_t par3, size_t size, void *buffer)
{
struct ami_ccb *ccb;
struct ami_iocmd *cmd;
struct ami_mem *am = NULL;
char *idata = NULL;
int error = 0;
rw_enter_write(&sc->sc_lock);
if (opcode != AMI_CHSTATE) {
ccb = scsi_io_get(&sc->sc_iopool, 0);
if (ccb == NULL) {
error = ENOMEM;
goto err;
}
ccb->ccb_done = ami_done_ioctl;
} else
ccb = sc->sc_mgmtccb;
if (size) {
if ((am = ami_allocmem(sc, size)) == NULL) {
error = ENOMEM;
goto memerr;
}
idata = AMIMEM_KVA(am);
}
cmd = &ccb->ccb_cmd;
cmd->acc_cmd = opcode;
/*
* some commands require data to be written to idata before sending
* command to fw
*/
switch (opcode) {
case AMI_SPEAKER:
*idata = par1;
break;
default:
cmd->acc_io.aio_channel = par1;
cmd->acc_io.aio_param = par2;
cmd->acc_io.aio_pad[0] = par3;
break;
};
cmd->acc_io.aio_data = am ? htole32(AMIMEM_DVA(am)) : 0;
if (opcode != AMI_CHSTATE) {
ami_start(sc, ccb);
mtx_enter(&sc->sc_cmd_mtx);
while (ccb->ccb_state != AMI_CCB_READY)
msleep_nsec(ccb, &sc->sc_cmd_mtx, PRIBIO, "ami_mgmt",
INFSLP);
mtx_leave(&sc->sc_cmd_mtx);
} else {
/* change state must be run with id 0xfe and MUST be polled */
mtx_enter(&sc->sc_cmd_mtx);
sc->sc_drainio = 1;
while (!TAILQ_EMPTY(&sc->sc_ccb_runq)) {
if (msleep_nsec(sc, &sc->sc_cmd_mtx, PRIBIO,
"amimgmt", SEC_TO_NSEC(60)) == EWOULDBLOCK) {
printf("%s: drain io timeout\n", DEVNAME(sc));
ccb->ccb_flags |= AMI_CCB_F_ERR;
goto restartio;
}
}
error = sc->sc_poll(sc, &ccb->ccb_cmd);
if (error == -1)
ccb->ccb_flags |= AMI_CCB_F_ERR;
restartio:
/* restart io */
sc->sc_drainio = 0;
mtx_leave(&sc->sc_cmd_mtx);
ami_runqueue(sc);
}
if (ccb->ccb_flags & AMI_CCB_F_ERR)
error = EIO;
else if (buffer && size)
memcpy(buffer, idata, size);
if (am)
ami_freemem(sc, am);
memerr:
if (opcode != AMI_CHSTATE) {
scsi_io_put(&sc->sc_iopool, ccb);
} else {
ccb->ccb_flags = 0;
ccb->ccb_state = AMI_CCB_FREE;
}
err:
rw_exit_write(&sc->sc_lock);
return (error);
}
int
ami_ioctl_inq(struct ami_softc *sc, struct bioc_inq *bi)
{
struct ami_big_diskarray *p; /* struct too large for stack */
struct scsi_inquiry_data *inqbuf;
struct ami_fc_einquiry einq;
int ch, tg;
int i, s, t, off;
int error = 0, changes = 0;
if ((error = ami_mgmt(sc, AMI_FCOP, AMI_FC_EINQ3,
AMI_FC_EINQ3_SOLICITED_FULL, 0, sizeof einq, &einq)))
return (EINVAL);
inqbuf = dma_alloc(sizeof(*inqbuf), PR_WAITOK);
if (einq.ain_drvinscnt == sc->sc_drvinscnt) {
/* poke existing known drives to make sure they aren't gone */
for(i = 0; i < sc->sc_channels * 16; i++) {
if (sc->sc_plist[i] == 0)
continue;
ch = (i & 0xf0) >> 4;
tg = i & 0x0f;
if (ami_drv_inq(sc, ch, tg, 0, inqbuf)) {
/* drive is gone, force rescan */
changes = 1;
break;
}
}
if (changes == 0) {
bcopy(&sc->sc_bi, bi, sizeof *bi);
goto done;
}
}
sc->sc_drvinscnt = einq.ain_drvinscnt;
p = malloc(sizeof *p, M_DEVBUF, M_NOWAIT);
if (!p) {
error = ENOMEM;
goto done;
}
if ((error = ami_mgmt(sc, AMI_FCOP, AMI_FC_RDCONF, 0, 0, sizeof *p,
p))) {
error = EINVAL;
goto bail;
}
bzero(sc->sc_plist, sizeof sc->sc_plist);
bi->bi_novol = p->ada_nld;
bi->bi_nodisk = 0;
strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
/* count used disks, including failed ones */
for (i = 0; i < p->ada_nld; i++)
for (s = 0; s < p->ald[i].adl_spandepth; s++)
for (t = 0; t < p->ald[i].adl_nstripes; t++) {
off = p->ald[i].asp[s].adv[t].add_channel *
AMI_MAX_TARGET +
p->ald[i].asp[s].adv[t].add_target;
/* account for multi raid vol on same disk */
if (!sc->sc_plist[off]) {
sc->sc_plist[off] = 1;
bi->bi_nodisk++;
}
}
/* count unused disks */
for(i = 0; i < sc->sc_channels * 16; i++) {
if (sc->sc_plist[i])
continue; /* skip claimed drives */
/*
* hack to invalidate device type, needed for initiator id
* on an unconnected channel.
* XXX find out if we can determine this differently
*/
memset(inqbuf, 0xff, sizeof(*inqbuf));
ch = (i & 0xf0) >> 4;
tg = i & 0x0f;
if (!ami_drv_inq(sc, ch, tg, 0, inqbuf)) {
if ((inqbuf->device & SID_TYPE) != T_DIRECT)
continue;
bi->bi_novol++;
bi->bi_nodisk++;
sc->sc_plist[i] = 2;
} else
sc->sc_plist[i] = 0;
}
bcopy(bi, &sc->sc_bi, sizeof sc->sc_bi);
error = 0;
bail:
free(p, M_DEVBUF, sizeof *p);
done:
dma_free(inqbuf, sizeof(*inqbuf));
return (error);
}
int
ami_vol(struct ami_softc *sc, struct bioc_vol *bv, struct ami_big_diskarray *p)
{
int i, ld = p->ada_nld, error = EINVAL;
for(i = 0; i < sc->sc_channels * 16; i++) {
/* skip claimed/unused drives */
if (sc->sc_plist[i] != 2)
continue;
/* are we it? */
if (ld != bv->bv_volid) {
ld++;
continue;
}
bv->bv_status = BIOC_SVONLINE;
bv->bv_size = (uint64_t)p->apd[i].adp_size *
(uint64_t)512;
bv->bv_nodisk = 1;
strlcpy(bv->bv_dev,
sc->sc_hdr[bv->bv_volid].dev,
sizeof(bv->bv_dev));
if (p->apd[i].adp_ostatus == AMI_PD_HOTSPARE
&& p->apd[i].adp_type == 0)
bv->bv_level = -1;
else
bv->bv_level = -2;
error = 0;
goto bail;
}
bail:
return (error);
}
int
ami_disk(struct ami_softc *sc, struct bioc_disk *bd,
struct ami_big_diskarray *p)
{
char vend[8+16+4+1], *vendp;
char ser[32 + 1];
struct scsi_inquiry_data *inqbuf;
struct scsi_vpd_serial *vpdbuf;
int i, ld = p->ada_nld, error = EINVAL;
u_int8_t ch, tg;
daddr_t sz = 0;
inqbuf = dma_alloc(sizeof(*inqbuf), PR_WAITOK);
vpdbuf = dma_alloc(sizeof(*vpdbuf), PR_WAITOK);
for(i = 0; i < sc->sc_channels * 16; i++) {
/* skip claimed/unused drives */
if (sc->sc_plist[i] != 2)
continue;
/* are we it? */
if (ld != bd->bd_volid) {
ld++;
continue;
}
ch = (i & 0xf0) >> 4;
tg = i & 0x0f;
if (ami_drv_inq(sc, ch, tg, 0, inqbuf))
goto bail;
vendp = inqbuf->vendor;
bcopy(vendp, vend, sizeof vend - 1);
vend[sizeof vend - 1] = '\0';
strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
if (!ami_drv_inq(sc, ch, tg, 0x80, vpdbuf)) {
bcopy(vpdbuf->serial, ser, sizeof ser - 1);
ser[sizeof ser - 1] = '\0';
if (_2btol(vpdbuf->hdr.page_length) < sizeof ser)
ser[_2btol(vpdbuf->hdr.page_length)] = '\0';
strlcpy(bd->bd_serial, ser, sizeof(bd->bd_serial));
}
error = ami_drv_readcap(sc, ch, tg, &sz);
if (error)
goto bail;
bd->bd_size = sz;
bd->bd_channel = ch;
bd->bd_target = tg;
strlcpy(bd->bd_procdev, sc->sc_rawsoftcs[ch].sc_procdev,
sizeof(bd->bd_procdev));
if (p->apd[i].adp_ostatus == AMI_PD_HOTSPARE)
bd->bd_status = BIOC_SDHOTSPARE;
else
bd->bd_status = BIOC_SDUNUSED;
#ifdef AMI_DEBUG
if (p->apd[i].adp_type != 0)
printf("invalid disk type: %d %d %x inquiry type: %x\n",
ch, tg, p->apd[i].adp_type, inqbuf->device);
#endif /* AMI_DEBUG */
error = 0;
goto bail;
}
bail:
dma_free(inqbuf, sizeof(*inqbuf));
dma_free(vpdbuf, sizeof(*vpdbuf));
return (error);
}
int
ami_ioctl_vol(struct ami_softc *sc, struct bioc_vol *bv)
{
struct ami_big_diskarray *p; /* struct too large for stack */
int i, s, t, off;
int error = 0;
struct ami_progress perc;
u_int8_t bgi[5]; /* 40 LD, 1 bit per LD if BGI is active */
p = malloc(sizeof *p, M_DEVBUF, M_NOWAIT);
if (!p)
return (ENOMEM);
if ((error = ami_mgmt(sc, AMI_FCOP, AMI_FC_RDCONF, 0, 0, sizeof *p, p)))
goto bail;
if (bv->bv_volid >= p->ada_nld) {
error = ami_vol(sc, bv, p);
goto bail;
}
i = bv->bv_volid;
switch (p->ald[i].adl_status) {
case AMI_RDRV_OFFLINE:
bv->bv_status = BIOC_SVOFFLINE;
break;
case AMI_RDRV_DEGRADED:
bv->bv_status = BIOC_SVDEGRADED;
break;
case AMI_RDRV_OPTIMAL:
bv->bv_status = BIOC_SVONLINE;
bv->bv_percent = -1;
/* get BGI progress here and over-ride status if so */
memset(bgi, 0, sizeof bgi);
if (ami_mgmt(sc, AMI_MISC, AMI_GET_BGI, 0, 0, sizeof bgi, &bgi))
break;
if ((bgi[i / 8] & (1 << i % 8)) == 0)
break;
if (!ami_mgmt(sc, AMI_GCHECKPROGR, i, 0, 0, sizeof perc, &perc))
if (perc.apr_progress < 100) {
bv->bv_status = BIOC_SVSCRUB;
bv->bv_percent = perc.apr_progress >= 100 ? -1 :
perc.apr_progress;
}
break;
default:
bv->bv_status = BIOC_SVINVALID;
}
/* over-ride status if a pd is in rebuild status for this ld */
for (s = 0; s < p->ald[i].adl_spandepth; s++)
for (t = 0; t < p->ald[i].adl_nstripes; t++) {
off = p->ald[i].asp[s].adv[t].add_channel *
AMI_MAX_TARGET +
p->ald[i].asp[s].adv[t].add_target;
if (p->apd[off].adp_ostatus != AMI_PD_RBLD)
continue;
/* get rebuild progress from pd 0 */
bv->bv_status = BIOC_SVREBUILD;
if (ami_mgmt(sc, AMI_GRBLDPROGR,
p->ald[i].asp[s].adv[t].add_channel,
p->ald[i].asp[s].adv[t].add_target, 0,
sizeof perc, &perc))
bv->bv_percent = -1;
else
bv->bv_percent = perc.apr_progress >= 100 ? -1 :
perc.apr_progress;
break;
}
bv->bv_size = 0;
bv->bv_level = p->ald[i].adl_raidlvl;
bv->bv_nodisk = 0;
for (s = 0; s < p->ald[i].adl_spandepth; s++) {
for (t = 0; t < p->ald[i].adl_nstripes; t++)
bv->bv_nodisk++;
switch (bv->bv_level) {
case 0:
bv->bv_size += p->ald[i].asp[s].ads_length *
p->ald[i].adl_nstripes;
break;
case 1:
bv->bv_size += p->ald[i].asp[s].ads_length;
break;
case 5:
bv->bv_size += p->ald[i].asp[s].ads_length *
(p->ald[i].adl_nstripes - 1);
break;
}
}
if (p->ald[i].adl_spandepth > 1)
bv->bv_level *= 10;
bv->bv_size *= (uint64_t)512;
strlcpy(bv->bv_dev, sc->sc_hdr[i].dev, sizeof(bv->bv_dev));
bail:
free(p, M_DEVBUF, sizeof *p);
return (error);
}
int
ami_ioctl_disk(struct ami_softc *sc, struct bioc_disk *bd)
{
struct scsi_inquiry_data *inqbuf;
struct scsi_vpd_serial *vpdbuf;
struct ami_big_diskarray *p; /* struct too large for stack */
int i, s, t, d;
int off;
int error = EINVAL;
u_int16_t ch, tg;
char vend[8+16+4+1], *vendp;
char ser[32 + 1];
inqbuf = dma_alloc(sizeof(*inqbuf), PR_WAITOK);
vpdbuf = dma_alloc(sizeof(*inqbuf), PR_WAITOK);
p = malloc(sizeof *p, M_DEVBUF, M_WAITOK);
if ((error = ami_mgmt(sc, AMI_FCOP, AMI_FC_RDCONF, 0, 0, sizeof *p, p)))
goto bail;
if (bd->bd_volid >= p->ada_nld) {
error = ami_disk(sc, bd, p);
goto bail;
}
i = bd->bd_volid;
for (s = 0, d = 0; s < p->ald[i].adl_spandepth; s++)
for (t = 0; t < p->ald[i].adl_nstripes; t++) {
if (d != bd->bd_diskid) {
d++;
continue;
}
off = p->ald[i].asp[s].adv[t].add_channel *
AMI_MAX_TARGET +
p->ald[i].asp[s].adv[t].add_target;
bd->bd_size = (uint64_t)p->apd[off].adp_size *
(uint64_t)512;
switch (p->apd[off].adp_ostatus) {
case AMI_PD_UNCNF:
bd->bd_status = BIOC_SDUNUSED;
break;
case AMI_PD_ONLINE:
bd->bd_status = BIOC_SDONLINE;
break;
case AMI_PD_FAILED:
bd->bd_status = BIOC_SDFAILED;
bd->bd_size = 0;
break;
case AMI_PD_RBLD:
bd->bd_status = BIOC_SDREBUILD;
break;
case AMI_PD_HOTSPARE:
bd->bd_status = BIOC_SDHOTSPARE;
break;
default:
bd->bd_status = BIOC_SDINVALID;
bd->bd_size = 0;
}
ch = p->ald[i].asp[s].adv[t].add_target >> 4;
tg = p->ald[i].asp[s].adv[t].add_target & 0x0f;
bd->bd_channel = ch;
bd->bd_target = tg;
strlcpy(bd->bd_procdev, sc->sc_rawsoftcs[ch].sc_procdev,
sizeof(bd->bd_procdev));
/* if we are failed don't query drive */
if (bd->bd_size == 0) {
bzero(&bd->bd_vendor, sizeof(bd->bd_vendor));
bzero(&bd->bd_serial, sizeof(bd->bd_serial));
goto done;
}
if (!ami_drv_inq(sc, ch, tg, 0, inqbuf)) {
vendp = inqbuf->vendor;
bcopy(vendp, vend, sizeof vend - 1);
vend[sizeof vend - 1] = '\0';
strlcpy(bd->bd_vendor, vend,
sizeof(bd->bd_vendor));
}
if (!ami_drv_inq(sc, ch, tg, 0x80, vpdbuf)) {
bcopy(vpdbuf->serial, ser, sizeof ser - 1);
ser[sizeof ser - 1] = '\0';
if (_2btol(vpdbuf->hdr.page_length) <
sizeof(ser))
ser[_2btol(vpdbuf->hdr.page_length)] =
'\0';
strlcpy(bd->bd_serial, ser,
sizeof(bd->bd_serial));
}
goto done;
}
done:
error = 0;
bail:
free(p, M_DEVBUF, sizeof *p);
dma_free(vpdbuf, sizeof(*vpdbuf));
dma_free(inqbuf, sizeof(*inqbuf));
return (error);
}
int ami_ioctl_alarm(struct ami_softc *sc, struct bioc_alarm *ba)
{
int error = 0;
u_int8_t func, ret;
switch(ba->ba_opcode) {
case BIOC_SADISABLE:
func = AMI_SPKR_OFF;
break;
case BIOC_SAENABLE:
func = AMI_SPKR_ON;
break;
case BIOC_SASILENCE:
func = AMI_SPKR_SHUT;
break;
case BIOC_GASTATUS:
func = AMI_SPKR_GVAL;
break;
case BIOC_SATEST:
func = AMI_SPKR_TEST;
break;
default:
AMI_DPRINTF(AMI_D_IOCTL, ("%s: biocalarm invalid opcode %x\n",
DEVNAME(sc), ba->ba_opcode));
return (EINVAL);
}
if (!(error = ami_mgmt(sc, AMI_SPEAKER, func, 0, 0, sizeof ret,
&ret))) {
if (ba->ba_opcode == BIOC_GASTATUS)
ba->ba_status = ret;
else
ba->ba_status = 0;
}
return (error);
}
int
ami_ioctl_setstate(struct ami_softc *sc, struct bioc_setstate *bs)
{
struct scsi_inquiry_data *inqbuf;
int func, error = 0;
inqbuf = dma_alloc(sizeof(*inqbuf), PR_WAITOK);
switch (bs->bs_status) {
case BIOC_SSONLINE:
func = AMI_STATE_ON;
break;
case BIOC_SSOFFLINE:
func = AMI_STATE_FAIL;
break;
case BIOC_SSHOTSPARE:
if (ami_drv_inq(sc, bs->bs_channel, bs->bs_target, 0,
inqbuf)) {
error = EINVAL;
goto done;
}
func = AMI_STATE_SPARE;
break;
default:
AMI_DPRINTF(AMI_D_IOCTL, ("%s: biocsetstate invalid opcode %x\n"
, DEVNAME(sc), bs->bs_status));
error = EINVAL;
goto done;
}
if ((error = ami_mgmt(sc, AMI_CHSTATE, bs->bs_channel, bs->bs_target,
func, 0, NULL)))
goto done;
done:
dma_free(inqbuf, sizeof(*inqbuf));
return (error);
}
#ifndef SMALL_KERNEL
int
ami_create_sensors(struct ami_softc *sc)
{
struct device *dev;
struct scsibus_softc *ssc = NULL;
struct scsi_link *link;
int i;
TAILQ_FOREACH(dev, &alldevs, dv_list) {
if (dev->dv_parent != &sc->sc_dev)
continue;
/* check if this is the scsibus for the logical disks */
ssc = (struct scsibus_softc *)dev;
if (ssc == sc->sc_scsibus)
break;
}
if (ssc == NULL)
return (1);
sc->sc_sensors = mallocarray(sc->sc_nunits, sizeof(struct ksensor),
M_DEVBUF, M_WAITOK|M_CANFAIL|M_ZERO);
if (sc->sc_sensors == NULL)
return (1);
strlcpy(sc->sc_sensordev.xname, DEVNAME(sc),
sizeof(sc->sc_sensordev.xname));
for (i = 0; i < sc->sc_nunits; i++) {
link = scsi_get_link(ssc, i, 0);
if (link == NULL)
goto bad;
dev = link->device_softc;
sc->sc_sensors[i].type = SENSOR_DRIVE;
sc->sc_sensors[i].status = SENSOR_S_UNKNOWN;
strlcpy(sc->sc_sensors[i].desc, dev->dv_xname,
sizeof(sc->sc_sensors[i].desc));
sensor_attach(&sc->sc_sensordev, &sc->sc_sensors[i]);
}
sc->sc_bd = malloc(sizeof(*sc->sc_bd), M_DEVBUF, M_WAITOK|M_CANFAIL);
if (sc->sc_bd == NULL)
goto bad;
if (sensor_task_register(sc, ami_refresh_sensors, 10) == NULL)
goto freebd;
sensordev_install(&sc->sc_sensordev);
return (0);
freebd:
free(sc->sc_bd, M_DEVBUF, sizeof(*sc->sc_bd));
bad:
free(sc->sc_sensors, M_DEVBUF, sc->sc_nunits * sizeof(struct ksensor));
return (1);
}
void
ami_refresh_sensors(void *arg)
{
struct ami_softc *sc = arg;
int i;
if (ami_mgmt(sc, AMI_FCOP, AMI_FC_RDCONF, 0, 0, sizeof(*sc->sc_bd),
sc->sc_bd)) {
for (i = 0; i < sc->sc_nunits; i++) {
sc->sc_sensors[i].value = 0; /* unknown */
sc->sc_sensors[i].status = SENSOR_S_UNKNOWN;
}
return;
}
for (i = 0; i < sc->sc_nunits; i++) {
switch (sc->sc_bd->ald[i].adl_status) {
case AMI_RDRV_OFFLINE:
sc->sc_sensors[i].value = SENSOR_DRIVE_FAIL;
sc->sc_sensors[i].status = SENSOR_S_CRIT;
break;
case AMI_RDRV_DEGRADED:
sc->sc_sensors[i].value = SENSOR_DRIVE_PFAIL;
sc->sc_sensors[i].status = SENSOR_S_WARN;
break;
case AMI_RDRV_OPTIMAL:
sc->sc_sensors[i].value = SENSOR_DRIVE_ONLINE;
sc->sc_sensors[i].status = SENSOR_S_OK;
break;
default:
sc->sc_sensors[i].value = 0; /* unknown */
sc->sc_sensors[i].status = SENSOR_S_UNKNOWN;
}
}
}
#endif /* SMALL_KERNEL */
#endif /* NBIO > 0 */
#ifdef AMI_DEBUG
void
ami_print_mbox(struct ami_iocmd *mbox)
{
int i;
printf("acc_cmd: %d aac_id: %d acc_busy: %d acc_nstat: %d ",
mbox->acc_cmd, mbox->acc_id, mbox->acc_busy, mbox->acc_nstat);
printf("acc_status: %d acc_poll: %d acc_ack: %d\n",
mbox->acc_status, mbox->acc_poll, mbox->acc_ack);
printf("acc_cmplidl: ");
for (i = 0; i < AMI_MAXSTATACK; i++) {
printf("[%d] = %d ", i, mbox->acc_cmplidl[i]);
}
printf("\n");
}
#endif /* AMI_DEBUG */