4168 lines
112 KiB
C
4168 lines
112 KiB
C
/* $OpenBSD: tcp_input.c,v 1.401 2024/02/13 12:22:09 bluhm Exp $ */
|
|
/* $NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
|
|
*
|
|
* NRL grants permission for redistribution and use in source and binary
|
|
* forms, with or without modification, of the software and documentation
|
|
* created at NRL provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgements:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* This product includes software developed at the Information
|
|
* Technology Division, US Naval Research Laboratory.
|
|
* 4. Neither the name of the NRL nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
|
|
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* The views and conclusions contained in the software and documentation
|
|
* are those of the authors and should not be interpreted as representing
|
|
* official policies, either expressed or implied, of the US Naval
|
|
* Research Laboratory (NRL).
|
|
*/
|
|
|
|
#include "pf.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/timeout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/pool.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcp_debug.h>
|
|
|
|
#if NPF > 0
|
|
#include <net/pfvar.h>
|
|
#endif
|
|
|
|
struct tcpiphdr tcp_saveti;
|
|
|
|
int tcp_mss_adv(struct mbuf *, int);
|
|
int tcp_flush_queue(struct tcpcb *);
|
|
|
|
#ifdef INET6
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
|
|
struct tcpipv6hdr tcp_saveti6;
|
|
|
|
/* for the packet header length in the mbuf */
|
|
#define M_PH_LEN(m) (((struct mbuf *)(m))->m_pkthdr.len)
|
|
#define M_V6_LEN(m) (M_PH_LEN(m) - sizeof(struct ip6_hdr))
|
|
#define M_V4_LEN(m) (M_PH_LEN(m) - sizeof(struct ip))
|
|
#endif /* INET6 */
|
|
|
|
int tcprexmtthresh = 3;
|
|
int tcptv_keep_init = TCPTV_KEEP_INIT;
|
|
|
|
int tcp_rst_ppslim = 100; /* 100pps */
|
|
int tcp_rst_ppslim_count = 0;
|
|
struct timeval tcp_rst_ppslim_last;
|
|
|
|
int tcp_ackdrop_ppslim = 100; /* 100pps */
|
|
int tcp_ackdrop_ppslim_count = 0;
|
|
struct timeval tcp_ackdrop_ppslim_last;
|
|
|
|
#define TCP_PAWS_IDLE TCP_TIME(24 * 24 * 60 * 60)
|
|
|
|
/* for modulo comparisons of timestamps */
|
|
#define TSTMP_LT(a,b) ((int32_t)((a)-(b)) < 0)
|
|
#define TSTMP_GEQ(a,b) ((int32_t)((a)-(b)) >= 0)
|
|
|
|
/* for TCP SACK comparisons */
|
|
#define SEQ_MIN(a,b) (SEQ_LT(a,b) ? (a) : (b))
|
|
#define SEQ_MAX(a,b) (SEQ_GT(a,b) ? (a) : (b))
|
|
|
|
/*
|
|
* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
|
|
*/
|
|
#ifdef INET6
|
|
#define ND6_HINT(tp) \
|
|
do { \
|
|
if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
|
|
rtisvalid(tp->t_inpcb->inp_route.ro_rt)) { \
|
|
nd6_nud_hint(tp->t_inpcb->inp_route.ro_rt); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define ND6_HINT(tp)
|
|
#endif
|
|
|
|
#ifdef TCP_ECN
|
|
/*
|
|
* ECN (Explicit Congestion Notification) support based on RFC3168
|
|
* implementation note:
|
|
* snd_last is used to track a recovery phase.
|
|
* when cwnd is reduced, snd_last is set to snd_max.
|
|
* while snd_last > snd_una, the sender is in a recovery phase and
|
|
* its cwnd should not be reduced again.
|
|
* snd_last follows snd_una when not in a recovery phase.
|
|
*/
|
|
#endif
|
|
|
|
/*
|
|
* Macro to compute ACK transmission behavior. Delay the ACK unless
|
|
* we have already delayed an ACK (must send an ACK every two segments).
|
|
* We also ACK immediately if we received a PUSH and the ACK-on-PUSH
|
|
* option is enabled or when the packet is coming from a loopback
|
|
* interface.
|
|
*/
|
|
#define TCP_SETUP_ACK(tp, tiflags, m) \
|
|
do { \
|
|
struct ifnet *ifp = NULL; \
|
|
if (m && (m->m_flags & M_PKTHDR)) \
|
|
ifp = if_get(m->m_pkthdr.ph_ifidx); \
|
|
if (TCP_TIMER_ISARMED(tp, TCPT_DELACK) || \
|
|
(tcp_ack_on_push && (tiflags) & TH_PUSH) || \
|
|
(ifp && (ifp->if_flags & IFF_LOOPBACK))) \
|
|
tp->t_flags |= TF_ACKNOW; \
|
|
else \
|
|
TCP_TIMER_ARM(tp, TCPT_DELACK, tcp_delack_msecs); \
|
|
if_put(ifp); \
|
|
} while (0)
|
|
|
|
void tcp_sack_partialack(struct tcpcb *, struct tcphdr *);
|
|
void tcp_newreno_partialack(struct tcpcb *, struct tcphdr *);
|
|
|
|
void syn_cache_put(struct syn_cache *);
|
|
void syn_cache_rm(struct syn_cache *);
|
|
int syn_cache_respond(struct syn_cache *, struct mbuf *, uint64_t);
|
|
void syn_cache_timer(void *);
|
|
void syn_cache_insert(struct syn_cache *, struct tcpcb *);
|
|
void syn_cache_reset(struct sockaddr *, struct sockaddr *,
|
|
struct tcphdr *, u_int);
|
|
int syn_cache_add(struct sockaddr *, struct sockaddr *, struct tcphdr *,
|
|
unsigned int, struct socket *, struct mbuf *, u_char *, int,
|
|
struct tcp_opt_info *, tcp_seq *, uint64_t);
|
|
struct socket *syn_cache_get(struct sockaddr *, struct sockaddr *,
|
|
struct tcphdr *, unsigned int, unsigned int, struct socket *,
|
|
struct mbuf *, uint64_t);
|
|
struct syn_cache *syn_cache_lookup(const struct sockaddr *,
|
|
const struct sockaddr *, struct syn_cache_head **, u_int);
|
|
|
|
/*
|
|
* Insert segment ti into reassembly queue of tcp with
|
|
* control block tp. Return TH_FIN if reassembly now includes
|
|
* a segment with FIN. The macro form does the common case inline
|
|
* (segment is the next to be received on an established connection,
|
|
* and the queue is empty), avoiding linkage into and removal
|
|
* from the queue and repetition of various conversions.
|
|
* Set DELACK for segments received in order, but ack immediately
|
|
* when segments are out of order (so fast retransmit can work).
|
|
*/
|
|
|
|
int
|
|
tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
|
|
{
|
|
struct tcpqent *p, *q, *nq, *tiqe;
|
|
|
|
/*
|
|
* Allocate a new queue entry, before we throw away any data.
|
|
* If we can't, just drop the packet. XXX
|
|
*/
|
|
tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
|
|
if (tiqe == NULL) {
|
|
tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead);
|
|
if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
|
|
/* Reuse last entry since new segment fills a hole */
|
|
m_freem(tiqe->tcpqe_m);
|
|
TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q);
|
|
}
|
|
if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
|
|
/* Flush segment queue for this connection */
|
|
tcp_freeq(tp);
|
|
tcpstat_inc(tcps_rcvmemdrop);
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
for (p = NULL, q = TAILQ_FIRST(&tp->t_segq); q != NULL;
|
|
p = q, q = TAILQ_NEXT(q, tcpqe_q))
|
|
if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq))
|
|
break;
|
|
|
|
/*
|
|
* If there is a preceding segment, it may provide some of
|
|
* our data already. If so, drop the data from the incoming
|
|
* segment. If it provides all of our data, drop us.
|
|
*/
|
|
if (p != NULL) {
|
|
struct tcphdr *phdr = p->tcpqe_tcp;
|
|
int i;
|
|
|
|
/* conversion to int (in i) handles seq wraparound */
|
|
i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
|
|
if (i > 0) {
|
|
if (i >= *tlen) {
|
|
tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte,
|
|
*tlen);
|
|
m_freem(m);
|
|
pool_put(&tcpqe_pool, tiqe);
|
|
return (0);
|
|
}
|
|
m_adj(m, i);
|
|
*tlen -= i;
|
|
th->th_seq += i;
|
|
}
|
|
}
|
|
tcpstat_pkt(tcps_rcvoopack, tcps_rcvoobyte, *tlen);
|
|
tp->t_rcvoopack++;
|
|
|
|
/*
|
|
* While we overlap succeeding segments trim them or,
|
|
* if they are completely covered, dequeue them.
|
|
*/
|
|
for (; q != NULL; q = nq) {
|
|
struct tcphdr *qhdr = q->tcpqe_tcp;
|
|
int i = (th->th_seq + *tlen) - qhdr->th_seq;
|
|
|
|
if (i <= 0)
|
|
break;
|
|
if (i < qhdr->th_reseqlen) {
|
|
qhdr->th_seq += i;
|
|
qhdr->th_reseqlen -= i;
|
|
m_adj(q->tcpqe_m, i);
|
|
break;
|
|
}
|
|
nq = TAILQ_NEXT(q, tcpqe_q);
|
|
m_freem(q->tcpqe_m);
|
|
TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
|
|
pool_put(&tcpqe_pool, q);
|
|
}
|
|
|
|
/* Insert the new segment queue entry into place. */
|
|
tiqe->tcpqe_m = m;
|
|
th->th_reseqlen = *tlen;
|
|
tiqe->tcpqe_tcp = th;
|
|
if (p == NULL) {
|
|
TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q);
|
|
} else {
|
|
TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q);
|
|
}
|
|
|
|
if (th->th_seq != tp->rcv_nxt)
|
|
return (0);
|
|
|
|
return (tcp_flush_queue(tp));
|
|
}
|
|
|
|
int
|
|
tcp_flush_queue(struct tcpcb *tp)
|
|
{
|
|
struct socket *so = tp->t_inpcb->inp_socket;
|
|
struct tcpqent *q, *nq;
|
|
int flags;
|
|
|
|
/*
|
|
* Present data to user, advancing rcv_nxt through
|
|
* completed sequence space.
|
|
*/
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
|
|
return (0);
|
|
q = TAILQ_FIRST(&tp->t_segq);
|
|
if (q == NULL || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
|
|
return (0);
|
|
if (tp->t_state == TCPS_SYN_RECEIVED && q->tcpqe_tcp->th_reseqlen)
|
|
return (0);
|
|
do {
|
|
tp->rcv_nxt += q->tcpqe_tcp->th_reseqlen;
|
|
flags = q->tcpqe_tcp->th_flags & TH_FIN;
|
|
|
|
nq = TAILQ_NEXT(q, tcpqe_q);
|
|
TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
|
|
ND6_HINT(tp);
|
|
if (so->so_rcv.sb_state & SS_CANTRCVMORE)
|
|
m_freem(q->tcpqe_m);
|
|
else
|
|
sbappendstream(so, &so->so_rcv, q->tcpqe_m);
|
|
pool_put(&tcpqe_pool, q);
|
|
q = nq;
|
|
} while (q != NULL && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
sorwakeup(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
return (flags);
|
|
}
|
|
|
|
/*
|
|
* TCP input routine, follows pages 65-76 of the
|
|
* protocol specification dated September, 1981 very closely.
|
|
*/
|
|
int
|
|
tcp_input(struct mbuf **mp, int *offp, int proto, int af)
|
|
{
|
|
struct mbuf *m = *mp;
|
|
int iphlen = *offp;
|
|
struct ip *ip = NULL;
|
|
struct inpcb *inp = NULL;
|
|
u_int8_t *optp = NULL;
|
|
int optlen = 0;
|
|
int tlen, off;
|
|
struct tcpcb *otp = NULL, *tp = NULL;
|
|
int tiflags;
|
|
struct socket *so = NULL;
|
|
int todrop, acked, ourfinisacked;
|
|
int hdroptlen = 0;
|
|
short ostate;
|
|
caddr_t saveti;
|
|
tcp_seq iss, *reuse = NULL;
|
|
uint64_t now;
|
|
u_long tiwin;
|
|
struct tcp_opt_info opti;
|
|
struct tcphdr *th;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6 = NULL;
|
|
#endif /* INET6 */
|
|
#ifdef TCP_ECN
|
|
u_char iptos;
|
|
#endif
|
|
|
|
tcpstat_inc(tcps_rcvtotal);
|
|
|
|
opti.ts_present = 0;
|
|
opti.maxseg = 0;
|
|
now = tcp_now();
|
|
|
|
/*
|
|
* RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
|
|
*/
|
|
if (m->m_flags & (M_BCAST|M_MCAST))
|
|
goto drop;
|
|
|
|
/*
|
|
* Get IP and TCP header together in first mbuf.
|
|
* Note: IP leaves IP header in first mbuf.
|
|
*/
|
|
IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
|
|
if (!th) {
|
|
tcpstat_inc(tcps_rcvshort);
|
|
return IPPROTO_DONE;
|
|
}
|
|
|
|
tlen = m->m_pkthdr.len - iphlen;
|
|
switch (af) {
|
|
case AF_INET:
|
|
ip = mtod(m, struct ip *);
|
|
#ifdef TCP_ECN
|
|
/* save ip_tos before clearing it for checksum */
|
|
iptos = ip->ip_tos;
|
|
#endif
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
#ifdef TCP_ECN
|
|
iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
|
|
#endif
|
|
|
|
/*
|
|
* Be proactive about unspecified IPv6 address in source.
|
|
* As we use all-zero to indicate unbounded/unconnected pcb,
|
|
* unspecified IPv6 address can be used to confuse us.
|
|
*
|
|
* Note that packets with unspecified IPv6 destination is
|
|
* already dropped in ip6_input.
|
|
*/
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
|
|
/* XXX stat */
|
|
goto drop;
|
|
}
|
|
|
|
/* Discard packets to multicast */
|
|
if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
|
|
/* XXX stat */
|
|
goto drop;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
unhandled_af(af);
|
|
}
|
|
|
|
/*
|
|
* Checksum extended TCP header and data.
|
|
*/
|
|
if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
|
|
int sum;
|
|
|
|
if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
|
|
tcpstat_inc(tcps_rcvbadsum);
|
|
goto drop;
|
|
}
|
|
tcpstat_inc(tcps_inswcsum);
|
|
switch (af) {
|
|
case AF_INET:
|
|
sum = in4_cksum(m, IPPROTO_TCP, iphlen, tlen);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
|
|
tlen);
|
|
break;
|
|
#endif
|
|
}
|
|
if (sum != 0) {
|
|
tcpstat_inc(tcps_rcvbadsum);
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that TCP offset makes sense,
|
|
* pull out TCP options and adjust length. XXX
|
|
*/
|
|
off = th->th_off << 2;
|
|
if (off < sizeof(struct tcphdr) || off > tlen) {
|
|
tcpstat_inc(tcps_rcvbadoff);
|
|
goto drop;
|
|
}
|
|
tlen -= off;
|
|
if (off > sizeof(struct tcphdr)) {
|
|
IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
|
|
if (!th) {
|
|
tcpstat_inc(tcps_rcvshort);
|
|
return IPPROTO_DONE;
|
|
}
|
|
optlen = off - sizeof(struct tcphdr);
|
|
optp = (u_int8_t *)(th + 1);
|
|
/*
|
|
* Do quick retrieval of timestamp options ("options
|
|
* prediction?"). If timestamp is the only option and it's
|
|
* formatted as recommended in RFC 1323 appendix A, we
|
|
* quickly get the values now and not bother calling
|
|
* tcp_dooptions(), etc.
|
|
*/
|
|
if ((optlen == TCPOLEN_TSTAMP_APPA ||
|
|
(optlen > TCPOLEN_TSTAMP_APPA &&
|
|
optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
|
|
*(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
|
|
(th->th_flags & TH_SYN) == 0) {
|
|
opti.ts_present = 1;
|
|
opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
|
|
opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
|
|
optp = NULL; /* we've parsed the options */
|
|
}
|
|
}
|
|
tiflags = th->th_flags;
|
|
|
|
/*
|
|
* Convert TCP protocol specific fields to host format.
|
|
*/
|
|
th->th_seq = ntohl(th->th_seq);
|
|
th->th_ack = ntohl(th->th_ack);
|
|
th->th_win = ntohs(th->th_win);
|
|
th->th_urp = ntohs(th->th_urp);
|
|
|
|
if (th->th_dport == 0) {
|
|
tcpstat_inc(tcps_noport);
|
|
goto dropwithreset_ratelim;
|
|
}
|
|
|
|
/*
|
|
* Locate pcb for segment.
|
|
*/
|
|
#if NPF > 0
|
|
inp = pf_inp_lookup(m);
|
|
#endif
|
|
findpcb:
|
|
if (inp == NULL) {
|
|
switch (af) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
inp = in6_pcblookup(&tcbtable, &ip6->ip6_src,
|
|
th->th_sport, &ip6->ip6_dst, th->th_dport,
|
|
m->m_pkthdr.ph_rtableid);
|
|
break;
|
|
#endif
|
|
case AF_INET:
|
|
inp = in_pcblookup(&tcbtable, ip->ip_src,
|
|
th->th_sport, ip->ip_dst, th->th_dport,
|
|
m->m_pkthdr.ph_rtableid);
|
|
break;
|
|
}
|
|
}
|
|
if (inp == NULL) {
|
|
tcpstat_inc(tcps_pcbhashmiss);
|
|
switch (af) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
inp = in6_pcblookup_listen(&tcbtable, &ip6->ip6_dst,
|
|
th->th_dport, m, m->m_pkthdr.ph_rtableid);
|
|
break;
|
|
#endif /* INET6 */
|
|
case AF_INET:
|
|
inp = in_pcblookup_listen(&tcbtable, ip->ip_dst,
|
|
th->th_dport, m, m->m_pkthdr.ph_rtableid);
|
|
break;
|
|
}
|
|
/*
|
|
* If the state is CLOSED (i.e., TCB does not exist) then
|
|
* all data in the incoming segment is discarded.
|
|
* If the TCB exists but is in CLOSED state, it is embryonic,
|
|
* but should either do a listen or a connect soon.
|
|
*/
|
|
}
|
|
#ifdef IPSEC
|
|
if (ipsec_in_use) {
|
|
struct m_tag *mtag;
|
|
struct tdb *tdb = NULL;
|
|
int error;
|
|
|
|
/* Find most recent IPsec tag */
|
|
mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
|
|
if (mtag != NULL) {
|
|
struct tdb_ident *tdbi;
|
|
|
|
tdbi = (struct tdb_ident *)(mtag + 1);
|
|
tdb = gettdb(tdbi->rdomain, tdbi->spi,
|
|
&tdbi->dst, tdbi->proto);
|
|
}
|
|
error = ipsp_spd_lookup(m, af, iphlen, IPSP_DIRECTION_IN,
|
|
tdb, inp ? inp->inp_seclevel : NULL, NULL, NULL);
|
|
tdb_unref(tdb);
|
|
if (error) {
|
|
tcpstat_inc(tcps_rcvnosec);
|
|
goto drop;
|
|
}
|
|
}
|
|
#endif /* IPSEC */
|
|
|
|
if (inp == NULL) {
|
|
tcpstat_inc(tcps_noport);
|
|
goto dropwithreset_ratelim;
|
|
}
|
|
|
|
KASSERT(sotoinpcb(inp->inp_socket) == inp);
|
|
KASSERT(intotcpcb(inp) == NULL || intotcpcb(inp)->t_inpcb == inp);
|
|
soassertlocked(inp->inp_socket);
|
|
|
|
/* Check the minimum TTL for socket. */
|
|
switch (af) {
|
|
case AF_INET:
|
|
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
|
|
goto drop;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (inp->inp_ip6_minhlim &&
|
|
inp->inp_ip6_minhlim > ip6->ip6_hlim)
|
|
goto drop;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
tp = intotcpcb(inp);
|
|
if (tp == NULL)
|
|
goto dropwithreset_ratelim;
|
|
if (tp->t_state == TCPS_CLOSED)
|
|
goto drop;
|
|
|
|
/* Unscale the window into a 32-bit value. */
|
|
if ((tiflags & TH_SYN) == 0)
|
|
tiwin = th->th_win << tp->snd_scale;
|
|
else
|
|
tiwin = th->th_win;
|
|
|
|
so = inp->inp_socket;
|
|
if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
|
|
union syn_cache_sa src;
|
|
union syn_cache_sa dst;
|
|
|
|
bzero(&src, sizeof(src));
|
|
bzero(&dst, sizeof(dst));
|
|
switch (af) {
|
|
case AF_INET:
|
|
src.sin.sin_len = sizeof(struct sockaddr_in);
|
|
src.sin.sin_family = AF_INET;
|
|
src.sin.sin_addr = ip->ip_src;
|
|
src.sin.sin_port = th->th_sport;
|
|
|
|
dst.sin.sin_len = sizeof(struct sockaddr_in);
|
|
dst.sin.sin_family = AF_INET;
|
|
dst.sin.sin_addr = ip->ip_dst;
|
|
dst.sin.sin_port = th->th_dport;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
src.sin6.sin6_len = sizeof(struct sockaddr_in6);
|
|
src.sin6.sin6_family = AF_INET6;
|
|
src.sin6.sin6_addr = ip6->ip6_src;
|
|
src.sin6.sin6_port = th->th_sport;
|
|
|
|
dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
|
|
dst.sin6.sin6_family = AF_INET6;
|
|
dst.sin6.sin6_addr = ip6->ip6_dst;
|
|
dst.sin6.sin6_port = th->th_dport;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
if (so->so_options & SO_DEBUG) {
|
|
otp = tp;
|
|
ostate = tp->t_state;
|
|
switch (af) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
saveti = (caddr_t) &tcp_saveti6;
|
|
memcpy(&tcp_saveti6.ti6_i, ip6, sizeof(*ip6));
|
|
memcpy(&tcp_saveti6.ti6_t, th, sizeof(*th));
|
|
break;
|
|
#endif
|
|
case AF_INET:
|
|
saveti = (caddr_t) &tcp_saveti;
|
|
memcpy(&tcp_saveti.ti_i, ip, sizeof(*ip));
|
|
memcpy(&tcp_saveti.ti_t, th, sizeof(*th));
|
|
break;
|
|
}
|
|
}
|
|
if (so->so_options & SO_ACCEPTCONN) {
|
|
switch (tiflags & (TH_RST|TH_SYN|TH_ACK)) {
|
|
|
|
case TH_SYN|TH_ACK|TH_RST:
|
|
case TH_SYN|TH_RST:
|
|
case TH_ACK|TH_RST:
|
|
case TH_RST:
|
|
syn_cache_reset(&src.sa, &dst.sa, th,
|
|
inp->inp_rtableid);
|
|
goto drop;
|
|
|
|
case TH_SYN|TH_ACK:
|
|
/*
|
|
* Received a SYN,ACK. This should
|
|
* never happen while we are in
|
|
* LISTEN. Send an RST.
|
|
*/
|
|
goto badsyn;
|
|
|
|
case TH_ACK:
|
|
so = syn_cache_get(&src.sa, &dst.sa,
|
|
th, iphlen, tlen, so, m, now);
|
|
if (so == NULL) {
|
|
/*
|
|
* We don't have a SYN for
|
|
* this ACK; send an RST.
|
|
*/
|
|
goto badsyn;
|
|
} else if (so == (struct socket *)(-1)) {
|
|
/*
|
|
* We were unable to create
|
|
* the connection. If the
|
|
* 3-way handshake was
|
|
* completed, and RST has
|
|
* been sent to the peer.
|
|
* Since the mbuf might be
|
|
* in use for the reply,
|
|
* do not free it.
|
|
*/
|
|
m = *mp = NULL;
|
|
goto drop;
|
|
} else {
|
|
/*
|
|
* We have created a
|
|
* full-blown connection.
|
|
*/
|
|
tp = NULL;
|
|
in_pcbunref(inp);
|
|
inp = in_pcbref(sotoinpcb(so));
|
|
tp = intotcpcb(inp);
|
|
if (tp == NULL)
|
|
goto badsyn; /*XXX*/
|
|
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* None of RST, SYN or ACK was set.
|
|
* This is an invalid packet for a
|
|
* TCB in LISTEN state. Send a RST.
|
|
*/
|
|
goto badsyn;
|
|
|
|
case TH_SYN:
|
|
/*
|
|
* Received a SYN.
|
|
*/
|
|
#ifdef INET6
|
|
/*
|
|
* If deprecated address is forbidden, we do
|
|
* not accept SYN to deprecated interface
|
|
* address to prevent any new inbound
|
|
* connection from getting established.
|
|
* When we do not accept SYN, we send a TCP
|
|
* RST, with deprecated source address (instead
|
|
* of dropping it). We compromise it as it is
|
|
* much better for peer to send a RST, and
|
|
* RST will be the final packet for the
|
|
* exchange.
|
|
*
|
|
* If we do not forbid deprecated addresses, we
|
|
* accept the SYN packet. RFC2462 does not
|
|
* suggest dropping SYN in this case.
|
|
* If we decipher RFC2462 5.5.4, it says like
|
|
* this:
|
|
* 1. use of deprecated addr with existing
|
|
* communication is okay - "SHOULD continue
|
|
* to be used"
|
|
* 2. use of it with new communication:
|
|
* (2a) "SHOULD NOT be used if alternate
|
|
* address with sufficient scope is
|
|
* available"
|
|
* (2b) nothing mentioned otherwise.
|
|
* Here we fall into (2b) case as we have no
|
|
* choice in our source address selection - we
|
|
* must obey the peer.
|
|
*
|
|
* The wording in RFC2462 is confusing, and
|
|
* there are multiple description text for
|
|
* deprecated address handling - worse, they
|
|
* are not exactly the same. I believe 5.5.4
|
|
* is the best one, so we follow 5.5.4.
|
|
*/
|
|
if (ip6 && !ip6_use_deprecated) {
|
|
struct in6_ifaddr *ia6;
|
|
struct ifnet *ifp =
|
|
if_get(m->m_pkthdr.ph_ifidx);
|
|
|
|
if (ifp &&
|
|
(ia6 = in6ifa_ifpwithaddr(ifp,
|
|
&ip6->ip6_dst)) &&
|
|
(ia6->ia6_flags &
|
|
IN6_IFF_DEPRECATED)) {
|
|
tp = NULL;
|
|
if_put(ifp);
|
|
goto dropwithreset;
|
|
}
|
|
if_put(ifp);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* LISTEN socket received a SYN
|
|
* from itself? This can't possibly
|
|
* be valid; drop the packet.
|
|
*/
|
|
if (th->th_dport == th->th_sport) {
|
|
switch (af) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
|
|
&ip6->ip6_dst)) {
|
|
tcpstat_inc(tcps_badsyn);
|
|
goto drop;
|
|
}
|
|
break;
|
|
#endif /* INET6 */
|
|
case AF_INET:
|
|
if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
|
|
tcpstat_inc(tcps_badsyn);
|
|
goto drop;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SYN looks ok; create compressed TCP
|
|
* state for it.
|
|
*/
|
|
if (so->so_qlen > so->so_qlimit ||
|
|
syn_cache_add(&src.sa, &dst.sa, th, iphlen,
|
|
so, m, optp, optlen, &opti, reuse, now)
|
|
== -1) {
|
|
tcpstat_inc(tcps_dropsyn);
|
|
goto drop;
|
|
}
|
|
in_pcbunref(inp);
|
|
return IPPROTO_DONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Should not happen now that all embryonic connections
|
|
* are handled with compressed state.
|
|
*/
|
|
if (tp->t_state == TCPS_LISTEN)
|
|
panic("tcp_input: TCPS_LISTEN");
|
|
#endif
|
|
|
|
#if NPF > 0
|
|
pf_inp_link(m, inp);
|
|
#endif
|
|
|
|
/*
|
|
* Segment received on connection.
|
|
* Reset idle time and keep-alive timer.
|
|
*/
|
|
tp->t_rcvtime = now;
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state))
|
|
TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
|
|
|
|
if (tp->sack_enable)
|
|
tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
|
|
|
|
/*
|
|
* Process options.
|
|
*/
|
|
#ifdef TCP_SIGNATURE
|
|
if (optp || (tp->t_flags & TF_SIGNATURE))
|
|
#else
|
|
if (optp)
|
|
#endif
|
|
if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti,
|
|
m->m_pkthdr.ph_rtableid, now))
|
|
goto drop;
|
|
|
|
if (opti.ts_present && opti.ts_ecr) {
|
|
int32_t rtt_test;
|
|
|
|
/* subtract out the tcp timestamp modulator */
|
|
opti.ts_ecr -= tp->ts_modulate;
|
|
|
|
/* make sure ts_ecr is sensible */
|
|
rtt_test = now - opti.ts_ecr;
|
|
if (rtt_test < 0 || rtt_test > TCP_RTT_MAX)
|
|
opti.ts_ecr = 0;
|
|
}
|
|
|
|
#ifdef TCP_ECN
|
|
/* if congestion experienced, set ECE bit in subsequent packets. */
|
|
if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
|
|
tp->t_flags |= TF_RCVD_CE;
|
|
tcpstat_inc(tcps_ecn_rcvce);
|
|
}
|
|
#endif
|
|
/*
|
|
* Header prediction: check for the two common cases
|
|
* of a uni-directional data xfer. If the packet has
|
|
* no control flags, is in-sequence, the window didn't
|
|
* change and we're not retransmitting, it's a
|
|
* candidate. If the length is zero and the ack moved
|
|
* forward, we're the sender side of the xfer. Just
|
|
* free the data acked & wake any higher level process
|
|
* that was blocked waiting for space. If the length
|
|
* is non-zero and the ack didn't move, we're the
|
|
* receiver side. If we're getting packets in-order
|
|
* (the reassembly queue is empty), add the data to
|
|
* the socket buffer and note that we need a delayed ack.
|
|
*/
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
#ifdef TCP_ECN
|
|
(tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
|
|
#else
|
|
(tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
|
|
#endif
|
|
(!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
|
|
th->th_seq == tp->rcv_nxt &&
|
|
tiwin && tiwin == tp->snd_wnd &&
|
|
tp->snd_nxt == tp->snd_max) {
|
|
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers,
|
|
* record the timestamp.
|
|
* Fix from Braden, see Stevens p. 870
|
|
*/
|
|
if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = now;
|
|
tp->ts_recent = opti.ts_val;
|
|
}
|
|
|
|
if (tlen == 0) {
|
|
if (SEQ_GT(th->th_ack, tp->snd_una) &&
|
|
SEQ_LEQ(th->th_ack, tp->snd_max) &&
|
|
tp->snd_cwnd >= tp->snd_wnd &&
|
|
tp->t_dupacks == 0) {
|
|
/*
|
|
* this is a pure ack for outstanding data.
|
|
*/
|
|
tcpstat_inc(tcps_predack);
|
|
if (opti.ts_present && opti.ts_ecr)
|
|
tcp_xmit_timer(tp, now - opti.ts_ecr);
|
|
else if (tp->t_rtttime &&
|
|
SEQ_GT(th->th_ack, tp->t_rtseq))
|
|
tcp_xmit_timer(tp, now - tp->t_rtttime);
|
|
acked = th->th_ack - tp->snd_una;
|
|
tcpstat_pkt(tcps_rcvackpack, tcps_rcvackbyte,
|
|
acked);
|
|
tp->t_rcvacktime = now;
|
|
ND6_HINT(tp);
|
|
sbdrop(so, &so->so_snd, acked);
|
|
|
|
/*
|
|
* If we had a pending ICMP message that
|
|
* refers to data that have just been
|
|
* acknowledged, disregard the recorded ICMP
|
|
* message.
|
|
*/
|
|
if ((tp->t_flags & TF_PMTUD_PEND) &&
|
|
SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
|
|
tp->t_flags &= ~TF_PMTUD_PEND;
|
|
|
|
/*
|
|
* Keep track of the largest chunk of data
|
|
* acknowledged since last PMTU update
|
|
*/
|
|
if (tp->t_pmtud_mss_acked < acked)
|
|
tp->t_pmtud_mss_acked = acked;
|
|
|
|
tp->snd_una = th->th_ack;
|
|
/* Pull snd_wl2 up to prevent seq wrap. */
|
|
tp->snd_wl2 = th->th_ack;
|
|
/*
|
|
* We want snd_last to track snd_una so
|
|
* as to avoid sequence wraparound problems
|
|
* for very large transfers.
|
|
*/
|
|
#ifdef TCP_ECN
|
|
if (SEQ_GT(tp->snd_una, tp->snd_last))
|
|
#endif
|
|
tp->snd_last = tp->snd_una;
|
|
m_freem(m);
|
|
|
|
/*
|
|
* If all outstanding data are acked, stop
|
|
* retransmit timer, otherwise restart timer
|
|
* using current (possibly backed-off) value.
|
|
* If process is waiting for space,
|
|
* wakeup/selwakeup/signal. If data
|
|
* are ready to send, let tcp_output
|
|
* decide between more output or persist.
|
|
*/
|
|
if (tp->snd_una == tp->snd_max)
|
|
TCP_TIMER_DISARM(tp, TCPT_REXMT);
|
|
else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
|
|
TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
|
|
|
|
tcp_update_sndspace(tp);
|
|
if (sb_notify(so, &so->so_snd)) {
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
sowwakeup(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
}
|
|
if (so->so_snd.sb_cc ||
|
|
tp->t_flags & TF_NEEDOUTPUT)
|
|
(void) tcp_output(tp);
|
|
in_pcbunref(inp);
|
|
return IPPROTO_DONE;
|
|
}
|
|
} else if (th->th_ack == tp->snd_una &&
|
|
TAILQ_EMPTY(&tp->t_segq) &&
|
|
tlen <= sbspace(so, &so->so_rcv)) {
|
|
/*
|
|
* This is a pure, in-sequence data packet
|
|
* with nothing on the reassembly queue and
|
|
* we have enough buffer space to take it.
|
|
*/
|
|
/* Clean receiver SACK report if present */
|
|
if (tp->sack_enable && tp->rcv_numsacks)
|
|
tcp_clean_sackreport(tp);
|
|
tcpstat_inc(tcps_preddat);
|
|
tp->rcv_nxt += tlen;
|
|
/* Pull snd_wl1 and rcv_up up to prevent seq wrap. */
|
|
tp->snd_wl1 = th->th_seq;
|
|
/* Packet has most recent segment, no urgent exists. */
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
tcpstat_pkt(tcps_rcvpack, tcps_rcvbyte, tlen);
|
|
ND6_HINT(tp);
|
|
|
|
TCP_SETUP_ACK(tp, tiflags, m);
|
|
/*
|
|
* Drop TCP, IP headers and TCP options then add data
|
|
* to socket buffer.
|
|
*/
|
|
if (so->so_rcv.sb_state & SS_CANTRCVMORE)
|
|
m_freem(m);
|
|
else {
|
|
if (tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
|
|
now - tp->rfbuf_ts > (tp->t_srtt >>
|
|
(TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT))) {
|
|
tcp_update_rcvspace(tp);
|
|
/* Start over with next RTT. */
|
|
tp->rfbuf_cnt = 0;
|
|
tp->rfbuf_ts = 0;
|
|
} else
|
|
tp->rfbuf_cnt += tlen;
|
|
m_adj(m, iphlen + off);
|
|
sbappendstream(so, &so->so_rcv, m);
|
|
}
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
sorwakeup(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
|
|
(void) tcp_output(tp);
|
|
in_pcbunref(inp);
|
|
return IPPROTO_DONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute mbuf offset to TCP data segment.
|
|
*/
|
|
hdroptlen = iphlen + off;
|
|
|
|
/*
|
|
* Calculate amount of space in receive window,
|
|
* and then do TCP input processing.
|
|
* Receive window is amount of space in rcv queue,
|
|
* but not less than advertised window.
|
|
*/
|
|
{ int win;
|
|
|
|
win = sbspace(so, &so->so_rcv);
|
|
if (win < 0)
|
|
win = 0;
|
|
tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
|
|
}
|
|
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* If the state is SYN_RECEIVED:
|
|
* if seg contains SYN/ACK, send an RST.
|
|
* if seg contains an ACK, but not for our SYN/ACK, send an RST
|
|
*/
|
|
|
|
case TCPS_SYN_RECEIVED:
|
|
if (tiflags & TH_ACK) {
|
|
if (tiflags & TH_SYN) {
|
|
tcpstat_inc(tcps_badsyn);
|
|
goto dropwithreset;
|
|
}
|
|
if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max))
|
|
goto dropwithreset;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* If the state is SYN_SENT:
|
|
* if seg contains an ACK, but not for our SYN, drop the input.
|
|
* if seg contains a RST, then drop the connection.
|
|
* if seg does not contain SYN, then drop it.
|
|
* Otherwise this is an acceptable SYN segment
|
|
* initialize tp->rcv_nxt and tp->irs
|
|
* if seg contains ack then advance tp->snd_una
|
|
* if SYN has been acked change to ESTABLISHED else SYN_RCVD state
|
|
* arrange for segment to be acked (eventually)
|
|
* continue processing rest of data/controls, beginning with URG
|
|
*/
|
|
case TCPS_SYN_SENT:
|
|
if ((tiflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->iss) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max)))
|
|
goto dropwithreset;
|
|
if (tiflags & TH_RST) {
|
|
#ifdef TCP_ECN
|
|
/* if ECN is enabled, fall back to non-ecn at rexmit */
|
|
if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
|
|
goto drop;
|
|
#endif
|
|
if (tiflags & TH_ACK)
|
|
tp = tcp_drop(tp, ECONNREFUSED);
|
|
goto drop;
|
|
}
|
|
if ((tiflags & TH_SYN) == 0)
|
|
goto drop;
|
|
if (tiflags & TH_ACK) {
|
|
tp->snd_una = th->th_ack;
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
|
tp->snd_nxt = tp->snd_una;
|
|
}
|
|
TCP_TIMER_DISARM(tp, TCPT_REXMT);
|
|
tp->irs = th->th_seq;
|
|
tcp_mss(tp, opti.maxseg);
|
|
/* Reset initial window to 1 segment for retransmit */
|
|
if (tp->t_rxtshift > 0)
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
tcp_rcvseqinit(tp);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
/*
|
|
* If we've sent a SACK_PERMITTED option, and the peer
|
|
* also replied with one, then TF_SACK_PERMIT should have
|
|
* been set in tcp_dooptions(). If it was not, disable SACKs.
|
|
*/
|
|
if (tp->sack_enable)
|
|
tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
|
|
#ifdef TCP_ECN
|
|
/*
|
|
* if ECE is set but CWR is not set for SYN-ACK, or
|
|
* both ECE and CWR are set for simultaneous open,
|
|
* peer is ECN capable.
|
|
*/
|
|
if (tcp_do_ecn) {
|
|
switch (tiflags & (TH_ACK|TH_ECE|TH_CWR)) {
|
|
case TH_ACK|TH_ECE:
|
|
case TH_ECE|TH_CWR:
|
|
tp->t_flags |= TF_ECN_PERMIT;
|
|
tiflags &= ~(TH_ECE|TH_CWR);
|
|
tcpstat_inc(tcps_ecn_accepts);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
|
|
tcpstat_inc(tcps_connects);
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
soisconnected(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
tp->t_state = TCPS_ESTABLISHED;
|
|
TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
|
|
/* Do window scaling on this connection? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
|
tp->snd_scale = tp->requested_s_scale;
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
}
|
|
tcp_flush_queue(tp);
|
|
|
|
/*
|
|
* if we didn't have to retransmit the SYN,
|
|
* use its rtt as our initial srtt & rtt var.
|
|
*/
|
|
if (tp->t_rtttime)
|
|
tcp_xmit_timer(tp, now - tp->t_rtttime);
|
|
/*
|
|
* Since new data was acked (the SYN), open the
|
|
* congestion window by one MSS. We do this
|
|
* here, because we won't go through the normal
|
|
* ACK processing below. And since this is the
|
|
* start of the connection, we know we are in
|
|
* the exponential phase of slow-start.
|
|
*/
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
} else
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
|
|
#if 0
|
|
trimthenstep6:
|
|
#endif
|
|
/*
|
|
* Advance th->th_seq to correspond to first data byte.
|
|
* If data, trim to stay within window,
|
|
* dropping FIN if necessary.
|
|
*/
|
|
th->th_seq++;
|
|
if (tlen > tp->rcv_wnd) {
|
|
todrop = tlen - tp->rcv_wnd;
|
|
m_adj(m, -todrop);
|
|
tlen = tp->rcv_wnd;
|
|
tiflags &= ~TH_FIN;
|
|
tcpstat_pkt(tcps_rcvpackafterwin, tcps_rcvbyteafterwin,
|
|
todrop);
|
|
}
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
tp->rcv_up = th->th_seq;
|
|
goto step6;
|
|
/*
|
|
* If a new connection request is received while in TIME_WAIT,
|
|
* drop the old connection and start over if the if the
|
|
* timestamp or the sequence numbers are above the previous
|
|
* ones.
|
|
*/
|
|
case TCPS_TIME_WAIT:
|
|
if (((tiflags & (TH_SYN|TH_ACK)) == TH_SYN) &&
|
|
((opti.ts_present &&
|
|
TSTMP_LT(tp->ts_recent, opti.ts_val)) ||
|
|
SEQ_GT(th->th_seq, tp->rcv_nxt))) {
|
|
#if NPF > 0
|
|
/*
|
|
* The socket will be recreated but the new state
|
|
* has already been linked to the socket. Remove the
|
|
* link between old socket and new state.
|
|
*/
|
|
pf_inp_unlink(inp);
|
|
#endif
|
|
/*
|
|
* Advance the iss by at least 32768, but
|
|
* clear the msb in order to make sure
|
|
* that SEG_LT(snd_nxt, iss).
|
|
*/
|
|
iss = tp->snd_nxt +
|
|
((arc4random() & 0x7fffffff) | 0x8000);
|
|
reuse = &iss;
|
|
tp = tcp_close(tp);
|
|
in_pcbunref(inp);
|
|
inp = NULL;
|
|
goto findpcb;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* States other than LISTEN or SYN_SENT.
|
|
* First check timestamp, if present.
|
|
* Then check that at least some bytes of segment are within
|
|
* receive window. If segment begins before rcv_nxt,
|
|
* drop leading data (and SYN); if nothing left, just ack.
|
|
*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment
|
|
* and it's less than opti.ts_recent, drop it.
|
|
*/
|
|
if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
|
|
TSTMP_LT(opti.ts_val, tp->ts_recent)) {
|
|
|
|
/* Check to see if ts_recent is over 24 days old. */
|
|
if (now - tp->ts_recent_age > TCP_PAWS_IDLE) {
|
|
/*
|
|
* Invalidate ts_recent. If this segment updates
|
|
* ts_recent, the age will be reset later and ts_recent
|
|
* will get a valid value. If it does not, setting
|
|
* ts_recent to zero will at least satisfy the
|
|
* requirement that zero be placed in the timestamp
|
|
* echo reply when ts_recent isn't valid. The
|
|
* age isn't reset until we get a valid ts_recent
|
|
* because we don't want out-of-order segments to be
|
|
* dropped when ts_recent is old.
|
|
*/
|
|
tp->ts_recent = 0;
|
|
} else {
|
|
tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte, tlen);
|
|
tcpstat_inc(tcps_pawsdrop);
|
|
if (tlen)
|
|
goto dropafterack;
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
todrop = tp->rcv_nxt - th->th_seq;
|
|
if (todrop > 0) {
|
|
if (tiflags & TH_SYN) {
|
|
tiflags &= ~TH_SYN;
|
|
th->th_seq++;
|
|
if (th->th_urp > 1)
|
|
th->th_urp--;
|
|
else
|
|
tiflags &= ~TH_URG;
|
|
todrop--;
|
|
}
|
|
if (todrop > tlen ||
|
|
(todrop == tlen && (tiflags & TH_FIN) == 0)) {
|
|
/*
|
|
* Any valid FIN must be to the left of the
|
|
* window. At this point, FIN must be a
|
|
* duplicate or out-of-sequence, so drop it.
|
|
*/
|
|
tiflags &= ~TH_FIN;
|
|
/*
|
|
* Send ACK to resynchronize, and drop any data,
|
|
* but keep on processing for RST or ACK.
|
|
*/
|
|
tp->t_flags |= TF_ACKNOW;
|
|
todrop = tlen;
|
|
tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte, todrop);
|
|
} else {
|
|
tcpstat_pkt(tcps_rcvpartduppack, tcps_rcvpartdupbyte,
|
|
todrop);
|
|
}
|
|
hdroptlen += todrop; /* drop from head afterwards */
|
|
th->th_seq += todrop;
|
|
tlen -= todrop;
|
|
if (th->th_urp > todrop)
|
|
th->th_urp -= todrop;
|
|
else {
|
|
tiflags &= ~TH_URG;
|
|
th->th_urp = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If new data are received on a connection after the
|
|
* user processes are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) &&
|
|
tp->t_state > TCPS_CLOSE_WAIT && tlen) {
|
|
tp = tcp_close(tp);
|
|
tcpstat_inc(tcps_rcvafterclose);
|
|
goto dropwithreset;
|
|
}
|
|
|
|
/*
|
|
* If segment ends after window, drop trailing data
|
|
* (and PUSH and FIN); if nothing left, just ACK.
|
|
*/
|
|
todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
|
|
if (todrop > 0) {
|
|
tcpstat_inc(tcps_rcvpackafterwin);
|
|
if (todrop >= tlen) {
|
|
tcpstat_add(tcps_rcvbyteafterwin, tlen);
|
|
/*
|
|
* If window is closed can only take segments at
|
|
* window edge, and have to drop data and PUSH from
|
|
* incoming segments. Continue processing, but
|
|
* remember to ack. Otherwise, drop segment
|
|
* and ack.
|
|
*/
|
|
if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tcpstat_inc(tcps_rcvwinprobe);
|
|
} else
|
|
goto dropafterack;
|
|
} else
|
|
tcpstat_add(tcps_rcvbyteafterwin, todrop);
|
|
m_adj(m, -todrop);
|
|
tlen -= todrop;
|
|
tiflags &= ~(TH_PUSH|TH_FIN);
|
|
}
|
|
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers,
|
|
* record its timestamp if it's more recent.
|
|
* NOTE that the test is modified according to the latest
|
|
* proposal of the tcplw@cray.com list (Braden 1993/04/26).
|
|
*/
|
|
if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = now;
|
|
tp->ts_recent = opti.ts_val;
|
|
}
|
|
|
|
/*
|
|
* If the RST bit is set examine the state:
|
|
* SYN_RECEIVED STATE:
|
|
* If passive open, return to LISTEN state.
|
|
* If active open, inform user that connection was refused.
|
|
* ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
|
|
* Inform user that connection was reset, and close tcb.
|
|
* CLOSING, LAST_ACK, TIME_WAIT STATES
|
|
* Close the tcb.
|
|
*/
|
|
if (tiflags & TH_RST) {
|
|
if (th->th_seq != tp->last_ack_sent &&
|
|
th->th_seq != tp->rcv_nxt &&
|
|
th->th_seq != (tp->rcv_nxt + 1))
|
|
goto drop;
|
|
|
|
switch (tp->t_state) {
|
|
case TCPS_SYN_RECEIVED:
|
|
#ifdef TCP_ECN
|
|
/* if ECN is enabled, fall back to non-ecn at rexmit */
|
|
if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
|
|
goto drop;
|
|
#endif
|
|
so->so_error = ECONNREFUSED;
|
|
goto close;
|
|
|
|
case TCPS_ESTABLISHED:
|
|
case TCPS_FIN_WAIT_1:
|
|
case TCPS_FIN_WAIT_2:
|
|
case TCPS_CLOSE_WAIT:
|
|
so->so_error = ECONNRESET;
|
|
close:
|
|
tp->t_state = TCPS_CLOSED;
|
|
tcpstat_inc(tcps_drops);
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
case TCPS_CLOSING:
|
|
case TCPS_LAST_ACK:
|
|
case TCPS_TIME_WAIT:
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a SYN is in the window, then this is an
|
|
* error and we ACK and drop the packet.
|
|
*/
|
|
if (tiflags & TH_SYN)
|
|
goto dropafterack_ratelim;
|
|
|
|
/*
|
|
* If the ACK bit is off we drop the segment and return.
|
|
*/
|
|
if ((tiflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_ACKNOW)
|
|
goto dropafterack;
|
|
else
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In SYN_RECEIVED state, the ack ACKs our SYN, so enter
|
|
* ESTABLISHED state and continue processing.
|
|
* The ACK was checked above.
|
|
*/
|
|
case TCPS_SYN_RECEIVED:
|
|
tcpstat_inc(tcps_connects);
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
soisconnected(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
tp->t_state = TCPS_ESTABLISHED;
|
|
TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
|
|
/* Do window scaling? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
|
tp->snd_scale = tp->requested_s_scale;
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
tiwin = th->th_win << tp->snd_scale;
|
|
}
|
|
tcp_flush_queue(tp);
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
/* fall into ... */
|
|
|
|
/*
|
|
* In ESTABLISHED state: drop duplicate ACKs; ACK out of range
|
|
* ACKs. If the ack is in the range
|
|
* tp->snd_una < th->th_ack <= tp->snd_max
|
|
* then advance tp->snd_una to th->th_ack and drop
|
|
* data from the retransmission queue. If this ACK reflects
|
|
* more up to date window information we update our window information.
|
|
*/
|
|
case TCPS_ESTABLISHED:
|
|
case TCPS_FIN_WAIT_1:
|
|
case TCPS_FIN_WAIT_2:
|
|
case TCPS_CLOSE_WAIT:
|
|
case TCPS_CLOSING:
|
|
case TCPS_LAST_ACK:
|
|
case TCPS_TIME_WAIT:
|
|
#ifdef TCP_ECN
|
|
/*
|
|
* if we receive ECE and are not already in recovery phase,
|
|
* reduce cwnd by half but don't slow-start.
|
|
* advance snd_last to snd_max not to reduce cwnd again
|
|
* until all outstanding packets are acked.
|
|
*/
|
|
if (tcp_do_ecn && (tiflags & TH_ECE)) {
|
|
if ((tp->t_flags & TF_ECN_PERMIT) &&
|
|
SEQ_GEQ(tp->snd_una, tp->snd_last)) {
|
|
u_int win;
|
|
|
|
win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
|
|
if (win > 1) {
|
|
tp->snd_ssthresh = win / 2 * tp->t_maxseg;
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
tp->snd_last = tp->snd_max;
|
|
tp->t_flags |= TF_SEND_CWR;
|
|
tcpstat_inc(tcps_cwr_ecn);
|
|
}
|
|
}
|
|
tcpstat_inc(tcps_ecn_rcvece);
|
|
}
|
|
/*
|
|
* if we receive CWR, we know that the peer has reduced
|
|
* its congestion window. stop sending ecn-echo.
|
|
*/
|
|
if ((tiflags & TH_CWR)) {
|
|
tp->t_flags &= ~TF_RCVD_CE;
|
|
tcpstat_inc(tcps_ecn_rcvcwr);
|
|
}
|
|
#endif /* TCP_ECN */
|
|
|
|
if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
|
|
/*
|
|
* Duplicate/old ACK processing.
|
|
* Increments t_dupacks:
|
|
* Pure duplicate (same seq/ack/window, no data)
|
|
* Doesn't affect t_dupacks:
|
|
* Data packets.
|
|
* Normal window updates (window opens)
|
|
* Resets t_dupacks:
|
|
* New data ACKed.
|
|
* Window shrinks
|
|
* Old ACK
|
|
*/
|
|
if (tlen) {
|
|
/* Drop very old ACKs unless th_seq matches */
|
|
if (th->th_seq != tp->rcv_nxt &&
|
|
SEQ_LT(th->th_ack,
|
|
tp->snd_una - tp->max_sndwnd)) {
|
|
tcpstat_inc(tcps_rcvacktooold);
|
|
goto drop;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* If we get an old ACK, there is probably packet
|
|
* reordering going on. Be conservative and reset
|
|
* t_dupacks so that we are less aggressive in
|
|
* doing a fast retransmit.
|
|
*/
|
|
if (th->th_ack != tp->snd_una) {
|
|
tp->t_dupacks = 0;
|
|
break;
|
|
}
|
|
if (tiwin == tp->snd_wnd) {
|
|
tcpstat_inc(tcps_rcvdupack);
|
|
/*
|
|
* If we have outstanding data (other than
|
|
* a window probe), this is a completely
|
|
* duplicate ack (ie, window info didn't
|
|
* change), the ack is the biggest we've
|
|
* seen and we've seen exactly our rexmt
|
|
* threshold of them, assume a packet
|
|
* has been dropped and retransmit it.
|
|
* Kludge snd_nxt & the congestion
|
|
* window so we send only this one
|
|
* packet.
|
|
*
|
|
* We know we're losing at the current
|
|
* window size so do congestion avoidance
|
|
* (set ssthresh to half the current window
|
|
* and pull our congestion window back to
|
|
* the new ssthresh).
|
|
*
|
|
* Dup acks mean that packets have left the
|
|
* network (they're now cached at the receiver)
|
|
* so bump cwnd by the amount in the receiver
|
|
* to keep a constant cwnd packets in the
|
|
* network.
|
|
*/
|
|
if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
|
|
tp->t_dupacks = 0;
|
|
else if (++tp->t_dupacks == tcprexmtthresh) {
|
|
tcp_seq onxt = tp->snd_nxt;
|
|
u_long win =
|
|
ulmin(tp->snd_wnd, tp->snd_cwnd) /
|
|
2 / tp->t_maxseg;
|
|
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)){
|
|
/*
|
|
* False fast retx after
|
|
* timeout. Do not cut window.
|
|
*/
|
|
tp->t_dupacks = 0;
|
|
goto drop;
|
|
}
|
|
if (win < 2)
|
|
win = 2;
|
|
tp->snd_ssthresh = win * tp->t_maxseg;
|
|
tp->snd_last = tp->snd_max;
|
|
if (tp->sack_enable) {
|
|
TCP_TIMER_DISARM(tp, TCPT_REXMT);
|
|
tp->t_rtttime = 0;
|
|
#ifdef TCP_ECN
|
|
tp->t_flags |= TF_SEND_CWR;
|
|
#endif
|
|
tcpstat_inc(tcps_cwr_frecovery);
|
|
tcpstat_inc(tcps_sack_recovery_episode);
|
|
/*
|
|
* tcp_output() will send
|
|
* oldest SACK-eligible rtx.
|
|
*/
|
|
(void) tcp_output(tp);
|
|
tp->snd_cwnd = tp->snd_ssthresh+
|
|
tp->t_maxseg * tp->t_dupacks;
|
|
goto drop;
|
|
}
|
|
TCP_TIMER_DISARM(tp, TCPT_REXMT);
|
|
tp->t_rtttime = 0;
|
|
tp->snd_nxt = th->th_ack;
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
#ifdef TCP_ECN
|
|
tp->t_flags |= TF_SEND_CWR;
|
|
#endif
|
|
tcpstat_inc(tcps_cwr_frecovery);
|
|
tcpstat_inc(tcps_sndrexmitfast);
|
|
(void) tcp_output(tp);
|
|
|
|
tp->snd_cwnd = tp->snd_ssthresh +
|
|
tp->t_maxseg * tp->t_dupacks;
|
|
if (SEQ_GT(onxt, tp->snd_nxt))
|
|
tp->snd_nxt = onxt;
|
|
goto drop;
|
|
} else if (tp->t_dupacks > tcprexmtthresh) {
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
(void) tcp_output(tp);
|
|
goto drop;
|
|
}
|
|
} else if (tiwin < tp->snd_wnd) {
|
|
/*
|
|
* The window was retracted! Previous dup
|
|
* ACKs may have been due to packets arriving
|
|
* after the shrunken window, not a missing
|
|
* packet, so play it safe and reset t_dupacks
|
|
*/
|
|
tp->t_dupacks = 0;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* If the congestion window was inflated to account
|
|
* for the other side's cached packets, retract it.
|
|
*/
|
|
if (tp->t_dupacks >= tcprexmtthresh) {
|
|
/* Check for a partial ACK */
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)) {
|
|
if (tp->sack_enable)
|
|
tcp_sack_partialack(tp, th);
|
|
else
|
|
tcp_newreno_partialack(tp, th);
|
|
} else {
|
|
/* Out of fast recovery */
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
|
|
tp->snd_ssthresh)
|
|
tp->snd_cwnd =
|
|
tcp_seq_subtract(tp->snd_max,
|
|
th->th_ack);
|
|
tp->t_dupacks = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* Reset the duplicate ACK counter if we
|
|
* were not in fast recovery.
|
|
*/
|
|
tp->t_dupacks = 0;
|
|
}
|
|
if (SEQ_GT(th->th_ack, tp->snd_max)) {
|
|
tcpstat_inc(tcps_rcvacktoomuch);
|
|
goto dropafterack_ratelim;
|
|
}
|
|
acked = th->th_ack - tp->snd_una;
|
|
tcpstat_pkt(tcps_rcvackpack, tcps_rcvackbyte, acked);
|
|
tp->t_rcvacktime = now;
|
|
|
|
/*
|
|
* If we have a timestamp reply, update smoothed
|
|
* round trip time. If no timestamp is present but
|
|
* transmit timer is running and timed sequence
|
|
* number was acked, update smoothed round trip time.
|
|
* Since we now have an rtt measurement, cancel the
|
|
* timer backoff (cf., Phil Karn's retransmit alg.).
|
|
* Recompute the initial retransmit timer.
|
|
*/
|
|
if (opti.ts_present && opti.ts_ecr)
|
|
tcp_xmit_timer(tp, now - opti.ts_ecr);
|
|
else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
|
|
tcp_xmit_timer(tp, now - tp->t_rtttime);
|
|
|
|
/*
|
|
* If all outstanding data is acked, stop retransmit
|
|
* timer and remember to restart (more output or persist).
|
|
* If there is more data to be acked, restart retransmit
|
|
* timer, using current (possibly backed-off) value.
|
|
*/
|
|
if (th->th_ack == tp->snd_max) {
|
|
TCP_TIMER_DISARM(tp, TCPT_REXMT);
|
|
tp->t_flags |= TF_NEEDOUTPUT;
|
|
} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
|
|
TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
|
|
/*
|
|
* When new data is acked, open the congestion window.
|
|
* If the window gives us less than ssthresh packets
|
|
* in flight, open exponentially (maxseg per packet).
|
|
* Otherwise open linearly: maxseg per window
|
|
* (maxseg^2 / cwnd per packet).
|
|
*/
|
|
{
|
|
u_int cw = tp->snd_cwnd;
|
|
u_int incr = tp->t_maxseg;
|
|
|
|
if (cw > tp->snd_ssthresh)
|
|
incr = max(incr * incr / cw, 1);
|
|
if (tp->t_dupacks < tcprexmtthresh)
|
|
tp->snd_cwnd = ulmin(cw + incr,
|
|
TCP_MAXWIN << tp->snd_scale);
|
|
}
|
|
ND6_HINT(tp);
|
|
if (acked > so->so_snd.sb_cc) {
|
|
if (tp->snd_wnd > so->so_snd.sb_cc)
|
|
tp->snd_wnd -= so->so_snd.sb_cc;
|
|
else
|
|
tp->snd_wnd = 0;
|
|
sbdrop(so, &so->so_snd, (int)so->so_snd.sb_cc);
|
|
ourfinisacked = 1;
|
|
} else {
|
|
sbdrop(so, &so->so_snd, acked);
|
|
if (tp->snd_wnd > acked)
|
|
tp->snd_wnd -= acked;
|
|
else
|
|
tp->snd_wnd = 0;
|
|
ourfinisacked = 0;
|
|
}
|
|
|
|
tcp_update_sndspace(tp);
|
|
if (sb_notify(so, &so->so_snd)) {
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
sowwakeup(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
}
|
|
|
|
/*
|
|
* If we had a pending ICMP message that referred to data
|
|
* that have just been acknowledged, disregard the recorded
|
|
* ICMP message.
|
|
*/
|
|
if ((tp->t_flags & TF_PMTUD_PEND) &&
|
|
SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
|
|
tp->t_flags &= ~TF_PMTUD_PEND;
|
|
|
|
/*
|
|
* Keep track of the largest chunk of data acknowledged
|
|
* since last PMTU update
|
|
*/
|
|
if (tp->t_pmtud_mss_acked < acked)
|
|
tp->t_pmtud_mss_acked = acked;
|
|
|
|
tp->snd_una = th->th_ack;
|
|
#ifdef TCP_ECN
|
|
/* sync snd_last with snd_una */
|
|
if (SEQ_GT(tp->snd_una, tp->snd_last))
|
|
tp->snd_last = tp->snd_una;
|
|
#endif
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
|
tp->snd_nxt = tp->snd_una;
|
|
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In FIN_WAIT_1 STATE in addition to the processing
|
|
* for the ESTABLISHED state if our FIN is now acknowledged
|
|
* then enter FIN_WAIT_2.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more
|
|
* data, then closing user can proceed.
|
|
* Starting the timer is contrary to the
|
|
* specification, but if we don't get a FIN
|
|
* we'll hang forever.
|
|
*/
|
|
if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
soisdisconnected(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
|
|
}
|
|
tp->t_state = TCPS_FIN_WAIT_2;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In CLOSING STATE in addition to the processing for
|
|
* the ESTABLISHED state if the ACK acknowledges our FIN
|
|
* then enter the TIME-WAIT state, otherwise ignore
|
|
* the segment.
|
|
*/
|
|
case TCPS_CLOSING:
|
|
if (ourfinisacked) {
|
|
tp->t_state = TCPS_TIME_WAIT;
|
|
tcp_canceltimers(tp);
|
|
TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
soisdisconnected(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In LAST_ACK, we may still be waiting for data to drain
|
|
* and/or to be acked, as well as for the ack of our FIN.
|
|
* If our FIN is now acknowledged, delete the TCB,
|
|
* enter the closed state and return.
|
|
*/
|
|
case TCPS_LAST_ACK:
|
|
if (ourfinisacked) {
|
|
tp = tcp_close(tp);
|
|
goto drop;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* In TIME_WAIT state the only thing that should arrive
|
|
* is a retransmission of the remote FIN. Acknowledge
|
|
* it and restart the finack timer.
|
|
*/
|
|
case TCPS_TIME_WAIT:
|
|
TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
|
|
goto dropafterack;
|
|
}
|
|
}
|
|
|
|
step6:
|
|
/*
|
|
* Update window information.
|
|
* Don't look at window if no ACK: TAC's send garbage on first SYN.
|
|
*/
|
|
if ((tiflags & TH_ACK) &&
|
|
(SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq &&
|
|
(SEQ_LT(tp->snd_wl2, th->th_ack) ||
|
|
(tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
|
|
/* keep track of pure window updates */
|
|
if (tlen == 0 &&
|
|
tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
|
|
tcpstat_inc(tcps_rcvwinupd);
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
tp->snd_wl2 = th->th_ack;
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
|
tp->max_sndwnd = tp->snd_wnd;
|
|
tp->t_flags |= TF_NEEDOUTPUT;
|
|
}
|
|
|
|
/*
|
|
* Process segments with URG.
|
|
*/
|
|
if ((tiflags & TH_URG) && th->th_urp &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
/*
|
|
* This is a kludge, but if we receive and accept
|
|
* random urgent pointers, we'll crash in
|
|
* soreceive. It's hard to imagine someone
|
|
* actually wanting to send this much urgent data.
|
|
*/
|
|
if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
|
|
th->th_urp = 0; /* XXX */
|
|
tiflags &= ~TH_URG; /* XXX */
|
|
goto dodata; /* XXX */
|
|
}
|
|
/*
|
|
* If this segment advances the known urgent pointer,
|
|
* then mark the data stream. This should not happen
|
|
* in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
|
|
* a FIN has been received from the remote side.
|
|
* In these states we ignore the URG.
|
|
*
|
|
* According to RFC961 (Assigned Protocols),
|
|
* the urgent pointer points to the last octet
|
|
* of urgent data. We continue, however,
|
|
* to consider it to indicate the first octet
|
|
* of data past the urgent section as the original
|
|
* spec states (in one of two places).
|
|
*/
|
|
if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
|
|
tp->rcv_up = th->th_seq + th->th_urp;
|
|
so->so_oobmark = so->so_rcv.sb_cc +
|
|
(tp->rcv_up - tp->rcv_nxt) - 1;
|
|
if (so->so_oobmark == 0)
|
|
so->so_rcv.sb_state |= SS_RCVATMARK;
|
|
sohasoutofband(so);
|
|
tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
|
|
}
|
|
/*
|
|
* Remove out of band data so doesn't get presented to user.
|
|
* This can happen independent of advancing the URG pointer,
|
|
* but if two URG's are pending at once, some out-of-band
|
|
* data may creep in... ick.
|
|
*/
|
|
if (th->th_urp <= (u_int16_t) tlen &&
|
|
(so->so_options & SO_OOBINLINE) == 0)
|
|
tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
|
|
} else
|
|
/*
|
|
* If no out of band data is expected,
|
|
* pull receive urgent pointer along
|
|
* with the receive window.
|
|
*/
|
|
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
dodata: /* XXX */
|
|
|
|
/*
|
|
* Process the segment text, merging it into the TCP sequencing queue,
|
|
* and arranging for acknowledgment of receipt if necessary.
|
|
* This process logically involves adjusting tp->rcv_wnd as data
|
|
* is presented to the user (this happens in tcp_usrreq.c,
|
|
* case PRU_RCVD). If a FIN has already been received on this
|
|
* connection then we just ignore the text.
|
|
*/
|
|
if ((tlen || (tiflags & TH_FIN)) &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
tcp_seq laststart = th->th_seq;
|
|
tcp_seq lastend = th->th_seq + tlen;
|
|
|
|
if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq) &&
|
|
tp->t_state == TCPS_ESTABLISHED) {
|
|
TCP_SETUP_ACK(tp, tiflags, m);
|
|
tp->rcv_nxt += tlen;
|
|
tiflags = th->th_flags & TH_FIN;
|
|
tcpstat_pkt(tcps_rcvpack, tcps_rcvbyte, tlen);
|
|
ND6_HINT(tp);
|
|
if (so->so_rcv.sb_state & SS_CANTRCVMORE)
|
|
m_freem(m);
|
|
else {
|
|
m_adj(m, hdroptlen);
|
|
sbappendstream(so, &so->so_rcv, m);
|
|
}
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
sorwakeup(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
} else {
|
|
m_adj(m, hdroptlen);
|
|
tiflags = tcp_reass(tp, th, m, &tlen);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
if (tp->sack_enable)
|
|
tcp_update_sack_list(tp, laststart, lastend);
|
|
|
|
/*
|
|
* variable len never referenced again in modern BSD,
|
|
* so why bother computing it ??
|
|
*/
|
|
#if 0
|
|
/*
|
|
* Note the amount of data that peer has sent into
|
|
* our window, in order to estimate the sender's
|
|
* buffer size.
|
|
*/
|
|
len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
|
|
#endif /* 0 */
|
|
} else {
|
|
m_freem(m);
|
|
tiflags &= ~TH_FIN;
|
|
}
|
|
|
|
/*
|
|
* If FIN is received ACK the FIN and let the user know
|
|
* that the connection is closing. Ignore a FIN received before
|
|
* the connection is fully established.
|
|
*/
|
|
if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
|
|
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
socantrcvmore(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tp->rcv_nxt++;
|
|
}
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In ESTABLISHED STATE enter the CLOSE_WAIT state.
|
|
*/
|
|
case TCPS_ESTABLISHED:
|
|
tp->t_state = TCPS_CLOSE_WAIT;
|
|
break;
|
|
|
|
/*
|
|
* If still in FIN_WAIT_1 STATE FIN has not been acked so
|
|
* enter the CLOSING state.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
tp->t_state = TCPS_CLOSING;
|
|
break;
|
|
|
|
/*
|
|
* In FIN_WAIT_2 state enter the TIME_WAIT state,
|
|
* starting the time-wait timer, turning off the other
|
|
* standard timers.
|
|
*/
|
|
case TCPS_FIN_WAIT_2:
|
|
tp->t_state = TCPS_TIME_WAIT;
|
|
tcp_canceltimers(tp);
|
|
TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
|
|
tp->t_flags |= TF_BLOCKOUTPUT;
|
|
soisdisconnected(so);
|
|
tp->t_flags &= ~TF_BLOCKOUTPUT;
|
|
break;
|
|
|
|
/*
|
|
* In TIME_WAIT state restart the 2 MSL time_wait timer.
|
|
*/
|
|
case TCPS_TIME_WAIT:
|
|
TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
|
|
break;
|
|
}
|
|
}
|
|
if (otp)
|
|
tcp_trace(TA_INPUT, ostate, tp, otp, saveti, 0, tlen);
|
|
|
|
/*
|
|
* Return any desired output.
|
|
*/
|
|
if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
|
|
(void) tcp_output(tp);
|
|
in_pcbunref(inp);
|
|
return IPPROTO_DONE;
|
|
|
|
badsyn:
|
|
/*
|
|
* Received a bad SYN. Increment counters and dropwithreset.
|
|
*/
|
|
tcpstat_inc(tcps_badsyn);
|
|
tp = NULL;
|
|
goto dropwithreset;
|
|
|
|
dropafterack_ratelim:
|
|
if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
|
|
tcp_ackdrop_ppslim) == 0) {
|
|
/* XXX stat */
|
|
goto drop;
|
|
}
|
|
/* ...fall into dropafterack... */
|
|
|
|
dropafterack:
|
|
/*
|
|
* Generate an ACK dropping incoming segment if it occupies
|
|
* sequence space, where the ACK reflects our state.
|
|
*/
|
|
if (tiflags & TH_RST)
|
|
goto drop;
|
|
m_freem(m);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
(void) tcp_output(tp);
|
|
in_pcbunref(inp);
|
|
return IPPROTO_DONE;
|
|
|
|
dropwithreset_ratelim:
|
|
/*
|
|
* We may want to rate-limit RSTs in certain situations,
|
|
* particularly if we are sending an RST in response to
|
|
* an attempt to connect to or otherwise communicate with
|
|
* a port for which we have no socket.
|
|
*/
|
|
if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
|
|
tcp_rst_ppslim) == 0) {
|
|
/* XXX stat */
|
|
goto drop;
|
|
}
|
|
/* ...fall into dropwithreset... */
|
|
|
|
dropwithreset:
|
|
/*
|
|
* Generate a RST, dropping incoming segment.
|
|
* Make ACK acceptable to originator of segment.
|
|
* Don't bother to respond to RST.
|
|
*/
|
|
if (tiflags & TH_RST)
|
|
goto drop;
|
|
if (tiflags & TH_ACK) {
|
|
tcp_respond(tp, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack,
|
|
TH_RST, m->m_pkthdr.ph_rtableid, now);
|
|
} else {
|
|
if (tiflags & TH_SYN)
|
|
tlen++;
|
|
tcp_respond(tp, mtod(m, caddr_t), th, th->th_seq + tlen,
|
|
(tcp_seq)0, TH_RST|TH_ACK, m->m_pkthdr.ph_rtableid, now);
|
|
}
|
|
m_freem(m);
|
|
in_pcbunref(inp);
|
|
return IPPROTO_DONE;
|
|
|
|
drop:
|
|
/*
|
|
* Drop space held by incoming segment and return.
|
|
*/
|
|
if (otp)
|
|
tcp_trace(TA_DROP, ostate, tp, otp, saveti, 0, tlen);
|
|
|
|
m_freem(m);
|
|
in_pcbunref(inp);
|
|
return IPPROTO_DONE;
|
|
}
|
|
|
|
int
|
|
tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
|
|
struct mbuf *m, int iphlen, struct tcp_opt_info *oi,
|
|
u_int rtableid, uint64_t now)
|
|
{
|
|
u_int16_t mss = 0;
|
|
int opt, optlen;
|
|
#ifdef TCP_SIGNATURE
|
|
caddr_t sigp = NULL;
|
|
struct tdb *tdb = NULL;
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[0];
|
|
if (opt == TCPOPT_EOL)
|
|
break;
|
|
if (opt == TCPOPT_NOP)
|
|
optlen = 1;
|
|
else {
|
|
if (cnt < 2)
|
|
break;
|
|
optlen = cp[1];
|
|
if (optlen < 2 || optlen > cnt)
|
|
break;
|
|
}
|
|
switch (opt) {
|
|
|
|
default:
|
|
continue;
|
|
|
|
case TCPOPT_MAXSEG:
|
|
if (optlen != TCPOLEN_MAXSEG)
|
|
continue;
|
|
if (!(th->th_flags & TH_SYN))
|
|
continue;
|
|
if (TCPS_HAVERCVDSYN(tp->t_state))
|
|
continue;
|
|
memcpy(&mss, cp + 2, sizeof(mss));
|
|
mss = ntohs(mss);
|
|
oi->maxseg = mss;
|
|
break;
|
|
|
|
case TCPOPT_WINDOW:
|
|
if (optlen != TCPOLEN_WINDOW)
|
|
continue;
|
|
if (!(th->th_flags & TH_SYN))
|
|
continue;
|
|
if (TCPS_HAVERCVDSYN(tp->t_state))
|
|
continue;
|
|
tp->t_flags |= TF_RCVD_SCALE;
|
|
tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
|
|
break;
|
|
|
|
case TCPOPT_TIMESTAMP:
|
|
if (optlen != TCPOLEN_TIMESTAMP)
|
|
continue;
|
|
oi->ts_present = 1;
|
|
memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
|
|
oi->ts_val = ntohl(oi->ts_val);
|
|
memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
|
|
oi->ts_ecr = ntohl(oi->ts_ecr);
|
|
|
|
if (!(th->th_flags & TH_SYN))
|
|
continue;
|
|
if (TCPS_HAVERCVDSYN(tp->t_state))
|
|
continue;
|
|
/*
|
|
* A timestamp received in a SYN makes
|
|
* it ok to send timestamp requests and replies.
|
|
*/
|
|
tp->t_flags |= TF_RCVD_TSTMP;
|
|
tp->ts_recent = oi->ts_val;
|
|
tp->ts_recent_age = now;
|
|
break;
|
|
|
|
case TCPOPT_SACK_PERMITTED:
|
|
if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
|
|
continue;
|
|
if (!(th->th_flags & TH_SYN))
|
|
continue;
|
|
if (TCPS_HAVERCVDSYN(tp->t_state))
|
|
continue;
|
|
/* MUST only be set on SYN */
|
|
tp->t_flags |= TF_SACK_PERMIT;
|
|
break;
|
|
case TCPOPT_SACK:
|
|
tcp_sack_option(tp, th, cp, optlen);
|
|
break;
|
|
#ifdef TCP_SIGNATURE
|
|
case TCPOPT_SIGNATURE:
|
|
if (optlen != TCPOLEN_SIGNATURE)
|
|
continue;
|
|
|
|
if (sigp && timingsafe_bcmp(sigp, cp + 2, 16))
|
|
goto bad;
|
|
|
|
sigp = cp + 2;
|
|
break;
|
|
#endif /* TCP_SIGNATURE */
|
|
}
|
|
}
|
|
|
|
#ifdef TCP_SIGNATURE
|
|
if (tp->t_flags & TF_SIGNATURE) {
|
|
union sockaddr_union src, dst;
|
|
|
|
memset(&src, 0, sizeof(union sockaddr_union));
|
|
memset(&dst, 0, sizeof(union sockaddr_union));
|
|
|
|
switch (tp->pf) {
|
|
case 0:
|
|
case AF_INET:
|
|
src.sa.sa_len = sizeof(struct sockaddr_in);
|
|
src.sa.sa_family = AF_INET;
|
|
src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
|
|
dst.sa.sa_len = sizeof(struct sockaddr_in);
|
|
dst.sa.sa_family = AF_INET;
|
|
dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
src.sa.sa_len = sizeof(struct sockaddr_in6);
|
|
src.sa.sa_family = AF_INET6;
|
|
src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
|
|
dst.sa.sa_len = sizeof(struct sockaddr_in6);
|
|
dst.sa.sa_family = AF_INET6;
|
|
dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
tdb = gettdbbysrcdst(rtable_l2(rtableid),
|
|
0, &src, &dst, IPPROTO_TCP);
|
|
|
|
/*
|
|
* We don't have an SA for this peer, so we turn off
|
|
* TF_SIGNATURE on the listen socket
|
|
*/
|
|
if (tdb == NULL && tp->t_state == TCPS_LISTEN)
|
|
tp->t_flags &= ~TF_SIGNATURE;
|
|
|
|
}
|
|
|
|
if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
|
|
tcpstat_inc(tcps_rcvbadsig);
|
|
goto bad;
|
|
}
|
|
|
|
if (sigp) {
|
|
char sig[16];
|
|
|
|
if (tdb == NULL) {
|
|
tcpstat_inc(tcps_rcvbadsig);
|
|
goto bad;
|
|
}
|
|
|
|
if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
|
|
goto bad;
|
|
|
|
if (timingsafe_bcmp(sig, sigp, 16)) {
|
|
tcpstat_inc(tcps_rcvbadsig);
|
|
goto bad;
|
|
}
|
|
|
|
tcpstat_inc(tcps_rcvgoodsig);
|
|
}
|
|
|
|
tdb_unref(tdb);
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
return (0);
|
|
|
|
#ifdef TCP_SIGNATURE
|
|
bad:
|
|
tdb_unref(tdb);
|
|
#endif /* TCP_SIGNATURE */
|
|
return (-1);
|
|
}
|
|
|
|
u_long
|
|
tcp_seq_subtract(u_long a, u_long b)
|
|
{
|
|
return ((long)(a - b));
|
|
}
|
|
|
|
/*
|
|
* This function is called upon receipt of new valid data (while not in header
|
|
* prediction mode), and it updates the ordered list of sacks.
|
|
*/
|
|
void
|
|
tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
|
|
tcp_seq rcv_lastend)
|
|
{
|
|
/*
|
|
* First reported block MUST be the most recent one. Subsequent
|
|
* blocks SHOULD be in the order in which they arrived at the
|
|
* receiver. These two conditions make the implementation fully
|
|
* compliant with RFC 2018.
|
|
*/
|
|
int i, j = 0, count = 0, lastpos = -1;
|
|
struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
|
|
|
|
/* First clean up current list of sacks */
|
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
|
sack = tp->sackblks[i];
|
|
if (sack.start == 0 && sack.end == 0) {
|
|
count++; /* count = number of blocks to be discarded */
|
|
continue;
|
|
}
|
|
if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
|
count++;
|
|
} else {
|
|
temp[j].start = tp->sackblks[i].start;
|
|
temp[j++].end = tp->sackblks[i].end;
|
|
}
|
|
}
|
|
tp->rcv_numsacks -= count;
|
|
if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
|
|
tcp_clean_sackreport(tp);
|
|
if (SEQ_LT(tp->rcv_nxt, rcv_laststart)) {
|
|
/* ==> need first sack block */
|
|
tp->sackblks[0].start = rcv_laststart;
|
|
tp->sackblks[0].end = rcv_lastend;
|
|
tp->rcv_numsacks = 1;
|
|
}
|
|
return;
|
|
}
|
|
/* Otherwise, sack blocks are already present. */
|
|
for (i = 0; i < tp->rcv_numsacks; i++)
|
|
tp->sackblks[i] = temp[i]; /* first copy back sack list */
|
|
if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend))
|
|
return; /* sack list remains unchanged */
|
|
/*
|
|
* From here, segment just received should be (part of) the 1st sack.
|
|
* Go through list, possibly coalescing sack block entries.
|
|
*/
|
|
firstsack.start = rcv_laststart;
|
|
firstsack.end = rcv_lastend;
|
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
|
sack = tp->sackblks[i];
|
|
if (SEQ_LT(sack.end, firstsack.start) ||
|
|
SEQ_GT(sack.start, firstsack.end))
|
|
continue; /* no overlap */
|
|
if (sack.start == firstsack.start && sack.end == firstsack.end){
|
|
/*
|
|
* identical block; delete it here since we will
|
|
* move it to the front of the list.
|
|
*/
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
|
lastpos = i; /* last posn with a zero entry */
|
|
continue;
|
|
}
|
|
if (SEQ_LEQ(sack.start, firstsack.start))
|
|
firstsack.start = sack.start; /* merge blocks */
|
|
if (SEQ_GEQ(sack.end, firstsack.end))
|
|
firstsack.end = sack.end; /* merge blocks */
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
|
lastpos = i; /* last posn with a zero entry */
|
|
}
|
|
if (lastpos != -1) { /* at least one merge */
|
|
for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
|
|
sack = tp->sackblks[i];
|
|
if (sack.start == 0 && sack.end == 0)
|
|
continue;
|
|
temp[j++] = sack;
|
|
}
|
|
tp->rcv_numsacks = j; /* including first blk (added later) */
|
|
for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
|
|
tp->sackblks[i] = temp[i];
|
|
} else { /* no merges -- shift sacks by 1 */
|
|
if (tp->rcv_numsacks < MAX_SACK_BLKS)
|
|
tp->rcv_numsacks++;
|
|
for (i = tp->rcv_numsacks-1; i > 0; i--)
|
|
tp->sackblks[i] = tp->sackblks[i-1];
|
|
}
|
|
tp->sackblks[0] = firstsack;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Process the TCP SACK option. tp->snd_holes is an ordered list
|
|
* of holes (oldest to newest, in terms of the sequence space).
|
|
*/
|
|
void
|
|
tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
|
|
{
|
|
int tmp_olen;
|
|
u_char *tmp_cp;
|
|
struct sackhole *cur, *p, *temp;
|
|
|
|
if (!tp->sack_enable)
|
|
return;
|
|
/* SACK without ACK doesn't make sense. */
|
|
if ((th->th_flags & TH_ACK) == 0)
|
|
return;
|
|
/* Make sure the ACK on this segment is in [snd_una, snd_max]. */
|
|
if (SEQ_LT(th->th_ack, tp->snd_una) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max))
|
|
return;
|
|
/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
|
|
if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
|
|
return;
|
|
/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
|
|
tmp_cp = cp + 2;
|
|
tmp_olen = optlen - 2;
|
|
tcpstat_inc(tcps_sack_rcv_opts);
|
|
if (tp->snd_numholes < 0)
|
|
tp->snd_numholes = 0;
|
|
if (tp->t_maxseg == 0)
|
|
panic("tcp_sack_option"); /* Should never happen */
|
|
while (tmp_olen > 0) {
|
|
struct sackblk sack;
|
|
|
|
memcpy(&sack.start, tmp_cp, sizeof(tcp_seq));
|
|
sack.start = ntohl(sack.start);
|
|
memcpy(&sack.end, tmp_cp + sizeof(tcp_seq), sizeof(tcp_seq));
|
|
sack.end = ntohl(sack.end);
|
|
tmp_olen -= TCPOLEN_SACK;
|
|
tmp_cp += TCPOLEN_SACK;
|
|
if (SEQ_LEQ(sack.end, sack.start))
|
|
continue; /* bad SACK fields */
|
|
if (SEQ_LEQ(sack.end, tp->snd_una))
|
|
continue; /* old block */
|
|
if (SEQ_GT(th->th_ack, tp->snd_una)) {
|
|
if (SEQ_LT(sack.start, th->th_ack))
|
|
continue;
|
|
}
|
|
if (SEQ_GT(sack.end, tp->snd_max))
|
|
continue;
|
|
if (tp->snd_holes == NULL) { /* first hole */
|
|
tp->snd_holes = (struct sackhole *)
|
|
pool_get(&sackhl_pool, PR_NOWAIT);
|
|
if (tp->snd_holes == NULL) {
|
|
/* ENOBUFS, so ignore SACKed block for now */
|
|
goto dropped;
|
|
}
|
|
cur = tp->snd_holes;
|
|
cur->start = th->th_ack;
|
|
cur->end = sack.start;
|
|
cur->rxmit = cur->start;
|
|
cur->next = NULL;
|
|
tp->snd_numholes = 1;
|
|
tp->rcv_lastsack = sack.end;
|
|
/*
|
|
* dups is at least one. If more data has been
|
|
* SACKed, it can be greater than one.
|
|
*/
|
|
cur->dups = min(tcprexmtthresh,
|
|
((sack.end - cur->end)/tp->t_maxseg));
|
|
if (cur->dups < 1)
|
|
cur->dups = 1;
|
|
continue; /* with next sack block */
|
|
}
|
|
/* Go thru list of holes: p = previous, cur = current */
|
|
p = cur = tp->snd_holes;
|
|
while (cur) {
|
|
if (SEQ_LEQ(sack.end, cur->start))
|
|
/* SACKs data before the current hole */
|
|
break; /* no use going through more holes */
|
|
if (SEQ_GEQ(sack.start, cur->end)) {
|
|
/* SACKs data beyond the current hole */
|
|
cur->dups++;
|
|
if (((sack.end - cur->end)/tp->t_maxseg) >=
|
|
tcprexmtthresh)
|
|
cur->dups = tcprexmtthresh;
|
|
p = cur;
|
|
cur = cur->next;
|
|
continue;
|
|
}
|
|
if (SEQ_LEQ(sack.start, cur->start)) {
|
|
/* Data acks at least the beginning of hole */
|
|
if (SEQ_GEQ(sack.end, cur->end)) {
|
|
/* Acks entire hole, so delete hole */
|
|
if (p != cur) {
|
|
p->next = cur->next;
|
|
pool_put(&sackhl_pool, cur);
|
|
cur = p->next;
|
|
} else {
|
|
cur = cur->next;
|
|
pool_put(&sackhl_pool, p);
|
|
p = cur;
|
|
tp->snd_holes = p;
|
|
}
|
|
tp->snd_numholes--;
|
|
continue;
|
|
}
|
|
/* otherwise, move start of hole forward */
|
|
cur->start = sack.end;
|
|
cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
|
|
p = cur;
|
|
cur = cur->next;
|
|
continue;
|
|
}
|
|
/* move end of hole backward */
|
|
if (SEQ_GEQ(sack.end, cur->end)) {
|
|
cur->end = sack.start;
|
|
cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
|
|
cur->dups++;
|
|
if (((sack.end - cur->end)/tp->t_maxseg) >=
|
|
tcprexmtthresh)
|
|
cur->dups = tcprexmtthresh;
|
|
p = cur;
|
|
cur = cur->next;
|
|
continue;
|
|
}
|
|
if (SEQ_LT(cur->start, sack.start) &&
|
|
SEQ_GT(cur->end, sack.end)) {
|
|
/*
|
|
* ACKs some data in middle of a hole; need to
|
|
* split current hole
|
|
*/
|
|
if (tp->snd_numholes >= TCP_SACKHOLE_LIMIT)
|
|
goto dropped;
|
|
temp = (struct sackhole *)
|
|
pool_get(&sackhl_pool, PR_NOWAIT);
|
|
if (temp == NULL)
|
|
goto dropped; /* ENOBUFS */
|
|
temp->next = cur->next;
|
|
temp->start = sack.end;
|
|
temp->end = cur->end;
|
|
temp->dups = cur->dups;
|
|
temp->rxmit = SEQ_MAX(cur->rxmit, temp->start);
|
|
cur->end = sack.start;
|
|
cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
|
|
cur->dups++;
|
|
if (((sack.end - cur->end)/tp->t_maxseg) >=
|
|
tcprexmtthresh)
|
|
cur->dups = tcprexmtthresh;
|
|
cur->next = temp;
|
|
p = temp;
|
|
cur = p->next;
|
|
tp->snd_numholes++;
|
|
}
|
|
}
|
|
/* At this point, p points to the last hole on the list */
|
|
if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
|
|
/*
|
|
* Need to append new hole at end.
|
|
* Last hole is p (and it's not NULL).
|
|
*/
|
|
if (tp->snd_numholes >= TCP_SACKHOLE_LIMIT)
|
|
goto dropped;
|
|
temp = (struct sackhole *)
|
|
pool_get(&sackhl_pool, PR_NOWAIT);
|
|
if (temp == NULL)
|
|
goto dropped; /* ENOBUFS */
|
|
temp->start = tp->rcv_lastsack;
|
|
temp->end = sack.start;
|
|
temp->dups = min(tcprexmtthresh,
|
|
((sack.end - sack.start)/tp->t_maxseg));
|
|
if (temp->dups < 1)
|
|
temp->dups = 1;
|
|
temp->rxmit = temp->start;
|
|
temp->next = 0;
|
|
p->next = temp;
|
|
tp->rcv_lastsack = sack.end;
|
|
tp->snd_numholes++;
|
|
}
|
|
}
|
|
return;
|
|
dropped:
|
|
tcpstat_inc(tcps_sack_drop_opts);
|
|
}
|
|
|
|
/*
|
|
* Delete stale (i.e, cumulatively ack'd) holes. Hole is deleted only if
|
|
* it is completely acked; otherwise, tcp_sack_option(), called from
|
|
* tcp_dooptions(), will fix up the hole.
|
|
*/
|
|
void
|
|
tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
|
|
{
|
|
if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
|
|
/* max because this could be an older ack just arrived */
|
|
tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
|
|
th->th_ack : tp->snd_una;
|
|
struct sackhole *cur = tp->snd_holes;
|
|
struct sackhole *prev;
|
|
while (cur)
|
|
if (SEQ_LEQ(cur->end, lastack)) {
|
|
prev = cur;
|
|
cur = cur->next;
|
|
pool_put(&sackhl_pool, prev);
|
|
tp->snd_numholes--;
|
|
} else if (SEQ_LT(cur->start, lastack)) {
|
|
cur->start = lastack;
|
|
if (SEQ_LT(cur->rxmit, cur->start))
|
|
cur->rxmit = cur->start;
|
|
break;
|
|
} else
|
|
break;
|
|
tp->snd_holes = cur;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete all receiver-side SACK information.
|
|
*/
|
|
void
|
|
tcp_clean_sackreport(struct tcpcb *tp)
|
|
{
|
|
int i;
|
|
|
|
tp->rcv_numsacks = 0;
|
|
for (i = 0; i < MAX_SACK_BLKS; i++)
|
|
tp->sackblks[i].start = tp->sackblks[i].end=0;
|
|
|
|
}
|
|
|
|
/*
|
|
* Partial ack handling within a sack recovery episode. When a partial ack
|
|
* arrives, turn off retransmission timer, deflate the window, do not clear
|
|
* tp->t_dupacks.
|
|
*/
|
|
void
|
|
tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
|
|
{
|
|
/* Turn off retx. timer (will start again next segment) */
|
|
TCP_TIMER_DISARM(tp, TCPT_REXMT);
|
|
tp->t_rtttime = 0;
|
|
/*
|
|
* Partial window deflation. This statement relies on the
|
|
* fact that tp->snd_una has not been updated yet.
|
|
*/
|
|
if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
|
|
tp->snd_cwnd -= th->th_ack - tp->snd_una;
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
} else
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
tp->t_flags |= TF_NEEDOUTPUT;
|
|
}
|
|
|
|
/*
|
|
* Pull out of band byte out of a segment so
|
|
* it doesn't appear in the user's data queue.
|
|
* It is still reflected in the segment length for
|
|
* sequencing purposes.
|
|
*/
|
|
void
|
|
tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
|
|
{
|
|
int cnt = off + urgent - 1;
|
|
|
|
while (cnt >= 0) {
|
|
if (m->m_len > cnt) {
|
|
char *cp = mtod(m, caddr_t) + cnt;
|
|
struct tcpcb *tp = sototcpcb(so);
|
|
|
|
tp->t_iobc = *cp;
|
|
tp->t_oobflags |= TCPOOB_HAVEDATA;
|
|
memmove(cp, cp + 1, m->m_len - cnt - 1);
|
|
m->m_len--;
|
|
return;
|
|
}
|
|
cnt -= m->m_len;
|
|
m = m->m_next;
|
|
if (m == NULL)
|
|
break;
|
|
}
|
|
panic("tcp_pulloutofband");
|
|
}
|
|
|
|
/*
|
|
* Collect new round-trip time estimate
|
|
* and update averages and current timeout.
|
|
*/
|
|
void
|
|
tcp_xmit_timer(struct tcpcb *tp, int32_t rtt)
|
|
{
|
|
int delta, rttmin;
|
|
|
|
if (rtt < 0)
|
|
rtt = 0;
|
|
else if (rtt > TCP_RTT_MAX)
|
|
rtt = TCP_RTT_MAX;
|
|
|
|
tcpstat_inc(tcps_rttupdated);
|
|
if (tp->t_srtt != 0) {
|
|
/*
|
|
* delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
|
|
* after the binary point (scaled by 4), whereas
|
|
* srtt is stored as fixed point with 5 bits after the
|
|
* binary point (i.e., scaled by 32). The following magic
|
|
* is equivalent to the smoothing algorithm in rfc793 with
|
|
* an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
|
|
* point).
|
|
*/
|
|
delta = (rtt << TCP_RTT_BASE_SHIFT) -
|
|
(tp->t_srtt >> TCP_RTT_SHIFT);
|
|
if ((tp->t_srtt += delta) <= 0)
|
|
tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT;
|
|
/*
|
|
* We accumulate a smoothed rtt variance (actually, a
|
|
* smoothed mean difference), then set the retransmit
|
|
* timer to smoothed rtt + 4 times the smoothed variance.
|
|
* rttvar is stored as fixed point with 4 bits after the
|
|
* binary point (scaled by 16). The following is
|
|
* equivalent to rfc793 smoothing with an alpha of .75
|
|
* (rttvar = rttvar*3/4 + |delta| / 4). This replaces
|
|
* rfc793's wired-in beta.
|
|
*/
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
|
|
if ((tp->t_rttvar += delta) <= 0)
|
|
tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT;
|
|
} else {
|
|
/*
|
|
* No rtt measurement yet - use the unsmoothed rtt.
|
|
* Set the variance to half the rtt (so our first
|
|
* retransmit happens at 3*rtt).
|
|
*/
|
|
tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT);
|
|
tp->t_rttvar = (rtt + 1) <<
|
|
(TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
|
|
}
|
|
tp->t_rtttime = 0;
|
|
tp->t_rxtshift = 0;
|
|
|
|
/*
|
|
* the retransmit should happen at rtt + 4 * rttvar.
|
|
* Because of the way we do the smoothing, srtt and rttvar
|
|
* will each average +1/2 tick of bias. When we compute
|
|
* the retransmit timer, we want 1/2 tick of rounding and
|
|
* 1 extra tick because of +-1/2 tick uncertainty in the
|
|
* firing of the timer. The bias will give us exactly the
|
|
* 1.5 tick we need. But, because the bias is
|
|
* statistical, we have to test that we don't drop below
|
|
* the minimum feasible timer (which is 2 ticks).
|
|
*/
|
|
rttmin = min(max(tp->t_rttmin, rtt + 2 * (TCP_TIME(1) / hz)),
|
|
TCPTV_REXMTMAX);
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
|
|
|
|
/*
|
|
* We received an ack for a packet that wasn't retransmitted;
|
|
* it is probably safe to discard any error indications we've
|
|
* received recently. This isn't quite right, but close enough
|
|
* for now (a route might have failed after we sent a segment,
|
|
* and the return path might not be symmetrical).
|
|
*/
|
|
tp->t_softerror = 0;
|
|
}
|
|
|
|
/*
|
|
* Determine a reasonable value for maxseg size.
|
|
* If the route is known, check route for mtu.
|
|
* If none, use an mss that can be handled on the outgoing
|
|
* interface without forcing IP to fragment; if bigger than
|
|
* an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
|
|
* to utilize large mbufs. If no route is found, route has no mtu,
|
|
* or the destination isn't local, use a default, hopefully conservative
|
|
* size (usually 512 or the default IP max size, but no more than the mtu
|
|
* of the interface), as we can't discover anything about intervening
|
|
* gateways or networks. We also initialize the congestion/slow start
|
|
* window to be a single segment if the destination isn't local.
|
|
* While looking at the routing entry, we also initialize other path-dependent
|
|
* parameters from pre-set or cached values in the routing entry.
|
|
*
|
|
* Also take into account the space needed for options that we
|
|
* send regularly. Make maxseg shorter by that amount to assure
|
|
* that we can send maxseg amount of data even when the options
|
|
* are present. Store the upper limit of the length of options plus
|
|
* data in maxopd.
|
|
*
|
|
* NOTE: offer == -1 indicates that the maxseg size changed due to
|
|
* Path MTU discovery.
|
|
*/
|
|
int
|
|
tcp_mss(struct tcpcb *tp, int offer)
|
|
{
|
|
struct rtentry *rt;
|
|
struct ifnet *ifp = NULL;
|
|
int mss, mssopt;
|
|
int iphlen;
|
|
struct inpcb *inp;
|
|
|
|
inp = tp->t_inpcb;
|
|
|
|
mssopt = mss = tcp_mssdflt;
|
|
|
|
rt = in_pcbrtentry(inp);
|
|
|
|
if (rt == NULL)
|
|
goto out;
|
|
|
|
ifp = if_get(rt->rt_ifidx);
|
|
if (ifp == NULL)
|
|
goto out;
|
|
|
|
switch (tp->pf) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
iphlen = sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
case AF_INET:
|
|
iphlen = sizeof(struct ip);
|
|
break;
|
|
default:
|
|
/* the family does not support path MTU discovery */
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* if there's an mtu associated with the route and we support
|
|
* path MTU discovery for the underlying protocol family, use it.
|
|
*/
|
|
if (rt->rt_mtu) {
|
|
/*
|
|
* One may wish to lower MSS to take into account options,
|
|
* especially security-related options.
|
|
*/
|
|
if (tp->pf == AF_INET6 && rt->rt_mtu < IPV6_MMTU) {
|
|
/*
|
|
* RFC2460 section 5, last paragraph: if path MTU is
|
|
* smaller than 1280, use 1280 as packet size and
|
|
* attach fragment header.
|
|
*/
|
|
mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
|
|
sizeof(struct tcphdr);
|
|
} else {
|
|
mss = rt->rt_mtu - iphlen -
|
|
sizeof(struct tcphdr);
|
|
}
|
|
} else if (ifp->if_flags & IFF_LOOPBACK) {
|
|
mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
|
|
} else if (tp->pf == AF_INET) {
|
|
if (ip_mtudisc)
|
|
mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
|
|
}
|
|
#ifdef INET6
|
|
else if (tp->pf == AF_INET6) {
|
|
/*
|
|
* for IPv6, path MTU discovery is always turned on,
|
|
* or the node must use packet size <= 1280.
|
|
*/
|
|
mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
/* Calculate the value that we offer in TCPOPT_MAXSEG */
|
|
if (offer != -1) {
|
|
mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
|
|
mssopt = max(tcp_mssdflt, mssopt);
|
|
}
|
|
out:
|
|
if_put(ifp);
|
|
/*
|
|
* The current mss, t_maxseg, is initialized to the default value.
|
|
* If we compute a smaller value, reduce the current mss.
|
|
* If we compute a larger value, return it for use in sending
|
|
* a max seg size option, but don't store it for use
|
|
* unless we received an offer at least that large from peer.
|
|
*
|
|
* However, do not accept offers lower than the minimum of
|
|
* the interface MTU and 216.
|
|
*/
|
|
if (offer > 0)
|
|
tp->t_peermss = offer;
|
|
if (tp->t_peermss)
|
|
mss = min(mss, max(tp->t_peermss, 216));
|
|
|
|
/* sanity - at least max opt. space */
|
|
mss = max(mss, 64);
|
|
|
|
/*
|
|
* maxopd stores the maximum length of data AND options
|
|
* in a segment; maxseg is the amount of data in a normal
|
|
* segment. We need to store this value (maxopd) apart
|
|
* from maxseg, because now every segment carries options
|
|
* and thus we normally have somewhat less data in segments.
|
|
*/
|
|
tp->t_maxopd = mss;
|
|
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
|
|
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
|
|
mss -= TCPOLEN_TSTAMP_APPA;
|
|
#ifdef TCP_SIGNATURE
|
|
if (tp->t_flags & TF_SIGNATURE)
|
|
mss -= TCPOLEN_SIGLEN;
|
|
#endif
|
|
|
|
if (offer == -1) {
|
|
/* mss changed due to Path MTU discovery */
|
|
tp->t_flags &= ~TF_PMTUD_PEND;
|
|
tp->t_pmtud_mtu_sent = 0;
|
|
tp->t_pmtud_mss_acked = 0;
|
|
if (mss < tp->t_maxseg) {
|
|
/*
|
|
* Follow suggestion in RFC 2414 to reduce the
|
|
* congestion window by the ratio of the old
|
|
* segment size to the new segment size.
|
|
*/
|
|
tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
|
|
mss, mss);
|
|
}
|
|
} else if (tcp_do_rfc3390 == 2) {
|
|
/* increase initial window */
|
|
tp->snd_cwnd = ulmin(10 * mss, ulmax(2 * mss, 14600));
|
|
} else if (tcp_do_rfc3390) {
|
|
/* increase initial window */
|
|
tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
|
|
} else
|
|
tp->snd_cwnd = mss;
|
|
|
|
tp->t_maxseg = mss;
|
|
|
|
return (offer != -1 ? mssopt : mss);
|
|
}
|
|
|
|
u_int
|
|
tcp_hdrsz(struct tcpcb *tp)
|
|
{
|
|
u_int hlen;
|
|
|
|
switch (tp->pf) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
hlen = sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
case AF_INET:
|
|
hlen = sizeof(struct ip);
|
|
break;
|
|
default:
|
|
hlen = 0;
|
|
break;
|
|
}
|
|
hlen += sizeof(struct tcphdr);
|
|
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
|
|
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
|
|
hlen += TCPOLEN_TSTAMP_APPA;
|
|
#ifdef TCP_SIGNATURE
|
|
if (tp->t_flags & TF_SIGNATURE)
|
|
hlen += TCPOLEN_SIGLEN;
|
|
#endif
|
|
return (hlen);
|
|
}
|
|
|
|
/*
|
|
* Set connection variables based on the effective MSS.
|
|
* We are passed the TCPCB for the actual connection. If we
|
|
* are the server, we are called by the compressed state engine
|
|
* when the 3-way handshake is complete. If we are the client,
|
|
* we are called when we receive the SYN,ACK from the server.
|
|
*
|
|
* NOTE: The t_maxseg value must be initialized in the TCPCB
|
|
* before this routine is called!
|
|
*/
|
|
void
|
|
tcp_mss_update(struct tcpcb *tp)
|
|
{
|
|
int mss;
|
|
u_long bufsize;
|
|
struct rtentry *rt;
|
|
struct socket *so;
|
|
|
|
so = tp->t_inpcb->inp_socket;
|
|
mss = tp->t_maxseg;
|
|
|
|
rt = in_pcbrtentry(tp->t_inpcb);
|
|
|
|
if (rt == NULL)
|
|
return;
|
|
|
|
bufsize = so->so_snd.sb_hiwat;
|
|
if (bufsize < mss) {
|
|
mss = bufsize;
|
|
/* Update t_maxseg and t_maxopd */
|
|
tcp_mss(tp, mss);
|
|
} else {
|
|
bufsize = roundup(bufsize, mss);
|
|
if (bufsize > sb_max)
|
|
bufsize = sb_max;
|
|
(void)sbreserve(so, &so->so_snd, bufsize);
|
|
}
|
|
|
|
bufsize = so->so_rcv.sb_hiwat;
|
|
if (bufsize > mss) {
|
|
bufsize = roundup(bufsize, mss);
|
|
if (bufsize > sb_max)
|
|
bufsize = sb_max;
|
|
(void)sbreserve(so, &so->so_rcv, bufsize);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* When a partial ack arrives, force the retransmission of the
|
|
* next unacknowledged segment. Do not clear tp->t_dupacks.
|
|
* By setting snd_nxt to ti_ack, this forces retransmission timer
|
|
* to be started again.
|
|
*/
|
|
void
|
|
tcp_newreno_partialack(struct tcpcb *tp, struct tcphdr *th)
|
|
{
|
|
/*
|
|
* snd_una has not been updated and the socket send buffer
|
|
* not yet drained of the acked data, so we have to leave
|
|
* snd_una as it was to get the correct data offset in
|
|
* tcp_output().
|
|
*/
|
|
tcp_seq onxt = tp->snd_nxt;
|
|
u_long ocwnd = tp->snd_cwnd;
|
|
|
|
TCP_TIMER_DISARM(tp, TCPT_REXMT);
|
|
tp->t_rtttime = 0;
|
|
tp->snd_nxt = th->th_ack;
|
|
/*
|
|
* Set snd_cwnd to one segment beyond acknowledged offset
|
|
* (tp->snd_una not yet updated when this function is called)
|
|
*/
|
|
tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
|
|
(void)tcp_output(tp);
|
|
tp->snd_cwnd = ocwnd;
|
|
if (SEQ_GT(onxt, tp->snd_nxt))
|
|
tp->snd_nxt = onxt;
|
|
/*
|
|
* Partial window deflation. Relies on fact that tp->snd_una
|
|
* not updated yet.
|
|
*/
|
|
if (tp->snd_cwnd > th->th_ack - tp->snd_una)
|
|
tp->snd_cwnd -= th->th_ack - tp->snd_una;
|
|
else
|
|
tp->snd_cwnd = 0;
|
|
tp->snd_cwnd += tp->t_maxseg;
|
|
}
|
|
|
|
int
|
|
tcp_mss_adv(struct mbuf *m, int af)
|
|
{
|
|
int mss = 0;
|
|
int iphlen;
|
|
struct ifnet *ifp = NULL;
|
|
|
|
if (m && (m->m_flags & M_PKTHDR))
|
|
ifp = if_get(m->m_pkthdr.ph_ifidx);
|
|
|
|
switch (af) {
|
|
case AF_INET:
|
|
if (ifp != NULL)
|
|
mss = ifp->if_mtu;
|
|
iphlen = sizeof(struct ip);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (ifp != NULL)
|
|
mss = ifp->if_mtu;
|
|
iphlen = sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
default:
|
|
unhandled_af(af);
|
|
}
|
|
if_put(ifp);
|
|
mss = mss - iphlen - sizeof(struct tcphdr);
|
|
return (max(mss, tcp_mssdflt));
|
|
}
|
|
|
|
/*
|
|
* TCP compressed state engine. Currently used to hold compressed
|
|
* state for SYN_RECEIVED.
|
|
*/
|
|
|
|
/*
|
|
* Locks used to protect global data and struct members:
|
|
* N net lock
|
|
* S syn_cache_mtx tcp syn cache global mutex
|
|
*/
|
|
|
|
/* syn hash parameters */
|
|
int tcp_syn_hash_size = TCP_SYN_HASH_SIZE; /* [N] size of hash table */
|
|
int tcp_syn_cache_limit = /* [N] global entry limit */
|
|
TCP_SYN_HASH_SIZE * TCP_SYN_BUCKET_SIZE;
|
|
int tcp_syn_bucket_limit = /* [N] per bucket limit */
|
|
3 * TCP_SYN_BUCKET_SIZE;
|
|
int tcp_syn_use_limit = 100000; /* [N] reseed after uses */
|
|
|
|
struct pool syn_cache_pool;
|
|
struct syn_cache_set tcp_syn_cache[2];
|
|
int tcp_syn_cache_active;
|
|
struct mutex syn_cache_mtx = MUTEX_INITIALIZER(IPL_SOFTNET);
|
|
|
|
#define SYN_HASH(sa, sp, dp, rand) \
|
|
(((sa)->s_addr ^ (rand)[0]) * \
|
|
(((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp))) ^ (rand)[4]))
|
|
#ifndef INET6
|
|
#define SYN_HASHALL(hash, src, dst, rand) \
|
|
do { \
|
|
hash = SYN_HASH(&satosin_const(src)->sin_addr, \
|
|
satosin_const(src)->sin_port, \
|
|
satosin_const(dst)->sin_port, (rand)); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
#else
|
|
#define SYN_HASH6(sa, sp, dp, rand) \
|
|
(((sa)->s6_addr32[0] ^ (rand)[0]) * \
|
|
((sa)->s6_addr32[1] ^ (rand)[1]) * \
|
|
((sa)->s6_addr32[2] ^ (rand)[2]) * \
|
|
((sa)->s6_addr32[3] ^ (rand)[3]) * \
|
|
(((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp))) ^ (rand)[4]))
|
|
|
|
#define SYN_HASHALL(hash, src, dst, rand) \
|
|
do { \
|
|
switch ((src)->sa_family) { \
|
|
case AF_INET: \
|
|
hash = SYN_HASH(&satosin_const(src)->sin_addr, \
|
|
satosin_const(src)->sin_port, \
|
|
satosin_const(dst)->sin_port, (rand)); \
|
|
break; \
|
|
case AF_INET6: \
|
|
hash = SYN_HASH6(&satosin6_const(src)->sin6_addr, \
|
|
satosin6_const(src)->sin6_port, \
|
|
satosin6_const(dst)->sin6_port, (rand)); \
|
|
break; \
|
|
default: \
|
|
hash = 0; \
|
|
} \
|
|
} while (/*CONSTCOND*/0)
|
|
#endif /* INET6 */
|
|
|
|
void
|
|
syn_cache_rm(struct syn_cache *sc)
|
|
{
|
|
MUTEX_ASSERT_LOCKED(&syn_cache_mtx);
|
|
|
|
KASSERT(!ISSET(sc->sc_dynflags, SCF_DEAD));
|
|
SET(sc->sc_dynflags, SCF_DEAD);
|
|
TAILQ_REMOVE(&sc->sc_buckethead->sch_bucket, sc, sc_bucketq);
|
|
sc->sc_tp = NULL;
|
|
LIST_REMOVE(sc, sc_tpq);
|
|
refcnt_rele(&sc->sc_refcnt);
|
|
sc->sc_buckethead->sch_length--;
|
|
if (timeout_del(&sc->sc_timer))
|
|
refcnt_rele(&sc->sc_refcnt);
|
|
sc->sc_set->scs_count--;
|
|
}
|
|
|
|
void
|
|
syn_cache_put(struct syn_cache *sc)
|
|
{
|
|
if (refcnt_rele(&sc->sc_refcnt) == 0)
|
|
return;
|
|
|
|
/* Dealing with last reference, no lock needed. */
|
|
m_free(sc->sc_ipopts);
|
|
rtfree(sc->sc_route.ro_rt);
|
|
|
|
pool_put(&syn_cache_pool, sc);
|
|
}
|
|
|
|
void
|
|
syn_cache_init(void)
|
|
{
|
|
int i;
|
|
|
|
/* Initialize the hash buckets. */
|
|
tcp_syn_cache[0].scs_buckethead = mallocarray(tcp_syn_hash_size,
|
|
sizeof(struct syn_cache_head), M_SYNCACHE, M_WAITOK|M_ZERO);
|
|
tcp_syn_cache[1].scs_buckethead = mallocarray(tcp_syn_hash_size,
|
|
sizeof(struct syn_cache_head), M_SYNCACHE, M_WAITOK|M_ZERO);
|
|
tcp_syn_cache[0].scs_size = tcp_syn_hash_size;
|
|
tcp_syn_cache[1].scs_size = tcp_syn_hash_size;
|
|
for (i = 0; i < tcp_syn_hash_size; i++) {
|
|
TAILQ_INIT(&tcp_syn_cache[0].scs_buckethead[i].sch_bucket);
|
|
TAILQ_INIT(&tcp_syn_cache[1].scs_buckethead[i].sch_bucket);
|
|
}
|
|
|
|
/* Initialize the syn cache pool. */
|
|
pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, IPL_SOFTNET,
|
|
0, "syncache", NULL);
|
|
}
|
|
|
|
void
|
|
syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
|
|
{
|
|
struct syn_cache_set *set = &tcp_syn_cache[tcp_syn_cache_active];
|
|
struct syn_cache_head *scp;
|
|
struct syn_cache *sc2;
|
|
int i;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
MUTEX_ASSERT_LOCKED(&syn_cache_mtx);
|
|
|
|
/*
|
|
* If there are no entries in the hash table, reinitialize
|
|
* the hash secrets. To avoid useless cache swaps and
|
|
* reinitialization, use it until the limit is reached.
|
|
* An empty cache is also the opportunity to resize the hash.
|
|
*/
|
|
if (set->scs_count == 0 && set->scs_use <= 0) {
|
|
set->scs_use = tcp_syn_use_limit;
|
|
if (set->scs_size != tcp_syn_hash_size) {
|
|
scp = mallocarray(tcp_syn_hash_size, sizeof(struct
|
|
syn_cache_head), M_SYNCACHE, M_NOWAIT|M_ZERO);
|
|
if (scp == NULL) {
|
|
/* Try again next time. */
|
|
set->scs_use = 0;
|
|
} else {
|
|
free(set->scs_buckethead, M_SYNCACHE,
|
|
set->scs_size *
|
|
sizeof(struct syn_cache_head));
|
|
set->scs_buckethead = scp;
|
|
set->scs_size = tcp_syn_hash_size;
|
|
for (i = 0; i < tcp_syn_hash_size; i++)
|
|
TAILQ_INIT(&scp[i].sch_bucket);
|
|
}
|
|
}
|
|
arc4random_buf(set->scs_random, sizeof(set->scs_random));
|
|
tcpstat_inc(tcps_sc_seedrandom);
|
|
}
|
|
|
|
SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa,
|
|
set->scs_random);
|
|
scp = &set->scs_buckethead[sc->sc_hash % set->scs_size];
|
|
sc->sc_buckethead = scp;
|
|
|
|
/*
|
|
* Make sure that we don't overflow the per-bucket
|
|
* limit or the total cache size limit.
|
|
*/
|
|
if (scp->sch_length >= tcp_syn_bucket_limit) {
|
|
tcpstat_inc(tcps_sc_bucketoverflow);
|
|
/*
|
|
* Someone might attack our bucket hash function. Reseed
|
|
* with random as soon as the passive syn cache gets empty.
|
|
*/
|
|
set->scs_use = 0;
|
|
/*
|
|
* The bucket is full. Toss the oldest element in the
|
|
* bucket. This will be the first entry in the bucket.
|
|
*/
|
|
sc2 = TAILQ_FIRST(&scp->sch_bucket);
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* This should never happen; we should always find an
|
|
* entry in our bucket.
|
|
*/
|
|
if (sc2 == NULL)
|
|
panic("%s: bucketoverflow: impossible", __func__);
|
|
#endif
|
|
syn_cache_rm(sc2);
|
|
syn_cache_put(sc2);
|
|
} else if (set->scs_count >= tcp_syn_cache_limit) {
|
|
struct syn_cache_head *scp2, *sce;
|
|
|
|
tcpstat_inc(tcps_sc_overflowed);
|
|
/*
|
|
* The cache is full. Toss the oldest entry in the
|
|
* first non-empty bucket we can find.
|
|
*
|
|
* XXX We would really like to toss the oldest
|
|
* entry in the cache, but we hope that this
|
|
* condition doesn't happen very often.
|
|
*/
|
|
scp2 = scp;
|
|
if (TAILQ_EMPTY(&scp2->sch_bucket)) {
|
|
sce = &set->scs_buckethead[set->scs_size];
|
|
for (++scp2; scp2 != scp; scp2++) {
|
|
if (scp2 >= sce)
|
|
scp2 = &set->scs_buckethead[0];
|
|
if (! TAILQ_EMPTY(&scp2->sch_bucket))
|
|
break;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* This should never happen; we should always find a
|
|
* non-empty bucket.
|
|
*/
|
|
if (scp2 == scp)
|
|
panic("%s: cacheoverflow: impossible",
|
|
__func__);
|
|
#endif
|
|
}
|
|
sc2 = TAILQ_FIRST(&scp2->sch_bucket);
|
|
syn_cache_rm(sc2);
|
|
syn_cache_put(sc2);
|
|
}
|
|
|
|
/*
|
|
* Initialize the entry's timer. We don't estimate RTT
|
|
* with SYNs, so each packet starts with the default RTT
|
|
* and each timer step has a fixed timeout value.
|
|
*/
|
|
sc->sc_rxttot = 0;
|
|
sc->sc_rxtshift = 0;
|
|
TCPT_RANGESET(sc->sc_rxtcur,
|
|
TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
|
|
TCPTV_REXMTMAX);
|
|
if (timeout_add_msec(&sc->sc_timer, sc->sc_rxtcur))
|
|
refcnt_take(&sc->sc_refcnt);
|
|
|
|
/* Link it from tcpcb entry */
|
|
refcnt_take(&sc->sc_refcnt);
|
|
LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
|
|
|
|
/* Put it into the bucket. */
|
|
TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
|
|
scp->sch_length++;
|
|
sc->sc_set = set;
|
|
set->scs_count++;
|
|
set->scs_use--;
|
|
|
|
tcpstat_inc(tcps_sc_added);
|
|
|
|
/*
|
|
* If the active cache has exceeded its use limit and
|
|
* the passive syn cache is empty, exchange their roles.
|
|
*/
|
|
if (set->scs_use <= 0 &&
|
|
tcp_syn_cache[!tcp_syn_cache_active].scs_count == 0)
|
|
tcp_syn_cache_active = !tcp_syn_cache_active;
|
|
}
|
|
|
|
/*
|
|
* Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
|
|
* If we have retransmitted an entry the maximum number of times, expire
|
|
* that entry.
|
|
*/
|
|
void
|
|
syn_cache_timer(void *arg)
|
|
{
|
|
struct syn_cache *sc = arg;
|
|
uint64_t now;
|
|
int lastref;
|
|
|
|
mtx_enter(&syn_cache_mtx);
|
|
if (ISSET(sc->sc_dynflags, SCF_DEAD))
|
|
goto freeit;
|
|
|
|
if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
|
|
/* Drop it -- too many retransmissions. */
|
|
goto dropit;
|
|
}
|
|
|
|
/*
|
|
* Compute the total amount of time this entry has
|
|
* been on a queue. If this entry has been on longer
|
|
* than the keep alive timer would allow, expire it.
|
|
*/
|
|
sc->sc_rxttot += sc->sc_rxtcur;
|
|
if (sc->sc_rxttot >= READ_ONCE(tcptv_keep_init))
|
|
goto dropit;
|
|
|
|
/* Advance the timer back-off. */
|
|
sc->sc_rxtshift++;
|
|
TCPT_RANGESET(sc->sc_rxtcur,
|
|
TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
|
|
TCPTV_REXMTMAX);
|
|
if (timeout_add_msec(&sc->sc_timer, sc->sc_rxtcur))
|
|
refcnt_take(&sc->sc_refcnt);
|
|
mtx_leave(&syn_cache_mtx);
|
|
|
|
NET_LOCK();
|
|
now = tcp_now();
|
|
(void) syn_cache_respond(sc, NULL, now);
|
|
tcpstat_inc(tcps_sc_retransmitted);
|
|
NET_UNLOCK();
|
|
|
|
syn_cache_put(sc);
|
|
return;
|
|
|
|
dropit:
|
|
tcpstat_inc(tcps_sc_timed_out);
|
|
syn_cache_rm(sc);
|
|
/* Decrement reference of the timer and free object after remove. */
|
|
lastref = refcnt_rele(&sc->sc_refcnt);
|
|
KASSERT(lastref == 0);
|
|
(void)lastref;
|
|
freeit:
|
|
mtx_leave(&syn_cache_mtx);
|
|
syn_cache_put(sc);
|
|
}
|
|
|
|
/*
|
|
* Remove syn cache created by the specified tcb entry,
|
|
* because this does not make sense to keep them
|
|
* (if there's no tcb entry, syn cache entry will never be used)
|
|
*/
|
|
void
|
|
syn_cache_cleanup(struct tcpcb *tp)
|
|
{
|
|
struct syn_cache *sc, *nsc;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
|
|
mtx_enter(&syn_cache_mtx);
|
|
LIST_FOREACH_SAFE(sc, &tp->t_sc, sc_tpq, nsc) {
|
|
#ifdef DIAGNOSTIC
|
|
if (sc->sc_tp != tp)
|
|
panic("invalid sc_tp in syn_cache_cleanup");
|
|
#endif
|
|
syn_cache_rm(sc);
|
|
syn_cache_put(sc);
|
|
}
|
|
mtx_leave(&syn_cache_mtx);
|
|
|
|
KASSERT(LIST_EMPTY(&tp->t_sc));
|
|
}
|
|
|
|
/*
|
|
* Find an entry in the syn cache.
|
|
*/
|
|
struct syn_cache *
|
|
syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
|
|
struct syn_cache_head **headp, u_int rtableid)
|
|
{
|
|
struct syn_cache_set *sets[2];
|
|
struct syn_cache *sc;
|
|
struct syn_cache_head *scp;
|
|
u_int32_t hash;
|
|
int i;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
MUTEX_ASSERT_LOCKED(&syn_cache_mtx);
|
|
|
|
/* Check the active cache first, the passive cache is likely empty. */
|
|
sets[0] = &tcp_syn_cache[tcp_syn_cache_active];
|
|
sets[1] = &tcp_syn_cache[!tcp_syn_cache_active];
|
|
for (i = 0; i < 2; i++) {
|
|
if (sets[i]->scs_count == 0)
|
|
continue;
|
|
SYN_HASHALL(hash, src, dst, sets[i]->scs_random);
|
|
scp = &sets[i]->scs_buckethead[hash % sets[i]->scs_size];
|
|
*headp = scp;
|
|
TAILQ_FOREACH(sc, &scp->sch_bucket, sc_bucketq) {
|
|
if (sc->sc_hash != hash)
|
|
continue;
|
|
if (!bcmp(&sc->sc_src, src, src->sa_len) &&
|
|
!bcmp(&sc->sc_dst, dst, dst->sa_len) &&
|
|
rtable_l2(rtableid) == rtable_l2(sc->sc_rtableid))
|
|
return (sc);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* This function gets called when we receive an ACK for a
|
|
* socket in the LISTEN state. We look up the connection
|
|
* in the syn cache, and if its there, we pull it out of
|
|
* the cache and turn it into a full-blown connection in
|
|
* the SYN-RECEIVED state.
|
|
*
|
|
* The return values may not be immediately obvious, and their effects
|
|
* can be subtle, so here they are:
|
|
*
|
|
* NULL SYN was not found in cache; caller should drop the
|
|
* packet and send an RST.
|
|
*
|
|
* -1 We were unable to create the new connection, and are
|
|
* aborting it. An ACK,RST is being sent to the peer
|
|
* (unless we got screwy sequence numbers; see below),
|
|
* because the 3-way handshake has been completed. Caller
|
|
* should not free the mbuf, since we may be using it. If
|
|
* we are not, we will free it.
|
|
*
|
|
* Otherwise, the return value is a pointer to the new socket
|
|
* associated with the connection.
|
|
*/
|
|
struct socket *
|
|
syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
|
|
u_int hlen, u_int tlen, struct socket *so, struct mbuf *m, uint64_t now)
|
|
{
|
|
struct syn_cache *sc;
|
|
struct syn_cache_head *scp;
|
|
struct inpcb *inp, *oldinp;
|
|
struct tcpcb *tp = NULL;
|
|
struct mbuf *am;
|
|
struct socket *oso;
|
|
u_int rtableid;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
|
|
mtx_enter(&syn_cache_mtx);
|
|
sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)->inp_rtableid);
|
|
if (sc == NULL) {
|
|
mtx_leave(&syn_cache_mtx);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Verify the sequence and ack numbers. Try getting the correct
|
|
* response again.
|
|
*/
|
|
if ((th->th_ack != sc->sc_iss + 1) ||
|
|
SEQ_LEQ(th->th_seq, sc->sc_irs) ||
|
|
SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
|
|
refcnt_take(&sc->sc_refcnt);
|
|
mtx_leave(&syn_cache_mtx);
|
|
(void) syn_cache_respond(sc, m, now);
|
|
syn_cache_put(sc);
|
|
return ((struct socket *)(-1));
|
|
}
|
|
|
|
/* Remove this cache entry */
|
|
syn_cache_rm(sc);
|
|
mtx_leave(&syn_cache_mtx);
|
|
|
|
/*
|
|
* Ok, create the full blown connection, and set things up
|
|
* as they would have been set up if we had created the
|
|
* connection when the SYN arrived. If we can't create
|
|
* the connection, abort it.
|
|
*/
|
|
oso = so;
|
|
so = sonewconn(so, SS_ISCONNECTED, M_DONTWAIT);
|
|
if (so == NULL)
|
|
goto resetandabort;
|
|
|
|
oldinp = sotoinpcb(oso);
|
|
inp = sotoinpcb(so);
|
|
|
|
#ifdef IPSEC
|
|
/*
|
|
* We need to copy the required security levels
|
|
* from the old pcb. Ditto for any other
|
|
* IPsec-related information.
|
|
*/
|
|
memcpy(inp->inp_seclevel, oldinp->inp_seclevel,
|
|
sizeof(oldinp->inp_seclevel));
|
|
#endif /* IPSEC */
|
|
#ifdef INET6
|
|
/*
|
|
* inp still has the OLD in_pcb stuff, set the
|
|
* v6-related flags on the new guy, too.
|
|
*/
|
|
inp->inp_flags |= (oldinp->inp_flags & INP_IPV6);
|
|
if (inp->inp_flags & INP_IPV6) {
|
|
inp->inp_ipv6.ip6_hlim = oldinp->inp_ipv6.ip6_hlim;
|
|
inp->inp_hops = oldinp->inp_hops;
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
inp->inp_ip.ip_ttl = oldinp->inp_ip.ip_ttl;
|
|
inp->inp_options = ip_srcroute(m);
|
|
if (inp->inp_options == NULL) {
|
|
inp->inp_options = sc->sc_ipopts;
|
|
sc->sc_ipopts = NULL;
|
|
}
|
|
}
|
|
|
|
/* inherit rtable from listening socket */
|
|
rtableid = sc->sc_rtableid;
|
|
#if NPF > 0
|
|
if (m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) {
|
|
struct pf_divert *divert;
|
|
|
|
divert = pf_find_divert(m);
|
|
KASSERT(divert != NULL);
|
|
rtableid = divert->rdomain;
|
|
}
|
|
#endif
|
|
in_pcbset_laddr(inp, dst, rtableid);
|
|
|
|
/*
|
|
* Give the new socket our cached route reference.
|
|
*/
|
|
inp->inp_route = sc->sc_route; /* struct assignment */
|
|
sc->sc_route.ro_rt = NULL;
|
|
|
|
am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
|
|
if (am == NULL)
|
|
goto resetandabort;
|
|
am->m_len = src->sa_len;
|
|
memcpy(mtod(am, caddr_t), src, src->sa_len);
|
|
if (in_pcbconnect(inp, am)) {
|
|
(void) m_free(am);
|
|
goto resetandabort;
|
|
}
|
|
(void) m_free(am);
|
|
|
|
tp = intotcpcb(inp);
|
|
tp->t_flags = sototcpcb(oso)->t_flags & (TF_NOPUSH|TF_NODELAY);
|
|
if (sc->sc_request_r_scale != 15) {
|
|
tp->requested_s_scale = sc->sc_requested_s_scale;
|
|
tp->request_r_scale = sc->sc_request_r_scale;
|
|
tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
|
|
}
|
|
if (ISSET(sc->sc_fixflags, SCF_TIMESTAMP))
|
|
tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
|
|
|
|
tp->t_template = tcp_template(tp);
|
|
if (tp->t_template == 0) {
|
|
tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
|
|
so = NULL;
|
|
goto abort;
|
|
}
|
|
tp->sack_enable = ISSET(sc->sc_fixflags, SCF_SACK_PERMIT);
|
|
tp->ts_modulate = sc->sc_modulate;
|
|
tp->ts_recent = sc->sc_timestamp;
|
|
tp->iss = sc->sc_iss;
|
|
tp->irs = sc->sc_irs;
|
|
tcp_sendseqinit(tp);
|
|
tp->snd_last = tp->snd_una;
|
|
#ifdef TCP_ECN
|
|
if (ISSET(sc->sc_fixflags, SCF_ECN_PERMIT)) {
|
|
tp->t_flags |= TF_ECN_PERMIT;
|
|
tcpstat_inc(tcps_ecn_accepts);
|
|
}
|
|
#endif
|
|
if (ISSET(sc->sc_fixflags, SCF_SACK_PERMIT))
|
|
tp->t_flags |= TF_SACK_PERMIT;
|
|
#ifdef TCP_SIGNATURE
|
|
if (ISSET(sc->sc_fixflags, SCF_SIGNATURE))
|
|
tp->t_flags |= TF_SIGNATURE;
|
|
#endif
|
|
tcp_rcvseqinit(tp);
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
tp->t_rcvtime = now;
|
|
tp->t_sndtime = now;
|
|
tp->t_rcvacktime = now;
|
|
tp->t_sndacktime = now;
|
|
TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
|
|
tcpstat_inc(tcps_accepts);
|
|
|
|
tcp_mss(tp, sc->sc_peermaxseg); /* sets t_maxseg */
|
|
if (sc->sc_peermaxseg)
|
|
tcp_mss_update(tp);
|
|
/* Reset initial window to 1 segment for retransmit */
|
|
if (READ_ONCE(sc->sc_rxtshift) > 0)
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
tp->snd_wl1 = sc->sc_irs;
|
|
tp->rcv_up = sc->sc_irs + 1;
|
|
|
|
/*
|
|
* This is what would have happened in tcp_output() when
|
|
* the SYN,ACK was sent.
|
|
*/
|
|
tp->snd_up = tp->snd_una;
|
|
tp->snd_max = tp->snd_nxt = tp->iss+1;
|
|
TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
|
|
if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
|
|
tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
|
|
tp->last_ack_sent = tp->rcv_nxt;
|
|
|
|
tcpstat_inc(tcps_sc_completed);
|
|
syn_cache_put(sc);
|
|
return (so);
|
|
|
|
resetandabort:
|
|
tcp_respond(NULL, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack, TH_RST,
|
|
m->m_pkthdr.ph_rtableid, now);
|
|
abort:
|
|
m_freem(m);
|
|
if (so != NULL)
|
|
soabort(so);
|
|
syn_cache_put(sc);
|
|
tcpstat_inc(tcps_sc_aborted);
|
|
return ((struct socket *)(-1));
|
|
}
|
|
|
|
/*
|
|
* This function is called when we get a RST for a
|
|
* non-existent connection, so that we can see if the
|
|
* connection is in the syn cache. If it is, zap it.
|
|
*/
|
|
|
|
void
|
|
syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
|
|
u_int rtableid)
|
|
{
|
|
struct syn_cache *sc;
|
|
struct syn_cache_head *scp;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
|
|
mtx_enter(&syn_cache_mtx);
|
|
sc = syn_cache_lookup(src, dst, &scp, rtableid);
|
|
if (sc == NULL) {
|
|
mtx_leave(&syn_cache_mtx);
|
|
return;
|
|
}
|
|
if (SEQ_LT(th->th_seq, sc->sc_irs) ||
|
|
SEQ_GT(th->th_seq, sc->sc_irs + 1)) {
|
|
mtx_leave(&syn_cache_mtx);
|
|
return;
|
|
}
|
|
syn_cache_rm(sc);
|
|
mtx_leave(&syn_cache_mtx);
|
|
tcpstat_inc(tcps_sc_reset);
|
|
syn_cache_put(sc);
|
|
}
|
|
|
|
void
|
|
syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
|
|
struct tcphdr *th, u_int rtableid)
|
|
{
|
|
struct syn_cache *sc;
|
|
struct syn_cache_head *scp;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
|
|
mtx_enter(&syn_cache_mtx);
|
|
sc = syn_cache_lookup(src, dst, &scp, rtableid);
|
|
if (sc == NULL) {
|
|
mtx_leave(&syn_cache_mtx);
|
|
return;
|
|
}
|
|
/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
|
|
if (ntohl (th->th_seq) != sc->sc_iss) {
|
|
mtx_leave(&syn_cache_mtx);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we've retransmitted 3 times and this is our second error,
|
|
* we remove the entry. Otherwise, we allow it to continue on.
|
|
* This prevents us from incorrectly nuking an entry during a
|
|
* spurious network outage.
|
|
*
|
|
* See tcp_notify().
|
|
*/
|
|
if (!ISSET(sc->sc_dynflags, SCF_UNREACH) || sc->sc_rxtshift < 3) {
|
|
SET(sc->sc_dynflags, SCF_UNREACH);
|
|
mtx_leave(&syn_cache_mtx);
|
|
return;
|
|
}
|
|
|
|
syn_cache_rm(sc);
|
|
mtx_leave(&syn_cache_mtx);
|
|
tcpstat_inc(tcps_sc_unreach);
|
|
syn_cache_put(sc);
|
|
}
|
|
|
|
/*
|
|
* Given a LISTEN socket and an inbound SYN request, add
|
|
* this to the syn cache, and send back a segment:
|
|
* <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
|
|
* to the source.
|
|
*
|
|
* IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
|
|
* Doing so would require that we hold onto the data and deliver it
|
|
* to the application. However, if we are the target of a SYN-flood
|
|
* DoS attack, an attacker could send data which would eventually
|
|
* consume all available buffer space if it were ACKed. By not ACKing
|
|
* the data, we avoid this DoS scenario.
|
|
*/
|
|
|
|
int
|
|
syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
|
|
u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
|
|
struct tcp_opt_info *oi, tcp_seq *issp, uint64_t now)
|
|
{
|
|
struct tcpcb tb, *tp;
|
|
long win;
|
|
struct syn_cache *sc;
|
|
struct syn_cache_head *scp;
|
|
struct mbuf *ipopts;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
|
|
tp = sototcpcb(so);
|
|
|
|
/*
|
|
* RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
|
|
*
|
|
* Note this check is performed in tcp_input() very early on.
|
|
*/
|
|
|
|
/*
|
|
* Initialize some local state.
|
|
*/
|
|
win = sbspace(so, &so->so_rcv);
|
|
if (win > TCP_MAXWIN)
|
|
win = TCP_MAXWIN;
|
|
|
|
bzero(&tb, sizeof(tb));
|
|
#ifdef TCP_SIGNATURE
|
|
if (optp || (tp->t_flags & TF_SIGNATURE)) {
|
|
#else
|
|
if (optp) {
|
|
#endif
|
|
tb.pf = tp->pf;
|
|
tb.sack_enable = tp->sack_enable;
|
|
tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
|
|
#ifdef TCP_SIGNATURE
|
|
if (tp->t_flags & TF_SIGNATURE)
|
|
tb.t_flags |= TF_SIGNATURE;
|
|
#endif
|
|
tb.t_state = TCPS_LISTEN;
|
|
if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi,
|
|
sotoinpcb(so)->inp_rtableid, now))
|
|
return (-1);
|
|
}
|
|
|
|
switch (src->sa_family) {
|
|
case AF_INET:
|
|
/*
|
|
* Remember the IP options, if any.
|
|
*/
|
|
ipopts = ip_srcroute(m);
|
|
break;
|
|
default:
|
|
ipopts = NULL;
|
|
}
|
|
|
|
/*
|
|
* See if we already have an entry for this connection.
|
|
* If we do, resend the SYN,ACK. We do not count this
|
|
* as a retransmission (XXX though maybe we should).
|
|
*/
|
|
mtx_enter(&syn_cache_mtx);
|
|
sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)->inp_rtableid);
|
|
if (sc != NULL) {
|
|
refcnt_take(&sc->sc_refcnt);
|
|
mtx_leave(&syn_cache_mtx);
|
|
tcpstat_inc(tcps_sc_dupesyn);
|
|
if (ipopts) {
|
|
/*
|
|
* If we were remembering a previous source route,
|
|
* forget it and use the new one we've been given.
|
|
*/
|
|
m_free(sc->sc_ipopts);
|
|
sc->sc_ipopts = ipopts;
|
|
}
|
|
sc->sc_timestamp = tb.ts_recent;
|
|
if (syn_cache_respond(sc, m, now) == 0) {
|
|
tcpstat_inc(tcps_sndacks);
|
|
tcpstat_inc(tcps_sndtotal);
|
|
}
|
|
syn_cache_put(sc);
|
|
return (0);
|
|
}
|
|
mtx_leave(&syn_cache_mtx);
|
|
|
|
sc = pool_get(&syn_cache_pool, PR_NOWAIT|PR_ZERO);
|
|
if (sc == NULL) {
|
|
m_free(ipopts);
|
|
return (-1);
|
|
}
|
|
refcnt_init_trace(&sc->sc_refcnt, DT_REFCNT_IDX_SYNCACHE);
|
|
timeout_set_flags(&sc->sc_timer, syn_cache_timer, sc,
|
|
KCLOCK_NONE, TIMEOUT_PROC | TIMEOUT_MPSAFE);
|
|
|
|
/*
|
|
* Fill in the cache, and put the necessary IP and TCP
|
|
* options into the reply.
|
|
*/
|
|
memcpy(&sc->sc_src, src, src->sa_len);
|
|
memcpy(&sc->sc_dst, dst, dst->sa_len);
|
|
sc->sc_rtableid = sotoinpcb(so)->inp_rtableid;
|
|
sc->sc_ipopts = ipopts;
|
|
sc->sc_irs = th->th_seq;
|
|
|
|
sc->sc_iss = issp ? *issp : arc4random();
|
|
sc->sc_peermaxseg = oi->maxseg;
|
|
sc->sc_ourmaxseg = tcp_mss_adv(m, sc->sc_src.sa.sa_family);
|
|
sc->sc_win = win;
|
|
sc->sc_timestamp = tb.ts_recent;
|
|
if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
|
|
(TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
|
|
SET(sc->sc_fixflags, SCF_TIMESTAMP);
|
|
sc->sc_modulate = arc4random();
|
|
}
|
|
if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
|
sc->sc_requested_s_scale = tb.requested_s_scale;
|
|
sc->sc_request_r_scale = 0;
|
|
/*
|
|
* Pick the smallest possible scaling factor that
|
|
* will still allow us to scale up to sb_max.
|
|
*
|
|
* We do this because there are broken firewalls that
|
|
* will corrupt the window scale option, leading to
|
|
* the other endpoint believing that our advertised
|
|
* window is unscaled. At scale factors larger than
|
|
* 5 the unscaled window will drop below 1500 bytes,
|
|
* leading to serious problems when traversing these
|
|
* broken firewalls.
|
|
*
|
|
* With the default sbmax of 256K, a scale factor
|
|
* of 3 will be chosen by this algorithm. Those who
|
|
* choose a larger sbmax should watch out
|
|
* for the compatibility problems mentioned above.
|
|
*
|
|
* RFC1323: The Window field in a SYN (i.e., a <SYN>
|
|
* or <SYN,ACK>) segment itself is never scaled.
|
|
*/
|
|
while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
|
|
(TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
|
|
sc->sc_request_r_scale++;
|
|
} else {
|
|
sc->sc_requested_s_scale = 15;
|
|
sc->sc_request_r_scale = 15;
|
|
}
|
|
#ifdef TCP_ECN
|
|
/*
|
|
* if both ECE and CWR flag bits are set, peer is ECN capable.
|
|
*/
|
|
if (tcp_do_ecn &&
|
|
(th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
|
|
SET(sc->sc_fixflags, SCF_ECN_PERMIT);
|
|
#endif
|
|
/*
|
|
* Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
|
|
* (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
|
|
*/
|
|
if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
|
|
SET(sc->sc_fixflags, SCF_SACK_PERMIT);
|
|
#ifdef TCP_SIGNATURE
|
|
if (tb.t_flags & TF_SIGNATURE)
|
|
SET(sc->sc_fixflags, SCF_SIGNATURE);
|
|
#endif
|
|
sc->sc_tp = tp;
|
|
if (syn_cache_respond(sc, m, now) == 0) {
|
|
mtx_enter(&syn_cache_mtx);
|
|
/*
|
|
* XXXSMP Currently exclusive netlock prevents another insert
|
|
* after our syn_cache_lookup() and before syn_cache_insert().
|
|
* Double insert should be handled and not rely on netlock.
|
|
*/
|
|
syn_cache_insert(sc, tp);
|
|
mtx_leave(&syn_cache_mtx);
|
|
tcpstat_inc(tcps_sndacks);
|
|
tcpstat_inc(tcps_sndtotal);
|
|
} else {
|
|
syn_cache_put(sc);
|
|
tcpstat_inc(tcps_sc_dropped);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
syn_cache_respond(struct syn_cache *sc, struct mbuf *m, uint64_t now)
|
|
{
|
|
u_int8_t *optp;
|
|
int optlen, error;
|
|
u_int16_t tlen;
|
|
struct ip *ip = NULL;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6 = NULL;
|
|
#endif
|
|
struct tcphdr *th;
|
|
u_int hlen;
|
|
struct inpcb *inp;
|
|
|
|
NET_ASSERT_LOCKED();
|
|
|
|
switch (sc->sc_src.sa.sa_family) {
|
|
case AF_INET:
|
|
hlen = sizeof(struct ip);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
hlen = sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
default:
|
|
m_freem(m);
|
|
return (EAFNOSUPPORT);
|
|
}
|
|
|
|
/* Compute the size of the TCP options. */
|
|
optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
|
|
(ISSET(sc->sc_fixflags, SCF_SACK_PERMIT) ? 4 : 0) +
|
|
#ifdef TCP_SIGNATURE
|
|
(ISSET(sc->sc_fixflags, SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
|
|
#endif
|
|
(ISSET(sc->sc_fixflags, SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
|
|
|
|
tlen = hlen + sizeof(struct tcphdr) + optlen;
|
|
|
|
/*
|
|
* Create the IP+TCP header from scratch.
|
|
*/
|
|
m_freem(m);
|
|
#ifdef DIAGNOSTIC
|
|
if (max_linkhdr + tlen > MCLBYTES)
|
|
return (ENOBUFS);
|
|
#endif
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m && max_linkhdr + tlen > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
/* Fixup the mbuf. */
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = m->m_pkthdr.len = tlen;
|
|
m->m_pkthdr.ph_ifidx = 0;
|
|
m->m_pkthdr.ph_rtableid = sc->sc_rtableid;
|
|
memset(mtod(m, u_char *), 0, tlen);
|
|
|
|
switch (sc->sc_src.sa.sa_family) {
|
|
case AF_INET:
|
|
ip = mtod(m, struct ip *);
|
|
ip->ip_dst = sc->sc_src.sin.sin_addr;
|
|
ip->ip_src = sc->sc_dst.sin.sin_addr;
|
|
ip->ip_p = IPPROTO_TCP;
|
|
th = (struct tcphdr *)(ip + 1);
|
|
th->th_dport = sc->sc_src.sin.sin_port;
|
|
th->th_sport = sc->sc_dst.sin.sin_port;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
|
|
ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
th->th_dport = sc->sc_src.sin6.sin6_port;
|
|
th->th_sport = sc->sc_dst.sin6.sin6_port;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
th->th_seq = htonl(sc->sc_iss);
|
|
th->th_ack = htonl(sc->sc_irs + 1);
|
|
th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
|
|
th->th_flags = TH_SYN|TH_ACK;
|
|
#ifdef TCP_ECN
|
|
/* Set ECE for SYN-ACK if peer supports ECN. */
|
|
if (tcp_do_ecn && ISSET(sc->sc_fixflags, SCF_ECN_PERMIT))
|
|
th->th_flags |= TH_ECE;
|
|
#endif
|
|
th->th_win = htons(sc->sc_win);
|
|
/* th_sum already 0 */
|
|
/* th_urp already 0 */
|
|
|
|
/* Tack on the TCP options. */
|
|
optp = (u_int8_t *)(th + 1);
|
|
*optp++ = TCPOPT_MAXSEG;
|
|
*optp++ = 4;
|
|
*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
|
|
*optp++ = sc->sc_ourmaxseg & 0xff;
|
|
|
|
/* Include SACK_PERMIT_HDR option if peer has already done so. */
|
|
if (ISSET(sc->sc_fixflags, SCF_SACK_PERMIT)) {
|
|
*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
|
|
optp += 4;
|
|
}
|
|
|
|
if (sc->sc_request_r_scale != 15) {
|
|
*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
|
|
TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
|
|
sc->sc_request_r_scale);
|
|
optp += 4;
|
|
}
|
|
|
|
if (ISSET(sc->sc_fixflags, SCF_TIMESTAMP)) {
|
|
u_int32_t *lp = (u_int32_t *)(optp);
|
|
/* Form timestamp option as shown in appendix A of RFC 1323. */
|
|
*lp++ = htonl(TCPOPT_TSTAMP_HDR);
|
|
*lp++ = htonl(now + sc->sc_modulate);
|
|
*lp = htonl(sc->sc_timestamp);
|
|
optp += TCPOLEN_TSTAMP_APPA;
|
|
}
|
|
|
|
#ifdef TCP_SIGNATURE
|
|
if (ISSET(sc->sc_fixflags, SCF_SIGNATURE)) {
|
|
union sockaddr_union src, dst;
|
|
struct tdb *tdb;
|
|
|
|
bzero(&src, sizeof(union sockaddr_union));
|
|
bzero(&dst, sizeof(union sockaddr_union));
|
|
src.sa.sa_len = sc->sc_src.sa.sa_len;
|
|
src.sa.sa_family = sc->sc_src.sa.sa_family;
|
|
dst.sa.sa_len = sc->sc_dst.sa.sa_len;
|
|
dst.sa.sa_family = sc->sc_dst.sa.sa_family;
|
|
|
|
switch (sc->sc_src.sa.sa_family) {
|
|
case 0: /*default to PF_INET*/
|
|
case AF_INET:
|
|
src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
|
|
dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
|
|
dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
tdb = gettdbbysrcdst(rtable_l2(sc->sc_rtableid),
|
|
0, &src, &dst, IPPROTO_TCP);
|
|
if (tdb == NULL) {
|
|
m_freem(m);
|
|
return (EPERM);
|
|
}
|
|
|
|
/* Send signature option */
|
|
*(optp++) = TCPOPT_SIGNATURE;
|
|
*(optp++) = TCPOLEN_SIGNATURE;
|
|
|
|
if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
|
|
hlen, 0, optp) < 0) {
|
|
m_freem(m);
|
|
tdb_unref(tdb);
|
|
return (EINVAL);
|
|
}
|
|
tdb_unref(tdb);
|
|
optp += 16;
|
|
|
|
/* Pad options list to the next 32 bit boundary and
|
|
* terminate it.
|
|
*/
|
|
*optp++ = TCPOPT_NOP;
|
|
*optp++ = TCPOPT_EOL;
|
|
}
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
SET(m->m_pkthdr.csum_flags, M_TCP_CSUM_OUT);
|
|
|
|
/* use IPsec policy and ttl from listening socket, on SYN ACK */
|
|
mtx_enter(&syn_cache_mtx);
|
|
inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
|
|
mtx_leave(&syn_cache_mtx);
|
|
|
|
/*
|
|
* Fill in some straggling IP bits. Note the stack expects
|
|
* ip_len to be in host order, for convenience.
|
|
*/
|
|
switch (sc->sc_src.sa.sa_family) {
|
|
case AF_INET:
|
|
ip->ip_len = htons(tlen);
|
|
ip->ip_ttl = inp ? inp->inp_ip.ip_ttl : ip_defttl;
|
|
if (inp != NULL)
|
|
ip->ip_tos = inp->inp_ip.ip_tos;
|
|
|
|
error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
|
|
(ip_mtudisc ? IP_MTUDISC : 0), NULL,
|
|
inp ? inp->inp_seclevel : NULL, 0);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
|
|
ip6->ip6_vfc |= IPV6_VERSION;
|
|
/* ip6_plen will be updated in ip6_output() */
|
|
ip6->ip6_hlim = in6_selecthlim(inp);
|
|
/* leave flowlabel = 0, it is legal and require no state mgmt */
|
|
|
|
error = ip6_output(m, NULL /*XXX*/, &sc->sc_route, 0,
|
|
NULL, inp ? inp->inp_seclevel : NULL);
|
|
break;
|
|
#endif
|
|
}
|
|
return (error);
|
|
}
|