2618 lines
69 KiB
C
2618 lines
69 KiB
C
/* $OpenBSD: subr_witness.c,v 1.54 2024/09/25 18:24:13 bluhm Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008 Isilon Systems, Inc.
|
|
* Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
|
|
* Copyright (c) 1998 Berkeley Software Design, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Berkeley Software Design Inc's name may not be used to endorse or
|
|
* promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from BSDI Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp
|
|
* and BSDI Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp
|
|
*/
|
|
|
|
/*
|
|
* Implementation of the `witness' lock verifier. Originally implemented for
|
|
* mutexes in BSD/OS. Extended to handle generic lock objects and lock
|
|
* classes in FreeBSD.
|
|
*/
|
|
|
|
/*
|
|
* Main Entry: witness
|
|
* Pronunciation: 'wit-n&s
|
|
* Function: noun
|
|
* Etymology: Middle English witnesse, from Old English witnes knowledge,
|
|
* testimony, witness, from 2wit
|
|
* Date: before 12th century
|
|
* 1 : attestation of a fact or event : TESTIMONY
|
|
* 2 : one that gives evidence; specifically : one who testifies in
|
|
* a cause or before a judicial tribunal
|
|
* 3 : one asked to be present at a transaction so as to be able to
|
|
* testify to its having taken place
|
|
* 4 : one who has personal knowledge of something
|
|
* 5 a : something serving as evidence or proof : SIGN
|
|
* b : public affirmation by word or example of usually
|
|
* religious faith or conviction <the heroic witness to divine
|
|
* life -- Pilot>
|
|
* 6 capitalized : a member of the Jehovah's Witnesses
|
|
*/
|
|
|
|
/*
|
|
* Special rules concerning Giant and lock orders:
|
|
*
|
|
* 1) Giant must be acquired before any other mutexes. Stated another way,
|
|
* no other mutex may be held when Giant is acquired.
|
|
*
|
|
* 2) Giant must be released when blocking on a sleepable lock.
|
|
*
|
|
* This rule is less obvious, but is a result of Giant providing the same
|
|
* semantics as spl(). Basically, when a thread sleeps, it must release
|
|
* Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule
|
|
* 2).
|
|
*
|
|
* 3) Giant may be acquired before or after sleepable locks.
|
|
*
|
|
* This rule is also not quite as obvious. Giant may be acquired after
|
|
* a sleepable lock because it is a non-sleepable lock and non-sleepable
|
|
* locks may always be acquired while holding a sleepable lock. The second
|
|
* case, Giant before a sleepable lock, follows from rule 2) above. Suppose
|
|
* you have two threads T1 and T2 and a sleepable lock X. Suppose that T1
|
|
* acquires X and blocks on Giant. Then suppose that T2 acquires Giant and
|
|
* blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to
|
|
* execute. Thus, acquiring Giant both before and after a sleepable lock
|
|
* will not result in a lock order reversal.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#ifdef MULTIPROCESSOR
|
|
#include <sys/mplock.h>
|
|
#endif
|
|
#include <sys/mutex.h>
|
|
#include <sys/percpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/stacktrace.h>
|
|
#include <sys/stdint.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/witness.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#include <uvm/uvm_extern.h> /* uvm_pageboot_alloc */
|
|
|
|
#ifndef DDB
|
|
#error "DDB is required for WITNESS"
|
|
#endif
|
|
|
|
#include <machine/db_machdep.h>
|
|
|
|
#include <ddb/db_access.h>
|
|
#include <ddb/db_var.h>
|
|
#include <ddb/db_output.h>
|
|
|
|
#define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */
|
|
#define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */
|
|
#define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */
|
|
|
|
#ifndef WITNESS_COUNT
|
|
#define WITNESS_COUNT 1536
|
|
#endif
|
|
#define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */
|
|
#define WITNESS_PENDLIST (1024 + MAXCPUS)
|
|
|
|
/* Allocate 256 KB of stack data space */
|
|
#define WITNESS_LO_DATA_COUNT 2048
|
|
|
|
/* Prime, gives load factor of ~2 at full load */
|
|
#define WITNESS_LO_HASH_SIZE 1021
|
|
|
|
/*
|
|
* XXX: This is somewhat bogus, as we assume here that at most 2048 threads
|
|
* will hold LOCK_NCHILDREN locks. We handle failure ok, and we should
|
|
* probably be safe for the most part, but it's still a SWAG.
|
|
*/
|
|
#define LOCK_NCHILDREN 5
|
|
#define LOCK_CHILDCOUNT 2048
|
|
|
|
#define FULLGRAPH_SBUF_SIZE 512
|
|
|
|
/*
|
|
* These flags go in the witness relationship matrix and describe the
|
|
* relationship between any two struct witness objects.
|
|
*/
|
|
#define WITNESS_UNRELATED 0x00 /* No lock order relation. */
|
|
#define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */
|
|
#define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */
|
|
#define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */
|
|
#define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */
|
|
#define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR)
|
|
#define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT)
|
|
#define WITNESS_RELATED_MASK \
|
|
(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
|
|
#define WITNESS_REVERSAL 0x10 /* A lock order reversal has been
|
|
* observed. */
|
|
#define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */
|
|
#define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */
|
|
#define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */
|
|
|
|
/* Descendant to ancestor flags */
|
|
#define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
|
|
|
|
/* Ancestor to descendant flags */
|
|
#define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
|
|
|
|
#define WITNESS_INDEX_ASSERT(i) \
|
|
KASSERT((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
|
|
|
|
/*
|
|
* Lock classes. Each lock has a class which describes characteristics
|
|
* common to all types of locks of a given class.
|
|
*
|
|
* Spin locks in general must always protect against preemption, as it is
|
|
* an error to perform any type of context switch while holding a spin lock.
|
|
* Also, for an individual lock to be recursable, its class must allow
|
|
* recursion and the lock itself must explicitly allow recursion.
|
|
*/
|
|
|
|
struct lock_class {
|
|
const char *lc_name;
|
|
u_int lc_flags;
|
|
};
|
|
|
|
union lock_stack {
|
|
union lock_stack *ls_next;
|
|
struct stacktrace ls_stack;
|
|
};
|
|
|
|
#define LC_SLEEPLOCK 0x00000001 /* Sleep lock. */
|
|
#define LC_SPINLOCK 0x00000002 /* Spin lock. */
|
|
#define LC_SLEEPABLE 0x00000004 /* Sleeping allowed with this lock. */
|
|
#define LC_RECURSABLE 0x00000008 /* Locks of this type may recurse. */
|
|
#define LC_UPGRADABLE 0x00000010 /* Upgrades and downgrades permitted. */
|
|
|
|
/*
|
|
* Lock instances. A lock instance is the data associated with a lock while
|
|
* it is held by witness. For example, a lock instance will hold the
|
|
* recursion count of a lock. Lock instances are held in lists. Spin locks
|
|
* are held in a per-cpu list while sleep locks are held in per-thread list.
|
|
*/
|
|
struct lock_instance {
|
|
struct lock_object *li_lock;
|
|
union lock_stack *li_stack;
|
|
u_int li_flags;
|
|
};
|
|
|
|
/*
|
|
* A simple list type used to build the list of locks held by a thread
|
|
* or CPU. We can't simply embed the list in struct lock_object since a
|
|
* lock may be held by more than one thread if it is a shared lock. Locks
|
|
* are added to the head of the list, so we fill up each list entry from
|
|
* "the back" logically. To ease some of the arithmetic, we actually fill
|
|
* in each list entry the normal way (children[0] then children[1], etc.) but
|
|
* when we traverse the list we read children[count-1] as the first entry
|
|
* down to children[0] as the final entry.
|
|
*/
|
|
struct lock_list_entry {
|
|
struct lock_list_entry *ll_next;
|
|
struct lock_instance ll_children[LOCK_NCHILDREN];
|
|
int ll_count;
|
|
};
|
|
|
|
/*
|
|
* The main witness structure. One of these per named lock type in the system
|
|
* (for example, "vnode interlock").
|
|
*/
|
|
struct witness {
|
|
const struct lock_type *w_type;
|
|
const char *w_subtype;
|
|
uint32_t w_index; /* Index in the relationship matrix */
|
|
struct lock_class *w_class;
|
|
SLIST_ENTRY(witness) w_list; /* List of all witnesses. */
|
|
SLIST_ENTRY(witness) w_typelist; /* Witnesses of a type. */
|
|
SLIST_ENTRY(witness) w_hash_next; /* Linked list in
|
|
* hash buckets. */
|
|
uint16_t w_num_ancestors; /* direct/indirect
|
|
* ancestor count */
|
|
uint16_t w_num_descendants; /* direct/indirect
|
|
* descendant count */
|
|
int16_t w_ddb_level;
|
|
unsigned w_acquired:1;
|
|
unsigned w_displayed:1;
|
|
unsigned w_reversed:1;
|
|
};
|
|
|
|
SLIST_HEAD(witness_list, witness);
|
|
|
|
/*
|
|
* The witness hash table. Keys are witness names (const char *), elements are
|
|
* witness objects (struct witness *).
|
|
*/
|
|
struct witness_hash {
|
|
struct witness_list wh_array[WITNESS_HASH_SIZE];
|
|
uint32_t wh_size;
|
|
uint32_t wh_count;
|
|
};
|
|
|
|
/*
|
|
* Key type for the lock order data hash table.
|
|
*/
|
|
struct witness_lock_order_key {
|
|
uint16_t from;
|
|
uint16_t to;
|
|
};
|
|
|
|
struct witness_lock_order_data {
|
|
struct stacktrace wlod_stack;
|
|
struct witness_lock_order_key wlod_key;
|
|
struct witness_lock_order_data *wlod_next;
|
|
};
|
|
|
|
/*
|
|
* The witness lock order data hash table. Keys are witness index tuples
|
|
* (struct witness_lock_order_key), elements are lock order data objects
|
|
* (struct witness_lock_order_data).
|
|
*/
|
|
struct witness_lock_order_hash {
|
|
struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE];
|
|
u_int wloh_size;
|
|
u_int wloh_count;
|
|
};
|
|
|
|
struct witness_pendhelp {
|
|
const struct lock_type *wh_type;
|
|
struct lock_object *wh_lock;
|
|
};
|
|
|
|
struct witness_cpu {
|
|
struct lock_list_entry *wc_spinlocks;
|
|
struct lock_list_entry *wc_lle_cache;
|
|
union lock_stack *wc_stk_cache;
|
|
unsigned int wc_lle_count;
|
|
unsigned int wc_stk_count;
|
|
} __aligned(CACHELINESIZE);
|
|
|
|
#define WITNESS_LLE_CACHE_MAX 8
|
|
#define WITNESS_STK_CACHE_MAX (WITNESS_LLE_CACHE_MAX * LOCK_NCHILDREN)
|
|
|
|
struct witness_cpu witness_cpu[MAXCPUS];
|
|
|
|
/*
|
|
* Returns 0 if one of the locks is a spin lock and the other is not.
|
|
* Returns 1 otherwise.
|
|
*/
|
|
static __inline int
|
|
witness_lock_type_equal(struct witness *w1, struct witness *w2)
|
|
{
|
|
|
|
return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
|
|
(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
|
|
}
|
|
|
|
static __inline int
|
|
witness_lock_order_key_equal(const struct witness_lock_order_key *a,
|
|
const struct witness_lock_order_key *b)
|
|
{
|
|
|
|
return (a->from == b->from && a->to == b->to);
|
|
}
|
|
|
|
static int _isitmyx(struct witness *w1, struct witness *w2, int rmask,
|
|
const char *fname);
|
|
static void adopt(struct witness *parent, struct witness *child);
|
|
static struct witness *enroll(const struct lock_type *, const char *,
|
|
struct lock_class *);
|
|
static struct lock_instance *find_instance(struct lock_list_entry *list,
|
|
const struct lock_object *lock);
|
|
static int isitmychild(struct witness *parent, struct witness *child);
|
|
static int isitmydescendant(struct witness *parent, struct witness *child);
|
|
static void itismychild(struct witness *parent, struct witness *child);
|
|
#ifdef DDB
|
|
static void db_witness_add_fullgraph(struct witness *parent);
|
|
static void witness_ddb_compute_levels(void);
|
|
static void witness_ddb_display(int(*)(const char *fmt, ...));
|
|
static void witness_ddb_display_descendants(int(*)(const char *fmt, ...),
|
|
struct witness *, int indent);
|
|
static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
|
|
struct witness_list *list);
|
|
static void witness_ddb_level_descendants(struct witness *parent, int l);
|
|
static void witness_ddb_list(struct proc *td);
|
|
#endif
|
|
static int witness_alloc_stacks(void);
|
|
static void witness_debugger(int dump);
|
|
static void witness_free(struct witness *m);
|
|
static struct witness *witness_get(void);
|
|
static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
|
|
static struct witness *witness_hash_get(const struct lock_type *,
|
|
const char *);
|
|
static void witness_hash_put(struct witness *w);
|
|
static void witness_init_hash_tables(void);
|
|
static void witness_increment_graph_generation(void);
|
|
static int witness_list_locks(struct lock_list_entry **,
|
|
int (*)(const char *, ...));
|
|
static void witness_lock_list_free(struct lock_list_entry *lle);
|
|
static struct lock_list_entry *witness_lock_list_get(void);
|
|
static void witness_lock_stack_free(union lock_stack *stack);
|
|
static union lock_stack *witness_lock_stack_get(void);
|
|
static int witness_lock_order_add(struct witness *parent,
|
|
struct witness *child);
|
|
static int witness_lock_order_check(struct witness *parent,
|
|
struct witness *child);
|
|
static struct witness_lock_order_data *witness_lock_order_get(
|
|
struct witness *parent,
|
|
struct witness *child);
|
|
static void witness_list_lock(struct lock_instance *instance,
|
|
int (*prnt)(const char *fmt, ...));
|
|
static void witness_print_cycle(int (*prnt)(const char *fmt, ...),
|
|
struct witness *parent, struct witness *child);
|
|
static void witness_print_cycle_edge(int (*prnt)(const char *fmt, ...),
|
|
struct witness *parent, struct witness *child,
|
|
int step, int last);
|
|
static int witness_search(struct witness *w, struct witness *target,
|
|
struct witness **path, int depth, int *remaining);
|
|
static void witness_setflag(struct lock_object *lock, int flag, int set);
|
|
|
|
/*
|
|
* If set to 0, lock order checking is disabled. If set to -1,
|
|
* witness is completely disabled. Otherwise witness performs full
|
|
* lock order checking for all locks. At runtime, lock order checking
|
|
* may be toggled. However, witness cannot be reenabled once it is
|
|
* completely disabled.
|
|
*/
|
|
#ifdef WITNESS_WATCH
|
|
static int witness_watch = 3;
|
|
#else
|
|
static int witness_watch = 2;
|
|
#endif
|
|
|
|
#ifdef WITNESS_LOCKTRACE
|
|
static int witness_locktrace = 1;
|
|
#else
|
|
static int witness_locktrace = 0;
|
|
#endif
|
|
|
|
int witness_count = WITNESS_COUNT;
|
|
int witness_uninitialized_report = 5;
|
|
|
|
static struct mutex w_mtx;
|
|
static struct rwlock w_ctlock = RWLOCK_INITIALIZER("w_ctlock");
|
|
|
|
/* w_list */
|
|
static struct witness_list w_free = SLIST_HEAD_INITIALIZER(w_free);
|
|
static struct witness_list w_all = SLIST_HEAD_INITIALIZER(w_all);
|
|
|
|
/* w_typelist */
|
|
static struct witness_list w_spin = SLIST_HEAD_INITIALIZER(w_spin);
|
|
static struct witness_list w_sleep = SLIST_HEAD_INITIALIZER(w_sleep);
|
|
|
|
/* lock list */
|
|
static struct lock_list_entry *w_lock_list_free = NULL;
|
|
static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
|
|
static u_int pending_cnt;
|
|
|
|
static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
|
|
|
|
static struct witness *w_data;
|
|
static uint8_t **w_rmatrix;
|
|
static struct lock_list_entry *w_locklistdata;
|
|
static struct witness_hash w_hash; /* The witness hash table. */
|
|
|
|
/* The lock order data hash */
|
|
static struct witness_lock_order_data *w_lodata;
|
|
static struct witness_lock_order_data *w_lofree = NULL;
|
|
static struct witness_lock_order_hash w_lohash;
|
|
static int w_max_used_index = 0;
|
|
static unsigned int w_generation = 0;
|
|
|
|
static union lock_stack *w_lock_stack_free;
|
|
static unsigned int w_lock_stack_num;
|
|
|
|
static struct lock_class lock_class_kernel_lock = {
|
|
.lc_name = "kernel_lock",
|
|
.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE | LC_SLEEPABLE
|
|
};
|
|
|
|
static struct lock_class lock_class_mutex = {
|
|
.lc_name = "mutex",
|
|
.lc_flags = LC_SPINLOCK
|
|
};
|
|
|
|
static struct lock_class lock_class_rwlock = {
|
|
.lc_name = "rwlock",
|
|
.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_UPGRADABLE
|
|
};
|
|
|
|
static struct lock_class lock_class_rrwlock = {
|
|
.lc_name = "rrwlock",
|
|
.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE | LC_SLEEPABLE |
|
|
LC_UPGRADABLE
|
|
};
|
|
|
|
static struct lock_class *lock_classes[] = {
|
|
&lock_class_kernel_lock,
|
|
&lock_class_mutex,
|
|
&lock_class_rwlock,
|
|
&lock_class_rrwlock,
|
|
};
|
|
|
|
/*
|
|
* This global is set to 0 once it becomes safe to use the witness code.
|
|
*/
|
|
static int witness_cold = 1;
|
|
|
|
/*
|
|
* This global is set to 1 once the static lock orders have been enrolled
|
|
* so that a warning can be issued for any spin locks enrolled later.
|
|
*/
|
|
static int witness_spin_warn = 0;
|
|
|
|
/*
|
|
* The WITNESS-enabled diagnostic code. Note that the witness code does
|
|
* assume that the early boot is single-threaded at least until after this
|
|
* routine is completed.
|
|
*/
|
|
void
|
|
witness_initialize(void)
|
|
{
|
|
struct lock_object *lock;
|
|
union lock_stack *stacks;
|
|
struct witness *w;
|
|
int i, s;
|
|
|
|
w_data = (void *)uvm_pageboot_alloc(sizeof(struct witness) *
|
|
witness_count);
|
|
memset(w_data, 0, sizeof(struct witness) * witness_count);
|
|
|
|
w_rmatrix = (void *)uvm_pageboot_alloc(sizeof(*w_rmatrix) *
|
|
(witness_count + 1));
|
|
|
|
for (i = 0; i < witness_count + 1; i++) {
|
|
w_rmatrix[i] = (void *)uvm_pageboot_alloc(
|
|
sizeof(*w_rmatrix[i]) * (witness_count + 1));
|
|
memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
|
|
(witness_count + 1));
|
|
}
|
|
|
|
mtx_init_flags(&w_mtx, IPL_HIGH, "witness lock", MTX_NOWITNESS);
|
|
for (i = witness_count - 1; i >= 0; i--) {
|
|
w = &w_data[i];
|
|
memset(w, 0, sizeof(*w));
|
|
w_data[i].w_index = i; /* Witness index never changes. */
|
|
witness_free(w);
|
|
}
|
|
KASSERTMSG(SLIST_FIRST(&w_free)->w_index == 0,
|
|
"%s: Invalid list of free witness objects", __func__);
|
|
|
|
/* Witness with index 0 is not used to aid in debugging. */
|
|
SLIST_REMOVE_HEAD(&w_free, w_list);
|
|
w_free_cnt--;
|
|
|
|
for (i = 0; i < witness_count; i++) {
|
|
memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
|
|
(witness_count + 1));
|
|
}
|
|
|
|
if (witness_locktrace) {
|
|
w_lock_stack_num = LOCK_CHILDCOUNT * LOCK_NCHILDREN;
|
|
stacks = (void *)uvm_pageboot_alloc(sizeof(*stacks) *
|
|
w_lock_stack_num);
|
|
}
|
|
|
|
w_locklistdata = (void *)uvm_pageboot_alloc(
|
|
sizeof(struct lock_list_entry) * LOCK_CHILDCOUNT);
|
|
memset(w_locklistdata, 0, sizeof(struct lock_list_entry) *
|
|
LOCK_CHILDCOUNT);
|
|
|
|
s = splhigh();
|
|
for (i = 0; i < w_lock_stack_num; i++)
|
|
witness_lock_stack_free(&stacks[i]);
|
|
for (i = 0; i < LOCK_CHILDCOUNT; i++)
|
|
witness_lock_list_free(&w_locklistdata[i]);
|
|
splx(s);
|
|
witness_init_hash_tables();
|
|
witness_spin_warn = 1;
|
|
|
|
/* Iterate through all locks and add them to witness. */
|
|
for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
|
|
lock = pending_locks[i].wh_lock;
|
|
KASSERTMSG(lock->lo_flags & LO_WITNESS,
|
|
"%s: lock %s is on pending list but not LO_WITNESS",
|
|
__func__, lock->lo_name);
|
|
lock->lo_witness = enroll(pending_locks[i].wh_type,
|
|
lock->lo_name, LOCK_CLASS(lock));
|
|
}
|
|
|
|
/* Mark the witness code as being ready for use. */
|
|
witness_cold = 0;
|
|
}
|
|
|
|
void
|
|
witness_init(struct lock_object *lock, const struct lock_type *type)
|
|
{
|
|
struct lock_class *class;
|
|
|
|
/* Various sanity checks. */
|
|
class = LOCK_CLASS(lock);
|
|
if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
|
|
(class->lc_flags & LC_RECURSABLE) == 0)
|
|
panic("%s: lock (%s) %s can not be recursable",
|
|
__func__, class->lc_name, lock->lo_name);
|
|
if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
|
|
(class->lc_flags & LC_SLEEPABLE) == 0)
|
|
panic("%s: lock (%s) %s can not be sleepable",
|
|
__func__, class->lc_name, lock->lo_name);
|
|
if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
|
|
(class->lc_flags & LC_UPGRADABLE) == 0)
|
|
panic("%s: lock (%s) %s can not be upgradable",
|
|
__func__, class->lc_name, lock->lo_name);
|
|
|
|
/*
|
|
* If we shouldn't watch this lock, then just clear lo_witness.
|
|
* Record the type in case the lock becomes watched later.
|
|
* Otherwise, if witness_cold is set, then it is too early to
|
|
* enroll this lock, so defer it to witness_initialize() by adding
|
|
* it to the pending_locks list. If it is not too early, then enroll
|
|
* the lock now.
|
|
*/
|
|
if (witness_watch < 1 || panicstr != NULL || db_active ||
|
|
(lock->lo_flags & LO_WITNESS) == 0) {
|
|
lock->lo_witness = NULL;
|
|
lock->lo_type = type;
|
|
} else if (witness_cold) {
|
|
pending_locks[pending_cnt].wh_lock = lock;
|
|
pending_locks[pending_cnt++].wh_type = type;
|
|
if (pending_cnt > WITNESS_PENDLIST)
|
|
panic("%s: pending locks list is too small, "
|
|
"increase WITNESS_PENDLIST",
|
|
__func__);
|
|
} else
|
|
lock->lo_witness = enroll(type, lock->lo_name, class);
|
|
}
|
|
|
|
static inline int
|
|
is_kernel_lock(const struct lock_object *lock)
|
|
{
|
|
#ifdef MULTIPROCESSOR
|
|
return (lock == &kernel_lock.mpl_lock_obj);
|
|
#else
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
witness_ddb_compute_levels(void)
|
|
{
|
|
struct witness *w;
|
|
|
|
/*
|
|
* First clear all levels.
|
|
*/
|
|
SLIST_FOREACH(w, &w_all, w_list)
|
|
w->w_ddb_level = -1;
|
|
|
|
/*
|
|
* Look for locks with no parents and level all their descendants.
|
|
*/
|
|
SLIST_FOREACH(w, &w_all, w_list) {
|
|
/* If the witness has ancestors (is not a root), skip it. */
|
|
if (w->w_num_ancestors > 0)
|
|
continue;
|
|
witness_ddb_level_descendants(w, 0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
witness_ddb_level_descendants(struct witness *w, int l)
|
|
{
|
|
int i;
|
|
|
|
if (w->w_ddb_level >= l)
|
|
return;
|
|
|
|
w->w_ddb_level = l;
|
|
l++;
|
|
|
|
for (i = 1; i <= w_max_used_index; i++) {
|
|
if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
|
|
witness_ddb_level_descendants(&w_data[i], l);
|
|
}
|
|
}
|
|
|
|
static void
|
|
witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
|
|
struct witness *w, int indent)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < indent; i++)
|
|
prnt(" ");
|
|
prnt("%s (%s) (type: %s, depth: %d)",
|
|
w->w_subtype, w->w_type->lt_name,
|
|
w->w_class->lc_name, w->w_ddb_level);
|
|
if (w->w_displayed) {
|
|
prnt(" -- (already displayed)\n");
|
|
return;
|
|
}
|
|
w->w_displayed = 1;
|
|
if (!w->w_acquired)
|
|
prnt(" -- never acquired\n");
|
|
else
|
|
prnt("\n");
|
|
indent++;
|
|
WITNESS_INDEX_ASSERT(w->w_index);
|
|
for (i = 1; i <= w_max_used_index; i++) {
|
|
if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
|
|
witness_ddb_display_descendants(prnt, &w_data[i],
|
|
indent);
|
|
}
|
|
}
|
|
|
|
static void
|
|
witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
|
|
struct witness_list *list)
|
|
{
|
|
struct witness *w;
|
|
|
|
SLIST_FOREACH(w, list, w_typelist) {
|
|
if (!w->w_acquired || w->w_ddb_level > 0)
|
|
continue;
|
|
|
|
/* This lock has no ancestors - display its descendants. */
|
|
witness_ddb_display_descendants(prnt, w, 0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
witness_ddb_display(int(*prnt)(const char *fmt, ...))
|
|
{
|
|
struct witness *w;
|
|
|
|
KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__);
|
|
witness_ddb_compute_levels();
|
|
|
|
/* Clear all the displayed flags. */
|
|
SLIST_FOREACH(w, &w_all, w_list)
|
|
w->w_displayed = 0;
|
|
|
|
/*
|
|
* First, handle sleep locks which have been acquired at least
|
|
* once.
|
|
*/
|
|
prnt("Sleep locks:\n");
|
|
witness_ddb_display_list(prnt, &w_sleep);
|
|
|
|
/*
|
|
* Now do spin locks which have been acquired at least once.
|
|
*/
|
|
prnt("\nSpin locks:\n");
|
|
witness_ddb_display_list(prnt, &w_spin);
|
|
|
|
/*
|
|
* Finally, any locks which have not been acquired yet.
|
|
*/
|
|
prnt("\nLocks which were never acquired:\n");
|
|
SLIST_FOREACH(w, &w_all, w_list) {
|
|
if (w->w_acquired)
|
|
continue;
|
|
prnt("%s (%s) (type: %s, depth: %d)\n",
|
|
w->w_subtype, w->w_type->lt_name,
|
|
w->w_class->lc_name, w->w_ddb_level);
|
|
}
|
|
}
|
|
#endif /* DDB */
|
|
|
|
int
|
|
witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
|
|
{
|
|
|
|
if (witness_watch < 0 || panicstr != NULL || db_active)
|
|
return (0);
|
|
|
|
/* Require locks that witness knows about. */
|
|
if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
|
|
lock2->lo_witness == NULL)
|
|
return (EINVAL);
|
|
|
|
MUTEX_ASSERT_UNLOCKED(&w_mtx);
|
|
mtx_enter(&w_mtx);
|
|
|
|
/*
|
|
* If we already have either an explicit or implied lock order that
|
|
* is the other way around, then return an error.
|
|
*/
|
|
if (witness_watch &&
|
|
isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
|
|
mtx_leave(&w_mtx);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Try to add the new order. */
|
|
itismychild(lock1->lo_witness, lock2->lo_witness);
|
|
mtx_leave(&w_mtx);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
witness_checkorder(struct lock_object *lock, int flags,
|
|
struct lock_object *interlock)
|
|
{
|
|
struct lock_list_entry *lock_list, *lle;
|
|
struct lock_instance *lock1, *lock2, *plock;
|
|
struct lock_class *class, *iclass;
|
|
struct witness *w, *w1;
|
|
int i, j, s;
|
|
|
|
if (witness_cold || witness_watch < 1 || panicstr != NULL || db_active)
|
|
return;
|
|
|
|
if ((lock->lo_flags & LO_INITIALIZED) == 0) {
|
|
if (witness_uninitialized_report > 0) {
|
|
witness_uninitialized_report--;
|
|
printf("witness: lock_object uninitialized: %p\n", lock);
|
|
witness_debugger(1);
|
|
}
|
|
lock->lo_flags |= LO_INITIALIZED;
|
|
}
|
|
|
|
if ((lock->lo_flags & LO_WITNESS) == 0)
|
|
return;
|
|
|
|
w = lock->lo_witness;
|
|
class = LOCK_CLASS(lock);
|
|
|
|
if (w == NULL)
|
|
w = lock->lo_witness =
|
|
enroll(lock->lo_type, lock->lo_name, class);
|
|
|
|
if (class->lc_flags & LC_SLEEPLOCK) {
|
|
struct proc *p;
|
|
|
|
/*
|
|
* Since spin locks include a critical section, this check
|
|
* implicitly enforces a lock order of all sleep locks before
|
|
* all spin locks.
|
|
*/
|
|
lock_list = witness_cpu[cpu_number()].wc_spinlocks;
|
|
if (lock_list != NULL && lock_list->ll_count > 0) {
|
|
panic("acquiring blockable sleep lock with "
|
|
"spinlock or critical section held (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
}
|
|
|
|
/*
|
|
* If this is the first lock acquired then just return as
|
|
* no order checking is needed.
|
|
*/
|
|
p = curproc;
|
|
if (p == NULL)
|
|
return;
|
|
lock_list = p->p_sleeplocks;
|
|
if (lock_list == NULL || lock_list->ll_count == 0)
|
|
return;
|
|
} else {
|
|
|
|
/*
|
|
* If this is the first lock, just return as no order
|
|
* checking is needed.
|
|
*/
|
|
lock_list = witness_cpu[cpu_number()].wc_spinlocks;
|
|
if (lock_list == NULL || lock_list->ll_count == 0)
|
|
return;
|
|
}
|
|
|
|
s = splhigh();
|
|
|
|
/*
|
|
* Check to see if we are recursing on a lock we already own. If
|
|
* so, make sure that we don't mismatch exclusive and shared lock
|
|
* acquires.
|
|
*/
|
|
lock1 = find_instance(lock_list, lock);
|
|
if (lock1 != NULL) {
|
|
if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
|
|
(flags & LOP_EXCLUSIVE) == 0) {
|
|
printf("witness: shared lock of (%s) %s "
|
|
"while exclusively locked\n",
|
|
class->lc_name, lock->lo_name);
|
|
panic("excl->share");
|
|
}
|
|
if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
|
|
(flags & LOP_EXCLUSIVE) != 0) {
|
|
printf("witness: exclusive lock of (%s) %s "
|
|
"while share locked\n",
|
|
class->lc_name, lock->lo_name);
|
|
panic("share->excl");
|
|
}
|
|
goto out_splx;
|
|
}
|
|
|
|
/* Warn if the interlock is not locked exactly once. */
|
|
if (interlock != NULL) {
|
|
iclass = LOCK_CLASS(interlock);
|
|
lock1 = find_instance(lock_list, interlock);
|
|
if (lock1 == NULL)
|
|
panic("interlock (%s) %s not locked",
|
|
iclass->lc_name, interlock->lo_name);
|
|
else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
|
|
panic("interlock (%s) %s recursed",
|
|
iclass->lc_name, interlock->lo_name);
|
|
}
|
|
|
|
/*
|
|
* Find the previously acquired lock, but ignore interlocks.
|
|
*/
|
|
plock = &lock_list->ll_children[lock_list->ll_count - 1];
|
|
if (interlock != NULL && plock->li_lock == interlock) {
|
|
if (lock_list->ll_count > 1)
|
|
plock =
|
|
&lock_list->ll_children[lock_list->ll_count - 2];
|
|
else {
|
|
lle = lock_list->ll_next;
|
|
|
|
/*
|
|
* The interlock is the only lock we hold, so
|
|
* simply return.
|
|
*/
|
|
if (lle == NULL)
|
|
goto out_splx;
|
|
plock = &lle->ll_children[lle->ll_count - 1];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to perform most checks without a lock. If this succeeds we
|
|
* can skip acquiring the lock and return success. Otherwise we redo
|
|
* the check with the lock held to handle races with concurrent updates.
|
|
*/
|
|
w1 = plock->li_lock->lo_witness;
|
|
if (witness_lock_order_check(w1, w))
|
|
goto out_splx;
|
|
|
|
mtx_enter(&w_mtx);
|
|
if (witness_lock_order_check(w1, w))
|
|
goto out;
|
|
|
|
witness_lock_order_add(w1, w);
|
|
|
|
/*
|
|
* Check for duplicate locks of the same type. Note that we only
|
|
* have to check for this on the last lock we just acquired. Any
|
|
* other cases will be caught as lock order violations.
|
|
*/
|
|
if (w1 == w) {
|
|
i = w->w_index;
|
|
if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
|
|
!(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
|
|
w_rmatrix[i][i] |= WITNESS_REVERSAL;
|
|
w->w_reversed = 1;
|
|
mtx_leave(&w_mtx);
|
|
printf("witness: acquiring duplicate lock of "
|
|
"same type: \"%s\"\n", w->w_type->lt_name);
|
|
printf(" 1st %s\n", plock->li_lock->lo_name);
|
|
printf(" 2nd %s\n", lock->lo_name);
|
|
witness_debugger(1);
|
|
} else
|
|
mtx_leave(&w_mtx);
|
|
goto out_splx;
|
|
}
|
|
MUTEX_ASSERT_LOCKED(&w_mtx);
|
|
|
|
/*
|
|
* If we know that the lock we are acquiring comes after
|
|
* the lock we most recently acquired in the lock order tree,
|
|
* then there is no need for any further checks.
|
|
*/
|
|
if (isitmychild(w1, w))
|
|
goto out;
|
|
|
|
for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
|
|
for (i = lle->ll_count - 1; i >= 0; i--, j++) {
|
|
|
|
KASSERT(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
|
|
lock1 = &lle->ll_children[i];
|
|
|
|
/*
|
|
* Ignore the interlock.
|
|
*/
|
|
if (interlock == lock1->li_lock)
|
|
continue;
|
|
|
|
/*
|
|
* If this lock doesn't undergo witness checking,
|
|
* then skip it.
|
|
*/
|
|
w1 = lock1->li_lock->lo_witness;
|
|
if (w1 == NULL) {
|
|
KASSERTMSG((lock1->li_lock->lo_flags &
|
|
LO_WITNESS) == 0,
|
|
"lock missing witness structure");
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we are locking Giant and this is a sleepable
|
|
* lock, then skip it.
|
|
*/
|
|
if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
|
|
is_kernel_lock(lock))
|
|
continue;
|
|
|
|
/*
|
|
* If we are locking a sleepable lock and this lock
|
|
* is Giant, then skip it.
|
|
*/
|
|
if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
|
|
is_kernel_lock(lock1->li_lock))
|
|
continue;
|
|
|
|
/*
|
|
* If we are locking a sleepable lock and this lock
|
|
* isn't sleepable, we want to treat it as a lock
|
|
* order violation to enforce a general lock order of
|
|
* sleepable locks before non-sleepable locks.
|
|
*/
|
|
if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
|
|
(lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
|
|
goto reversal;
|
|
|
|
/*
|
|
* If we are locking Giant and this is a non-sleepable
|
|
* lock, then treat it as a reversal.
|
|
*/
|
|
if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
|
|
is_kernel_lock(lock))
|
|
goto reversal;
|
|
|
|
/*
|
|
* Check the lock order hierarchy for a reveresal.
|
|
*/
|
|
if (!isitmydescendant(w, w1))
|
|
continue;
|
|
reversal:
|
|
|
|
/*
|
|
* We have a lock order violation, check to see if it
|
|
* is allowed or has already been yelled about.
|
|
*/
|
|
|
|
/* Bail if this violation is known */
|
|
if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
|
|
goto out;
|
|
|
|
/* Record this as a violation */
|
|
w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
|
|
w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
|
|
w->w_reversed = w1->w_reversed = 1;
|
|
witness_increment_graph_generation();
|
|
mtx_leave(&w_mtx);
|
|
|
|
/*
|
|
* There are known LORs between VNODE locks. They are
|
|
* not an indication of a bug. VNODE locks are flagged
|
|
* as such (LO_IS_VNODE) and we don't yell if the LOR
|
|
* is between 2 VNODE locks.
|
|
*/
|
|
if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
|
|
(lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
|
|
goto out_splx;
|
|
|
|
/*
|
|
* Ok, yell about it.
|
|
*/
|
|
printf("witness: ");
|
|
if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
|
|
(lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
|
|
printf("lock order reversal: "
|
|
"(sleepable after non-sleepable)\n");
|
|
else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
|
|
&& is_kernel_lock(lock))
|
|
printf("lock order reversal: "
|
|
"(Giant after non-sleepable)\n");
|
|
else
|
|
printf("lock order reversal:\n");
|
|
|
|
/*
|
|
* Try to locate an earlier lock with
|
|
* witness w in our list.
|
|
*/
|
|
do {
|
|
lock2 = &lle->ll_children[i];
|
|
KASSERT(lock2->li_lock != NULL);
|
|
if (lock2->li_lock->lo_witness == w)
|
|
break;
|
|
if (i == 0 && lle->ll_next != NULL) {
|
|
lle = lle->ll_next;
|
|
i = lle->ll_count - 1;
|
|
KASSERT(i >= 0 && i < LOCK_NCHILDREN);
|
|
} else
|
|
i--;
|
|
} while (i >= 0);
|
|
if (i < 0) {
|
|
printf(" 1st %p %s (%s)\n",
|
|
lock1->li_lock, lock1->li_lock->lo_name,
|
|
w1->w_type->lt_name);
|
|
printf(" 2nd %p %s (%s)\n",
|
|
lock, lock->lo_name, w->w_type->lt_name);
|
|
} else {
|
|
printf(" 1st %p %s (%s)\n",
|
|
lock2->li_lock, lock2->li_lock->lo_name,
|
|
lock2->li_lock->lo_witness->w_type->
|
|
lt_name);
|
|
printf(" 2nd %p %s (%s)\n",
|
|
lock1->li_lock, lock1->li_lock->lo_name,
|
|
w1->w_type->lt_name);
|
|
printf(" 3rd %p %s (%s)\n", lock,
|
|
lock->lo_name, w->w_type->lt_name);
|
|
}
|
|
if (witness_watch > 1)
|
|
witness_print_cycle(printf, w1, w);
|
|
witness_debugger(0);
|
|
goto out_splx;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If requested, build a new lock order. However, don't build a new
|
|
* relationship between a sleepable lock and Giant if it is in the
|
|
* wrong direction. The correct lock order is that sleepable locks
|
|
* always come before Giant.
|
|
*/
|
|
if (flags & LOP_NEWORDER &&
|
|
!(is_kernel_lock(plock->li_lock) &&
|
|
(lock->lo_flags & LO_SLEEPABLE) != 0))
|
|
itismychild(plock->li_lock->lo_witness, w);
|
|
out:
|
|
mtx_leave(&w_mtx);
|
|
out_splx:
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
witness_lock(struct lock_object *lock, int flags)
|
|
{
|
|
struct lock_list_entry **lock_list, *lle;
|
|
struct lock_instance *instance;
|
|
struct witness *w;
|
|
int s;
|
|
|
|
if (witness_cold || witness_watch < 0 || panicstr != NULL ||
|
|
db_active || (lock->lo_flags & LO_WITNESS) == 0)
|
|
return;
|
|
|
|
w = lock->lo_witness;
|
|
if (w == NULL)
|
|
w = lock->lo_witness =
|
|
enroll(lock->lo_type, lock->lo_name, LOCK_CLASS(lock));
|
|
|
|
/* Determine lock list for this lock. */
|
|
if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) {
|
|
struct proc *p;
|
|
|
|
p = curproc;
|
|
if (p == NULL)
|
|
return;
|
|
lock_list = &p->p_sleeplocks;
|
|
} else
|
|
lock_list = &witness_cpu[cpu_number()].wc_spinlocks;
|
|
|
|
s = splhigh();
|
|
|
|
/* Check to see if we are recursing on a lock we already own. */
|
|
instance = find_instance(*lock_list, lock);
|
|
if (instance != NULL) {
|
|
instance->li_flags++;
|
|
goto out;
|
|
}
|
|
|
|
w->w_acquired = 1;
|
|
|
|
/* Find the next open lock instance in the list and fill it. */
|
|
lle = *lock_list;
|
|
if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
|
|
lle = witness_lock_list_get();
|
|
if (lle == NULL)
|
|
goto out;
|
|
lle->ll_next = *lock_list;
|
|
*lock_list = lle;
|
|
}
|
|
instance = &lle->ll_children[lle->ll_count++];
|
|
instance->li_lock = lock;
|
|
if ((flags & LOP_EXCLUSIVE) != 0)
|
|
instance->li_flags = LI_EXCLUSIVE;
|
|
else
|
|
instance->li_flags = 0;
|
|
instance->li_stack = NULL;
|
|
if (witness_locktrace) {
|
|
instance->li_stack = witness_lock_stack_get();
|
|
if (instance->li_stack != NULL)
|
|
stacktrace_save(&instance->li_stack->ls_stack);
|
|
}
|
|
out:
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
witness_upgrade(struct lock_object *lock, int flags)
|
|
{
|
|
struct lock_instance *instance;
|
|
struct lock_class *class;
|
|
int s;
|
|
|
|
KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__);
|
|
if (lock->lo_witness == NULL || witness_watch < 0 ||
|
|
panicstr != NULL || db_active)
|
|
return;
|
|
class = LOCK_CLASS(lock);
|
|
if (witness_watch) {
|
|
if ((lock->lo_flags & LO_UPGRADABLE) == 0)
|
|
panic("upgrade of non-upgradable lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
if ((class->lc_flags & LC_SLEEPLOCK) == 0)
|
|
panic("upgrade of non-sleep lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
}
|
|
s = splhigh();
|
|
instance = find_instance(curproc->p_sleeplocks, lock);
|
|
if (instance == NULL) {
|
|
panic("upgrade of unlocked lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
goto out;
|
|
}
|
|
if (witness_watch) {
|
|
if ((instance->li_flags & LI_EXCLUSIVE) != 0)
|
|
panic("upgrade of exclusive lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
if ((instance->li_flags & LI_RECURSEMASK) != 0)
|
|
panic("upgrade of recursed lock (%s) %s r=%d",
|
|
class->lc_name, lock->lo_name,
|
|
instance->li_flags & LI_RECURSEMASK);
|
|
}
|
|
instance->li_flags |= LI_EXCLUSIVE;
|
|
out:
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
witness_downgrade(struct lock_object *lock, int flags)
|
|
{
|
|
struct lock_instance *instance;
|
|
struct lock_class *class;
|
|
int s;
|
|
|
|
KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__);
|
|
if (lock->lo_witness == NULL || witness_watch < 0 ||
|
|
panicstr != NULL || db_active)
|
|
return;
|
|
class = LOCK_CLASS(lock);
|
|
if (witness_watch) {
|
|
if ((lock->lo_flags & LO_UPGRADABLE) == 0)
|
|
panic(
|
|
"downgrade of non-upgradable lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
if ((class->lc_flags & LC_SLEEPLOCK) == 0)
|
|
panic("downgrade of non-sleep lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
}
|
|
s = splhigh();
|
|
instance = find_instance(curproc->p_sleeplocks, lock);
|
|
if (instance == NULL) {
|
|
panic("downgrade of unlocked lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
goto out;
|
|
}
|
|
if (witness_watch) {
|
|
if ((instance->li_flags & LI_EXCLUSIVE) == 0)
|
|
panic("downgrade of shared lock (%s) %s",
|
|
class->lc_name, lock->lo_name);
|
|
if ((instance->li_flags & LI_RECURSEMASK) != 0)
|
|
panic("downgrade of recursed lock (%s) %s r=%d",
|
|
class->lc_name, lock->lo_name,
|
|
instance->li_flags & LI_RECURSEMASK);
|
|
}
|
|
instance->li_flags &= ~LI_EXCLUSIVE;
|
|
out:
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
witness_unlock(struct lock_object *lock, int flags)
|
|
{
|
|
struct lock_list_entry **lock_list, *lle;
|
|
struct lock_instance *instance;
|
|
struct lock_class *class;
|
|
int i, j;
|
|
int s;
|
|
|
|
if (witness_cold || lock->lo_witness == NULL ||
|
|
panicstr != NULL || db_active)
|
|
return;
|
|
class = LOCK_CLASS(lock);
|
|
|
|
/* Find lock instance associated with this lock. */
|
|
if (class->lc_flags & LC_SLEEPLOCK) {
|
|
struct proc *p;
|
|
|
|
p = curproc;
|
|
if (p == NULL)
|
|
return;
|
|
lock_list = &p->p_sleeplocks;
|
|
} else
|
|
lock_list = &witness_cpu[cpu_number()].wc_spinlocks;
|
|
|
|
s = splhigh();
|
|
|
|
lle = *lock_list;
|
|
for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
|
|
for (i = 0; i < (*lock_list)->ll_count; i++) {
|
|
instance = &(*lock_list)->ll_children[i];
|
|
if (instance->li_lock == lock)
|
|
goto found;
|
|
}
|
|
|
|
/*
|
|
* When disabling WITNESS through witness_watch we could end up in
|
|
* having registered locks in the p_sleeplocks queue.
|
|
* We have to make sure we flush these queues, so just search for
|
|
* eventual register locks and remove them.
|
|
*/
|
|
if (witness_watch > 0) {
|
|
panic("lock (%s) %s not locked", class->lc_name, lock->lo_name);
|
|
}
|
|
goto out;
|
|
|
|
found:
|
|
|
|
/* First, check for shared/exclusive mismatches. */
|
|
if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
|
|
(flags & LOP_EXCLUSIVE) == 0) {
|
|
printf("witness: shared unlock of (%s) %s "
|
|
"while exclusively locked\n",
|
|
class->lc_name, lock->lo_name);
|
|
panic("excl->ushare");
|
|
}
|
|
if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
|
|
(flags & LOP_EXCLUSIVE) != 0) {
|
|
printf("witness: exclusive unlock of (%s) %s "
|
|
"while share locked\n", class->lc_name, lock->lo_name);
|
|
panic("share->uexcl");
|
|
}
|
|
/* If we are recursed, unrecurse. */
|
|
if ((instance->li_flags & LI_RECURSEMASK) > 0) {
|
|
instance->li_flags--;
|
|
goto out;
|
|
}
|
|
/* The lock is now being dropped, check for NORELEASE flag */
|
|
if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
|
|
printf("witness: forbidden unlock of (%s) %s\n",
|
|
class->lc_name, lock->lo_name);
|
|
panic("lock marked norelease");
|
|
}
|
|
|
|
/* Release the stack buffer, if any. */
|
|
if (instance->li_stack != NULL) {
|
|
witness_lock_stack_free(instance->li_stack);
|
|
instance->li_stack = NULL;
|
|
}
|
|
|
|
/* Remove this item from the list. */
|
|
for (j = i; j < (*lock_list)->ll_count - 1; j++)
|
|
(*lock_list)->ll_children[j] =
|
|
(*lock_list)->ll_children[j + 1];
|
|
(*lock_list)->ll_count--;
|
|
|
|
/*
|
|
* In order to reduce contention on w_mtx, we want to keep always an
|
|
* head object into lists so that frequent allocation from the
|
|
* free witness pool (and subsequent locking) is avoided.
|
|
* In order to maintain the current code simple, when the head
|
|
* object is totally unloaded it means also that we do not have
|
|
* further objects in the list, so the list ownership needs to be
|
|
* hand over to another object if the current head needs to be freed.
|
|
*/
|
|
if ((*lock_list)->ll_count == 0) {
|
|
if (*lock_list == lle) {
|
|
if (lle->ll_next == NULL)
|
|
goto out;
|
|
} else
|
|
lle = *lock_list;
|
|
*lock_list = lle->ll_next;
|
|
witness_lock_list_free(lle);
|
|
}
|
|
out:
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
witness_thread_exit(struct proc *p)
|
|
{
|
|
struct lock_list_entry *lle;
|
|
int i, n, s;
|
|
|
|
lle = p->p_sleeplocks;
|
|
if (lle == NULL || panicstr != NULL || db_active)
|
|
return;
|
|
if (lle->ll_count != 0) {
|
|
for (n = 0; lle != NULL; lle = lle->ll_next)
|
|
for (i = lle->ll_count - 1; i >= 0; i--) {
|
|
if (n == 0)
|
|
printf("witness: thread %p exiting "
|
|
"with the following locks held:\n",
|
|
p);
|
|
n++;
|
|
witness_list_lock(&lle->ll_children[i],
|
|
printf);
|
|
}
|
|
panic("thread %p cannot exit while holding sleeplocks", p);
|
|
}
|
|
KASSERT(lle->ll_next == NULL);
|
|
s = splhigh();
|
|
witness_lock_list_free(lle);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Warn if any locks other than 'lock' are held. Flags can be passed in to
|
|
* exempt Giant and sleepable locks from the checks as well. If any
|
|
* non-exempt locks are held, then a supplied message is printed to the
|
|
* output channel along with a list of the offending locks. If indicated in the
|
|
* flags then a failure results in a panic as well.
|
|
*/
|
|
int
|
|
witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
|
|
{
|
|
struct lock_list_entry *lock_list, *lle;
|
|
struct lock_instance *lock1;
|
|
struct proc *p;
|
|
va_list ap;
|
|
int i, n;
|
|
|
|
if (witness_cold || witness_watch < 1 || panicstr != NULL || db_active)
|
|
return (0);
|
|
n = 0;
|
|
p = curproc;
|
|
for (lle = p->p_sleeplocks; lle != NULL; lle = lle->ll_next)
|
|
for (i = lle->ll_count - 1; i >= 0; i--) {
|
|
lock1 = &lle->ll_children[i];
|
|
if (lock1->li_lock == lock)
|
|
continue;
|
|
if (flags & WARN_KERNELOK &&
|
|
is_kernel_lock(lock1->li_lock))
|
|
continue;
|
|
if (flags & WARN_SLEEPOK &&
|
|
(lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
|
|
continue;
|
|
if (n == 0) {
|
|
printf("witness: ");
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
printf(" with the following %slocks held:\n",
|
|
(flags & WARN_SLEEPOK) != 0 ?
|
|
"non-sleepable " : "");
|
|
}
|
|
n++;
|
|
witness_list_lock(lock1, printf);
|
|
}
|
|
|
|
lock_list = witness_cpu[cpu_number()].wc_spinlocks;
|
|
if (lock_list != NULL && lock_list->ll_count != 0) {
|
|
/*
|
|
* We should only have one spinlock and as long as
|
|
* the flags cannot match for this locks class,
|
|
* check if the first spinlock is the one curproc
|
|
* should hold.
|
|
*/
|
|
lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
|
|
if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
|
|
lock1->li_lock == lock && n == 0)
|
|
return (0);
|
|
|
|
printf("witness: ");
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
printf(" with the following %slocks held:\n",
|
|
(flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : "");
|
|
n += witness_list_locks(&lock_list, printf);
|
|
}
|
|
if (n > 0) {
|
|
if (flags & WARN_PANIC)
|
|
panic("%s", __func__);
|
|
else
|
|
witness_debugger(1);
|
|
}
|
|
return (n);
|
|
}
|
|
|
|
static struct witness *
|
|
enroll(const struct lock_type *type, const char *subtype,
|
|
struct lock_class *lock_class)
|
|
{
|
|
struct witness *w;
|
|
struct witness_list *typelist;
|
|
|
|
KASSERT(type != NULL);
|
|
|
|
if (witness_watch < 0 || panicstr != NULL || db_active)
|
|
return (NULL);
|
|
if ((lock_class->lc_flags & LC_SPINLOCK)) {
|
|
typelist = &w_spin;
|
|
} else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
|
|
typelist = &w_sleep;
|
|
} else {
|
|
panic("lock class %s is not sleep or spin",
|
|
lock_class->lc_name);
|
|
return (NULL);
|
|
}
|
|
|
|
mtx_enter(&w_mtx);
|
|
w = witness_hash_get(type, subtype);
|
|
if (w)
|
|
goto found;
|
|
if ((w = witness_get()) == NULL)
|
|
return (NULL);
|
|
w->w_type = type;
|
|
w->w_subtype = subtype;
|
|
w->w_class = lock_class;
|
|
SLIST_INSERT_HEAD(&w_all, w, w_list);
|
|
if (lock_class->lc_flags & LC_SPINLOCK) {
|
|
SLIST_INSERT_HEAD(&w_spin, w, w_typelist);
|
|
w_spin_cnt++;
|
|
} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
|
|
SLIST_INSERT_HEAD(&w_sleep, w, w_typelist);
|
|
w_sleep_cnt++;
|
|
}
|
|
|
|
/* Insert new witness into the hash */
|
|
witness_hash_put(w);
|
|
witness_increment_graph_generation();
|
|
mtx_leave(&w_mtx);
|
|
return (w);
|
|
found:
|
|
mtx_leave(&w_mtx);
|
|
if (lock_class != w->w_class)
|
|
panic("lock (%s) %s does not match earlier (%s) lock",
|
|
type->lt_name, lock_class->lc_name, w->w_class->lc_name);
|
|
return (w);
|
|
}
|
|
|
|
static void
|
|
adopt(struct witness *parent, struct witness *child)
|
|
{
|
|
int pi, ci, i, j;
|
|
|
|
if (witness_cold == 0)
|
|
MUTEX_ASSERT_LOCKED(&w_mtx);
|
|
|
|
/* If the relationship is already known, there's no work to be done. */
|
|
if (isitmychild(parent, child))
|
|
return;
|
|
|
|
/* When the structure of the graph changes, bump up the generation. */
|
|
witness_increment_graph_generation();
|
|
|
|
/*
|
|
* The hard part ... create the direct relationship, then propagate all
|
|
* indirect relationships.
|
|
*/
|
|
pi = parent->w_index;
|
|
ci = child->w_index;
|
|
WITNESS_INDEX_ASSERT(pi);
|
|
WITNESS_INDEX_ASSERT(ci);
|
|
KASSERT(pi != ci);
|
|
w_rmatrix[pi][ci] |= WITNESS_PARENT;
|
|
w_rmatrix[ci][pi] |= WITNESS_CHILD;
|
|
|
|
/*
|
|
* If parent was not already an ancestor of child,
|
|
* then we increment the descendant and ancestor counters.
|
|
*/
|
|
if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
|
|
parent->w_num_descendants++;
|
|
child->w_num_ancestors++;
|
|
}
|
|
|
|
/*
|
|
* Find each ancestor of 'pi'. Note that 'pi' itself is counted as
|
|
* an ancestor of 'pi' during this loop.
|
|
*/
|
|
for (i = 1; i <= w_max_used_index; i++) {
|
|
if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
|
|
(i != pi))
|
|
continue;
|
|
|
|
/* Find each descendant of 'i' and mark it as a descendant. */
|
|
for (j = 1; j <= w_max_used_index; j++) {
|
|
|
|
/*
|
|
* Skip children that are already marked as
|
|
* descendants of 'i'.
|
|
*/
|
|
if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
|
|
continue;
|
|
|
|
/*
|
|
* We are only interested in descendants of 'ci'. Note
|
|
* that 'ci' itself is counted as a descendant of 'ci'.
|
|
*/
|
|
if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
|
|
(j != ci))
|
|
continue;
|
|
w_rmatrix[i][j] |= WITNESS_ANCESTOR;
|
|
w_rmatrix[j][i] |= WITNESS_DESCENDANT;
|
|
w_data[i].w_num_descendants++;
|
|
w_data[j].w_num_ancestors++;
|
|
|
|
/*
|
|
* Make sure we aren't marking a node as both an
|
|
* ancestor and descendant. We should have caught
|
|
* this as a lock order reversal earlier.
|
|
*/
|
|
if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
|
|
(w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
|
|
printf("witness: rmatrix paradox! [%d][%d]=%d "
|
|
"both ancestor and descendant\n",
|
|
i, j, w_rmatrix[i][j]);
|
|
#ifdef DDB
|
|
db_stack_dump();
|
|
#endif
|
|
printf("witness disabled\n");
|
|
witness_watch = -1;
|
|
}
|
|
if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
|
|
(w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
|
|
printf("witness: rmatrix paradox! [%d][%d]=%d "
|
|
"both ancestor and descendant\n",
|
|
j, i, w_rmatrix[j][i]);
|
|
#ifdef DDB
|
|
db_stack_dump();
|
|
#endif
|
|
printf("witness disabled\n");
|
|
witness_watch = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
itismychild(struct witness *parent, struct witness *child)
|
|
{
|
|
KASSERT(child != NULL && parent != NULL);
|
|
if (witness_cold == 0)
|
|
MUTEX_ASSERT_LOCKED(&w_mtx);
|
|
|
|
if (!witness_lock_type_equal(parent, child)) {
|
|
if (witness_cold == 0)
|
|
mtx_leave(&w_mtx);
|
|
panic(
|
|
"%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
|
|
"the same lock type", __func__, parent->w_type->lt_name,
|
|
parent->w_class->lc_name, child->w_type->lt_name,
|
|
child->w_class->lc_name);
|
|
}
|
|
adopt(parent, child);
|
|
}
|
|
|
|
/*
|
|
* Generic code for the isitmy*() functions. The rmask parameter is the
|
|
* expected relationship of w1 to w2.
|
|
*/
|
|
static int
|
|
_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
|
|
{
|
|
unsigned char r1, r2;
|
|
int i1, i2;
|
|
|
|
i1 = w1->w_index;
|
|
i2 = w2->w_index;
|
|
WITNESS_INDEX_ASSERT(i1);
|
|
WITNESS_INDEX_ASSERT(i2);
|
|
r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
|
|
r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
|
|
|
|
/* The flags on one better be the inverse of the flags on the other */
|
|
if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
|
|
(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
|
|
/* Don't squawk if we're potentially racing with an update. */
|
|
if (w_mtx.mtx_owner != curcpu())
|
|
return (0);
|
|
printf("witness: %s: rmatrix mismatch between %s (index %d) "
|
|
"and %s (index %d): w_rmatrix[%d][%d] == %x but "
|
|
"w_rmatrix[%d][%d] == %x\n",
|
|
fname, w1->w_type->lt_name, i1, w2->w_type->lt_name,
|
|
i2, i1, i2, r1,
|
|
i2, i1, r2);
|
|
#ifdef DDB
|
|
db_stack_dump();
|
|
#endif
|
|
printf("witness disabled\n");
|
|
witness_watch = -1;
|
|
}
|
|
return (r1 & rmask);
|
|
}
|
|
|
|
/*
|
|
* Checks if @child is a direct child of @parent.
|
|
*/
|
|
static int
|
|
isitmychild(struct witness *parent, struct witness *child)
|
|
{
|
|
|
|
return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
|
|
}
|
|
|
|
/*
|
|
* Checks if @descendant is a direct or indirect descendant of @ancestor.
|
|
*/
|
|
static int
|
|
isitmydescendant(struct witness *ancestor, struct witness *descendant)
|
|
{
|
|
|
|
return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
|
|
__func__));
|
|
}
|
|
|
|
static struct witness *
|
|
witness_get(void)
|
|
{
|
|
struct witness *w;
|
|
int index;
|
|
|
|
if (witness_cold == 0)
|
|
MUTEX_ASSERT_LOCKED(&w_mtx);
|
|
|
|
if (witness_watch < 0) {
|
|
mtx_leave(&w_mtx);
|
|
return (NULL);
|
|
}
|
|
if (SLIST_EMPTY(&w_free)) {
|
|
witness_watch = -1;
|
|
mtx_leave(&w_mtx);
|
|
printf("WITNESS: unable to allocate a new witness object\n");
|
|
return (NULL);
|
|
}
|
|
w = SLIST_FIRST(&w_free);
|
|
SLIST_REMOVE_HEAD(&w_free, w_list);
|
|
w_free_cnt--;
|
|
index = w->w_index;
|
|
KASSERT(index > 0 && index == w_max_used_index + 1 &&
|
|
index < witness_count);
|
|
memset(w, 0, sizeof(*w));
|
|
w->w_index = index;
|
|
if (index > w_max_used_index)
|
|
w_max_used_index = index;
|
|
return (w);
|
|
}
|
|
|
|
static void
|
|
witness_free(struct witness *w)
|
|
{
|
|
SLIST_INSERT_HEAD(&w_free, w, w_list);
|
|
w_free_cnt++;
|
|
}
|
|
|
|
static struct lock_list_entry *
|
|
witness_lock_list_get(void)
|
|
{
|
|
struct lock_list_entry *lle;
|
|
struct witness_cpu *wcpu = &witness_cpu[cpu_number()];
|
|
|
|
if (witness_watch < 0)
|
|
return (NULL);
|
|
|
|
splassert(IPL_HIGH);
|
|
|
|
if (wcpu->wc_lle_count > 0) {
|
|
lle = wcpu->wc_lle_cache;
|
|
wcpu->wc_lle_cache = lle->ll_next;
|
|
wcpu->wc_lle_count--;
|
|
memset(lle, 0, sizeof(*lle));
|
|
return (lle);
|
|
}
|
|
|
|
mtx_enter(&w_mtx);
|
|
lle = w_lock_list_free;
|
|
if (lle == NULL) {
|
|
witness_watch = -1;
|
|
mtx_leave(&w_mtx);
|
|
printf("%s: witness exhausted\n", __func__);
|
|
return (NULL);
|
|
}
|
|
w_lock_list_free = lle->ll_next;
|
|
mtx_leave(&w_mtx);
|
|
memset(lle, 0, sizeof(*lle));
|
|
return (lle);
|
|
}
|
|
|
|
static void
|
|
witness_lock_list_free(struct lock_list_entry *lle)
|
|
{
|
|
struct witness_cpu *wcpu = &witness_cpu[cpu_number()];
|
|
|
|
splassert(IPL_HIGH);
|
|
|
|
if (wcpu->wc_lle_count < WITNESS_LLE_CACHE_MAX) {
|
|
lle->ll_next = wcpu->wc_lle_cache;
|
|
wcpu->wc_lle_cache = lle;
|
|
wcpu->wc_lle_count++;
|
|
return;
|
|
}
|
|
|
|
mtx_enter(&w_mtx);
|
|
lle->ll_next = w_lock_list_free;
|
|
w_lock_list_free = lle;
|
|
mtx_leave(&w_mtx);
|
|
}
|
|
|
|
static union lock_stack *
|
|
witness_lock_stack_get(void)
|
|
{
|
|
union lock_stack *stack = NULL;
|
|
struct witness_cpu *wcpu = &witness_cpu[cpu_number()];
|
|
|
|
splassert(IPL_HIGH);
|
|
|
|
if (wcpu->wc_stk_count > 0) {
|
|
stack = wcpu->wc_stk_cache;
|
|
wcpu->wc_stk_cache = stack->ls_next;
|
|
wcpu->wc_stk_count--;
|
|
return (stack);
|
|
}
|
|
|
|
mtx_enter(&w_mtx);
|
|
if (w_lock_stack_free != NULL) {
|
|
stack = w_lock_stack_free;
|
|
w_lock_stack_free = stack->ls_next;
|
|
}
|
|
mtx_leave(&w_mtx);
|
|
return (stack);
|
|
}
|
|
|
|
static void
|
|
witness_lock_stack_free(union lock_stack *stack)
|
|
{
|
|
struct witness_cpu *wcpu = &witness_cpu[cpu_number()];
|
|
|
|
splassert(IPL_HIGH);
|
|
|
|
if (wcpu->wc_stk_count < WITNESS_STK_CACHE_MAX) {
|
|
stack->ls_next = wcpu->wc_stk_cache;
|
|
wcpu->wc_stk_cache = stack;
|
|
wcpu->wc_stk_count++;
|
|
return;
|
|
}
|
|
|
|
mtx_enter(&w_mtx);
|
|
stack->ls_next = w_lock_stack_free;
|
|
w_lock_stack_free = stack;
|
|
mtx_leave(&w_mtx);
|
|
}
|
|
|
|
static struct lock_instance *
|
|
find_instance(struct lock_list_entry *list, const struct lock_object *lock)
|
|
{
|
|
struct lock_list_entry *lle;
|
|
struct lock_instance *instance;
|
|
int i;
|
|
|
|
for (lle = list; lle != NULL; lle = lle->ll_next) {
|
|
for (i = lle->ll_count - 1; i >= 0; i--) {
|
|
instance = &lle->ll_children[i];
|
|
if (instance->li_lock == lock)
|
|
return (instance);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
witness_list_lock(struct lock_instance *instance,
|
|
int (*prnt)(const char *fmt, ...))
|
|
{
|
|
struct lock_object *lock;
|
|
|
|
lock = instance->li_lock;
|
|
prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
|
|
"exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
|
|
prnt(" r = %d (%p)\n", instance->li_flags & LI_RECURSEMASK, lock);
|
|
if (instance->li_stack != NULL)
|
|
stacktrace_print(&instance->li_stack->ls_stack, prnt);
|
|
}
|
|
|
|
static int
|
|
witness_search(struct witness *w, struct witness *target,
|
|
struct witness **path, int depth, int *remaining)
|
|
{
|
|
int i, any_remaining;
|
|
|
|
if (depth == 0) {
|
|
*remaining = 1;
|
|
return (w == target);
|
|
}
|
|
|
|
any_remaining = 0;
|
|
for (i = 1; i <= w_max_used_index; i++) {
|
|
if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
|
|
if (witness_search(&w_data[i], target, path, depth - 1,
|
|
remaining)) {
|
|
path[depth - 1] = &w_data[i];
|
|
*remaining = 1;
|
|
return 1;
|
|
}
|
|
if (remaining)
|
|
any_remaining = 1;
|
|
}
|
|
}
|
|
*remaining = any_remaining;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
witness_print_cycle_edge(int(*prnt)(const char *fmt, ...),
|
|
struct witness *parent, struct witness *child, int step, int last)
|
|
{
|
|
struct witness_lock_order_data *wlod;
|
|
int next;
|
|
|
|
if (last)
|
|
next = 1;
|
|
else
|
|
next = step + 1;
|
|
prnt("lock order [%d] %s (%s) -> [%d] %s (%s)\n",
|
|
step, parent->w_subtype, parent->w_type->lt_name,
|
|
next, child->w_subtype, child->w_type->lt_name);
|
|
if (witness_watch > 1) {
|
|
mtx_enter(&w_mtx);
|
|
wlod = witness_lock_order_get(parent, child);
|
|
mtx_leave(&w_mtx);
|
|
|
|
if (wlod != NULL)
|
|
stacktrace_print(&wlod->wlod_stack, printf);
|
|
else
|
|
prnt("lock order data %p -> %p is missing\n",
|
|
parent->w_type->lt_name, child->w_type->lt_name);
|
|
}
|
|
}
|
|
|
|
static void
|
|
witness_print_cycle(int(*prnt)(const char *fmt, ...),
|
|
struct witness *parent, struct witness *child)
|
|
{
|
|
struct witness *path[4];
|
|
struct witness *w;
|
|
int depth, remaining;
|
|
int step = 0;
|
|
|
|
/*
|
|
* Use depth-limited search to find the shortest path
|
|
* from child to parent.
|
|
*/
|
|
for (depth = 1; depth < nitems(path); depth++) {
|
|
if (witness_search(child, parent, path, depth, &remaining))
|
|
goto found;
|
|
if (!remaining)
|
|
break;
|
|
}
|
|
prnt("witness: incomplete path, depth %d\n", depth);
|
|
return;
|
|
|
|
found:
|
|
witness_print_cycle_edge(prnt, parent, child, ++step, 0);
|
|
for (w = child; depth > 0; depth--) {
|
|
witness_print_cycle_edge(prnt, w, path[depth - 1], ++step,
|
|
depth == 1);
|
|
w = path[depth - 1];
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
static int
|
|
witness_thread_has_locks(struct proc *p)
|
|
{
|
|
|
|
if (p->p_sleeplocks == NULL)
|
|
return (0);
|
|
return (p->p_sleeplocks->ll_count != 0);
|
|
}
|
|
|
|
static int
|
|
witness_process_has_locks(struct process *pr)
|
|
{
|
|
struct proc *p;
|
|
|
|
TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
|
|
if (witness_thread_has_locks(p))
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
witness_list_locks(struct lock_list_entry **lock_list,
|
|
int (*prnt)(const char *fmt, ...))
|
|
{
|
|
struct lock_list_entry *lle;
|
|
int i, nheld;
|
|
|
|
nheld = 0;
|
|
for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
|
|
for (i = lle->ll_count - 1; i >= 0; i--) {
|
|
witness_list_lock(&lle->ll_children[i], prnt);
|
|
nheld++;
|
|
}
|
|
return (nheld);
|
|
}
|
|
|
|
/*
|
|
* This is a bit risky at best. We call this function when we have timed
|
|
* out acquiring a spin lock, and we assume that the other CPU is stuck
|
|
* with this lock held. So, we go groveling around in the other CPU's
|
|
* per-cpu data to try to find the lock instance for this spin lock to
|
|
* see when it was last acquired.
|
|
*/
|
|
void
|
|
witness_display_spinlock(struct lock_object *lock, struct proc *owner,
|
|
int (*prnt)(const char *fmt, ...))
|
|
{
|
|
struct lock_instance *instance;
|
|
|
|
if (owner->p_stat != SONPROC)
|
|
return;
|
|
instance = find_instance(
|
|
witness_cpu[owner->p_cpu->ci_cpuid].wc_spinlocks, lock);
|
|
if (instance != NULL)
|
|
witness_list_lock(instance, prnt);
|
|
}
|
|
|
|
void
|
|
witness_assert(const struct lock_object *lock, int flags)
|
|
{
|
|
struct lock_instance *instance;
|
|
struct lock_class *class;
|
|
|
|
if (lock->lo_witness == NULL || witness_watch < 1 ||
|
|
panicstr != NULL || db_active)
|
|
return;
|
|
class = LOCK_CLASS(lock);
|
|
if ((class->lc_flags & LC_SLEEPLOCK) != 0)
|
|
instance = find_instance(curproc->p_sleeplocks, lock);
|
|
else if ((class->lc_flags & LC_SPINLOCK) != 0)
|
|
instance = find_instance(
|
|
witness_cpu[cpu_number()].wc_spinlocks, lock);
|
|
else {
|
|
panic("lock (%s) %s is not sleep or spin!",
|
|
class->lc_name, lock->lo_name);
|
|
return;
|
|
}
|
|
switch (flags) {
|
|
case LA_UNLOCKED:
|
|
if (instance != NULL)
|
|
panic("lock (%s) %s locked",
|
|
class->lc_name, lock->lo_name);
|
|
break;
|
|
case LA_LOCKED:
|
|
case LA_LOCKED | LA_RECURSED:
|
|
case LA_LOCKED | LA_NOTRECURSED:
|
|
case LA_SLOCKED:
|
|
case LA_SLOCKED | LA_RECURSED:
|
|
case LA_SLOCKED | LA_NOTRECURSED:
|
|
case LA_XLOCKED:
|
|
case LA_XLOCKED | LA_RECURSED:
|
|
case LA_XLOCKED | LA_NOTRECURSED:
|
|
if (instance == NULL) {
|
|
panic("lock (%s) %s not locked",
|
|
class->lc_name, lock->lo_name);
|
|
break;
|
|
}
|
|
if ((flags & LA_XLOCKED) != 0 &&
|
|
(instance->li_flags & LI_EXCLUSIVE) == 0)
|
|
panic(
|
|
"lock (%s) %s not exclusively locked",
|
|
class->lc_name, lock->lo_name);
|
|
if ((flags & LA_SLOCKED) != 0 &&
|
|
(instance->li_flags & LI_EXCLUSIVE) != 0)
|
|
panic(
|
|
"lock (%s) %s exclusively locked",
|
|
class->lc_name, lock->lo_name);
|
|
if ((flags & LA_RECURSED) != 0 &&
|
|
(instance->li_flags & LI_RECURSEMASK) == 0)
|
|
panic("lock (%s) %s not recursed",
|
|
class->lc_name, lock->lo_name);
|
|
if ((flags & LA_NOTRECURSED) != 0 &&
|
|
(instance->li_flags & LI_RECURSEMASK) != 0)
|
|
panic("lock (%s) %s recursed",
|
|
class->lc_name, lock->lo_name);
|
|
break;
|
|
default:
|
|
panic("invalid lock assertion");
|
|
|
|
}
|
|
}
|
|
|
|
static void
|
|
witness_setflag(struct lock_object *lock, int flag, int set)
|
|
{
|
|
struct lock_list_entry *lock_list;
|
|
struct lock_instance *instance;
|
|
struct lock_class *class;
|
|
|
|
if (lock->lo_witness == NULL || witness_watch < 0 ||
|
|
panicstr != NULL || db_active)
|
|
return;
|
|
class = LOCK_CLASS(lock);
|
|
if (class->lc_flags & LC_SLEEPLOCK)
|
|
lock_list = curproc->p_sleeplocks;
|
|
else
|
|
lock_list = witness_cpu[cpu_number()].wc_spinlocks;
|
|
instance = find_instance(lock_list, lock);
|
|
if (instance == NULL) {
|
|
panic("%s: lock (%s) %s not locked", __func__,
|
|
class->lc_name, lock->lo_name);
|
|
return;
|
|
}
|
|
|
|
if (set)
|
|
instance->li_flags |= flag;
|
|
else
|
|
instance->li_flags &= ~flag;
|
|
}
|
|
|
|
void
|
|
witness_norelease(struct lock_object *lock)
|
|
{
|
|
|
|
witness_setflag(lock, LI_NORELEASE, 1);
|
|
}
|
|
|
|
void
|
|
witness_releaseok(struct lock_object *lock)
|
|
{
|
|
|
|
witness_setflag(lock, LI_NORELEASE, 0);
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
witness_ddb_list(struct proc *p)
|
|
{
|
|
struct witness_cpu *wc = &witness_cpu[cpu_number()];
|
|
|
|
KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__);
|
|
KASSERTMSG(db_active, "%s: not in the debugger", __func__);
|
|
|
|
if (witness_watch < 1)
|
|
return;
|
|
|
|
witness_list_locks(&p->p_sleeplocks, db_printf);
|
|
|
|
/*
|
|
* We only handle spinlocks if td == curproc. This is somewhat broken
|
|
* if td is currently executing on some other CPU and holds spin locks
|
|
* as we won't display those locks. If we had a MI way of getting
|
|
* the per-cpu data for a given cpu then we could use
|
|
* td->td_oncpu to get the list of spinlocks for this thread
|
|
* and "fix" this.
|
|
*
|
|
* That still wouldn't really fix this unless we locked the scheduler
|
|
* lock or stopped the other CPU to make sure it wasn't changing the
|
|
* list out from under us. It is probably best to just not try to
|
|
* handle threads on other CPU's for now.
|
|
*/
|
|
if (p == curproc && wc->wc_spinlocks != NULL)
|
|
witness_list_locks(&wc->wc_spinlocks, db_printf);
|
|
}
|
|
|
|
void
|
|
db_witness_list(db_expr_t addr, int have_addr, db_expr_t count, char *modif)
|
|
{
|
|
struct proc *p;
|
|
|
|
if (have_addr)
|
|
p = (struct proc *)addr;
|
|
else
|
|
p = curproc;
|
|
witness_ddb_list(p);
|
|
}
|
|
|
|
void
|
|
db_witness_list_all(db_expr_t addr, int have_addr, db_expr_t count, char *modif)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
struct lock_list_entry *lock_list;
|
|
struct process *pr;
|
|
struct proc *p;
|
|
|
|
CPU_INFO_FOREACH(cii, ci) {
|
|
lock_list = witness_cpu[CPU_INFO_UNIT(ci)].wc_spinlocks;
|
|
if (lock_list == NULL || lock_list->ll_count == 0)
|
|
continue;
|
|
db_printf("CPU %d:\n", CPU_INFO_UNIT(ci));
|
|
witness_list_locks(&lock_list, db_printf);
|
|
}
|
|
|
|
/*
|
|
* It would be nice to list only threads and processes that actually
|
|
* held sleep locks, but that information is currently not exported
|
|
* by WITNESS.
|
|
*/
|
|
LIST_FOREACH(pr, &allprocess, ps_list) {
|
|
if (!witness_process_has_locks(pr))
|
|
continue;
|
|
TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
|
|
if (!witness_thread_has_locks(p))
|
|
continue;
|
|
db_printf("Process %d (%s) thread %p (%d)\n",
|
|
pr->ps_pid, pr->ps_comm, p, p->p_tid);
|
|
witness_ddb_list(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
witness_print_badstacks(void)
|
|
{
|
|
struct witness *w1, *w2;
|
|
int error, generation, i, j;
|
|
|
|
if (witness_watch < 1) {
|
|
db_printf("witness watch is disabled\n");
|
|
return;
|
|
}
|
|
if (witness_cold) {
|
|
db_printf("witness is cold\n");
|
|
return;
|
|
}
|
|
error = 0;
|
|
|
|
restart:
|
|
mtx_enter(&w_mtx);
|
|
generation = w_generation;
|
|
mtx_leave(&w_mtx);
|
|
db_printf("Number of known direct relationships is %d\n",
|
|
w_lohash.wloh_count);
|
|
for (i = 1; i < w_max_used_index; i++) {
|
|
mtx_enter(&w_mtx);
|
|
if (generation != w_generation) {
|
|
mtx_leave(&w_mtx);
|
|
|
|
/* The graph has changed, try again. */
|
|
db_printf("Lock graph changed, restarting trace.\n");
|
|
goto restart;
|
|
}
|
|
|
|
w1 = &w_data[i];
|
|
if (w1->w_reversed == 0) {
|
|
mtx_leave(&w_mtx);
|
|
continue;
|
|
}
|
|
mtx_leave(&w_mtx);
|
|
|
|
if (w1->w_reversed == 0)
|
|
continue;
|
|
for (j = 1; j < w_max_used_index; j++) {
|
|
if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
|
|
continue;
|
|
|
|
mtx_enter(&w_mtx);
|
|
if (generation != w_generation) {
|
|
mtx_leave(&w_mtx);
|
|
|
|
/* The graph has changed, try again. */
|
|
db_printf("Lock graph changed, "
|
|
"restarting trace.\n");
|
|
goto restart;
|
|
}
|
|
|
|
w2 = &w_data[j];
|
|
mtx_leave(&w_mtx);
|
|
|
|
db_printf("\nLock order reversal between \"%s\"(%s) "
|
|
"and \"%s\"(%s)!\n",
|
|
w1->w_type->lt_name, w1->w_class->lc_name,
|
|
w2->w_type->lt_name, w2->w_class->lc_name);
|
|
witness_print_cycle(db_printf, w1, w2);
|
|
}
|
|
}
|
|
mtx_enter(&w_mtx);
|
|
if (generation != w_generation) {
|
|
mtx_leave(&w_mtx);
|
|
|
|
/*
|
|
* The graph changed while we were printing stack data,
|
|
* try again.
|
|
*/
|
|
db_printf("Lock graph changed, restarting trace.\n");
|
|
goto restart;
|
|
}
|
|
mtx_leave(&w_mtx);
|
|
}
|
|
|
|
void
|
|
db_witness_display(db_expr_t addr, int have_addr, db_expr_t count, char *modif)
|
|
{
|
|
switch (modif[0]) {
|
|
case 'b':
|
|
witness_print_badstacks();
|
|
break;
|
|
default:
|
|
witness_ddb_display(db_printf);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
db_witness_print_fullgraph(void)
|
|
{
|
|
struct witness *w;
|
|
int error;
|
|
|
|
if (witness_watch < 1) {
|
|
db_printf("witness watch is disabled\n");
|
|
return;
|
|
}
|
|
if (witness_cold) {
|
|
db_printf("witness is cold\n");
|
|
return;
|
|
}
|
|
error = 0;
|
|
|
|
mtx_enter(&w_mtx);
|
|
SLIST_FOREACH(w, &w_all, w_list)
|
|
w->w_displayed = 0;
|
|
SLIST_FOREACH(w, &w_all, w_list)
|
|
db_witness_add_fullgraph(w);
|
|
mtx_leave(&w_mtx);
|
|
}
|
|
|
|
static void
|
|
db_witness_add_fullgraph(struct witness *w)
|
|
{
|
|
int i;
|
|
|
|
if (w->w_displayed != 0 || w->w_acquired == 0)
|
|
return;
|
|
w->w_displayed = 1;
|
|
|
|
WITNESS_INDEX_ASSERT(w->w_index);
|
|
for (i = 1; i <= w_max_used_index; i++) {
|
|
if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
|
|
db_printf("\"%s\",\"%s\"\n", w->w_type->lt_name,
|
|
w_data[i].w_type->lt_name);
|
|
db_witness_add_fullgraph(&w_data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A simple hash function. Takes a key pointer and a key size. If size == 0,
|
|
* interprets the key as a string and reads until the null
|
|
* terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
|
|
* hash value computed from the key.
|
|
*/
|
|
static uint32_t
|
|
witness_hash_djb2(const uint8_t *key, uint32_t size)
|
|
{
|
|
unsigned int hash = 5381;
|
|
int i;
|
|
|
|
/* hash = hash * 33 + key[i] */
|
|
if (size)
|
|
for (i = 0; i < size; i++)
|
|
hash = ((hash << 5) + hash) + (unsigned int)key[i];
|
|
else
|
|
for (i = 0; key[i] != 0; i++)
|
|
hash = ((hash << 5) + hash) + (unsigned int)key[i];
|
|
|
|
return (hash);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initializes the two witness hash tables. Called exactly once from
|
|
* witness_initialize().
|
|
*/
|
|
static void
|
|
witness_init_hash_tables(void)
|
|
{
|
|
int i;
|
|
|
|
KASSERT(witness_cold);
|
|
|
|
/* Initialize the hash tables. */
|
|
for (i = 0; i < WITNESS_HASH_SIZE; i++)
|
|
SLIST_INIT(&w_hash.wh_array[i]);
|
|
|
|
w_hash.wh_size = WITNESS_HASH_SIZE;
|
|
w_hash.wh_count = 0;
|
|
|
|
/* Initialize the lock order data hash. */
|
|
w_lodata = (void *)uvm_pageboot_alloc(
|
|
sizeof(struct witness_lock_order_data) * WITNESS_LO_DATA_COUNT);
|
|
memset(w_lodata, 0, sizeof(struct witness_lock_order_data) *
|
|
WITNESS_LO_DATA_COUNT);
|
|
w_lofree = NULL;
|
|
for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
|
|
w_lodata[i].wlod_next = w_lofree;
|
|
w_lofree = &w_lodata[i];
|
|
}
|
|
w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
|
|
w_lohash.wloh_count = 0;
|
|
for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
|
|
w_lohash.wloh_array[i] = NULL;
|
|
}
|
|
|
|
static struct witness *
|
|
witness_hash_get(const struct lock_type *type, const char *subtype)
|
|
{
|
|
struct witness *w;
|
|
uint32_t hash;
|
|
|
|
KASSERT(type != NULL);
|
|
if (witness_cold == 0)
|
|
MUTEX_ASSERT_LOCKED(&w_mtx);
|
|
hash = (uint32_t)((uintptr_t)type ^ (uintptr_t)subtype) %
|
|
w_hash.wh_size;
|
|
SLIST_FOREACH(w, &w_hash.wh_array[hash], w_hash_next) {
|
|
if (w->w_type == type && w->w_subtype == subtype)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return (w);
|
|
}
|
|
|
|
static void
|
|
witness_hash_put(struct witness *w)
|
|
{
|
|
uint32_t hash;
|
|
|
|
KASSERT(w != NULL);
|
|
KASSERT(w->w_type != NULL);
|
|
if (witness_cold == 0)
|
|
MUTEX_ASSERT_LOCKED(&w_mtx);
|
|
KASSERTMSG(witness_hash_get(w->w_type, w->w_subtype) == NULL,
|
|
"%s: trying to add a hash entry that already exists!", __func__);
|
|
KASSERTMSG(SLIST_NEXT(w, w_hash_next) == NULL,
|
|
"%s: w->w_hash_next != NULL", __func__);
|
|
|
|
hash = (uint32_t)((uintptr_t)w->w_type ^ (uintptr_t)w->w_subtype) %
|
|
w_hash.wh_size;
|
|
SLIST_INSERT_HEAD(&w_hash.wh_array[hash], w, w_hash_next);
|
|
w_hash.wh_count++;
|
|
}
|
|
|
|
|
|
static struct witness_lock_order_data *
|
|
witness_lock_order_get(struct witness *parent, struct witness *child)
|
|
{
|
|
struct witness_lock_order_data *data = NULL;
|
|
struct witness_lock_order_key key;
|
|
unsigned int hash;
|
|
|
|
KASSERT(parent != NULL && child != NULL);
|
|
key.from = parent->w_index;
|
|
key.to = child->w_index;
|
|
WITNESS_INDEX_ASSERT(key.from);
|
|
WITNESS_INDEX_ASSERT(key.to);
|
|
if ((w_rmatrix[parent->w_index][child->w_index]
|
|
& WITNESS_LOCK_ORDER_KNOWN) == 0)
|
|
goto out;
|
|
|
|
hash = witness_hash_djb2((const char*)&key,
|
|
sizeof(key)) % w_lohash.wloh_size;
|
|
data = w_lohash.wloh_array[hash];
|
|
while (data != NULL) {
|
|
if (witness_lock_order_key_equal(&data->wlod_key, &key))
|
|
break;
|
|
data = data->wlod_next;
|
|
}
|
|
|
|
out:
|
|
return (data);
|
|
}
|
|
|
|
/*
|
|
* Verify that parent and child have a known relationship, are not the same,
|
|
* and child is actually a child of parent. This is done without w_mtx
|
|
* to avoid contention in the common case.
|
|
*/
|
|
static int
|
|
witness_lock_order_check(struct witness *parent, struct witness *child)
|
|
{
|
|
|
|
if (parent != child &&
|
|
w_rmatrix[parent->w_index][child->w_index]
|
|
& WITNESS_LOCK_ORDER_KNOWN &&
|
|
isitmychild(parent, child))
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
witness_lock_order_add(struct witness *parent, struct witness *child)
|
|
{
|
|
static int lofree_empty_reported = 0;
|
|
struct witness_lock_order_data *data = NULL;
|
|
struct witness_lock_order_key key;
|
|
unsigned int hash;
|
|
|
|
KASSERT(parent != NULL && child != NULL);
|
|
key.from = parent->w_index;
|
|
key.to = child->w_index;
|
|
WITNESS_INDEX_ASSERT(key.from);
|
|
WITNESS_INDEX_ASSERT(key.to);
|
|
if (w_rmatrix[parent->w_index][child->w_index]
|
|
& WITNESS_LOCK_ORDER_KNOWN)
|
|
return (1);
|
|
|
|
hash = witness_hash_djb2((const char*)&key,
|
|
sizeof(key)) % w_lohash.wloh_size;
|
|
w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
|
|
data = w_lofree;
|
|
if (data == NULL) {
|
|
if (!lofree_empty_reported) {
|
|
lofree_empty_reported = 1;
|
|
printf("witness: out of free lock order entries\n");
|
|
}
|
|
return (0);
|
|
}
|
|
w_lofree = data->wlod_next;
|
|
data->wlod_next = w_lohash.wloh_array[hash];
|
|
data->wlod_key = key;
|
|
w_lohash.wloh_array[hash] = data;
|
|
w_lohash.wloh_count++;
|
|
stacktrace_save_at(&data->wlod_stack, 1);
|
|
return (1);
|
|
}
|
|
|
|
/* Call this whenever the structure of the witness graph changes. */
|
|
static void
|
|
witness_increment_graph_generation(void)
|
|
{
|
|
|
|
if (witness_cold == 0)
|
|
MUTEX_ASSERT_LOCKED(&w_mtx);
|
|
w_generation++;
|
|
}
|
|
|
|
static void
|
|
witness_debugger(int dump)
|
|
{
|
|
switch (witness_watch) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
if (dump)
|
|
db_stack_dump();
|
|
break;
|
|
case 3:
|
|
if (dump)
|
|
db_stack_dump();
|
|
db_enter();
|
|
break;
|
|
default:
|
|
panic("witness: locking error");
|
|
}
|
|
}
|
|
|
|
static int
|
|
witness_alloc_stacks(void)
|
|
{
|
|
union lock_stack *stacks;
|
|
unsigned int i, nstacks = LOCK_CHILDCOUNT * LOCK_NCHILDREN;
|
|
|
|
rw_assert_wrlock(&w_ctlock);
|
|
|
|
if (w_lock_stack_num >= nstacks)
|
|
return (0);
|
|
|
|
nstacks -= w_lock_stack_num;
|
|
stacks = mallocarray(nstacks, sizeof(*stacks), M_WITNESS,
|
|
M_WAITOK | M_CANFAIL | M_ZERO);
|
|
if (stacks == NULL)
|
|
return (ENOMEM);
|
|
|
|
mtx_enter(&w_mtx);
|
|
for (i = 0; i < nstacks; i++) {
|
|
stacks[i].ls_next = w_lock_stack_free;
|
|
w_lock_stack_free = &stacks[i];
|
|
}
|
|
mtx_leave(&w_mtx);
|
|
w_lock_stack_num += nstacks;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
witness_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
|
|
void *newp, size_t newlen)
|
|
{
|
|
int error, value;
|
|
|
|
if (namelen != 1)
|
|
return (ENOTDIR);
|
|
|
|
rw_enter_write(&w_ctlock);
|
|
|
|
switch (name[0]) {
|
|
case KERN_WITNESS_WATCH:
|
|
error = witness_sysctl_watch(oldp, oldlenp, newp, newlen);
|
|
break;
|
|
case KERN_WITNESS_LOCKTRACE:
|
|
value = witness_locktrace;
|
|
error = sysctl_int(oldp, oldlenp, newp, newlen, &value);
|
|
if (error == 0 && newp != NULL) {
|
|
switch (value) {
|
|
case 1:
|
|
error = witness_alloc_stacks();
|
|
/* FALLTHROUGH */
|
|
case 0:
|
|
if (error == 0)
|
|
witness_locktrace = value;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
rw_exit_write(&w_ctlock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
witness_sysctl_watch(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
|
|
{
|
|
int error;
|
|
int value;
|
|
|
|
value = witness_watch;
|
|
error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
|
|
&value, -1, 3);
|
|
if (error == 0 && newp != NULL) {
|
|
mtx_enter(&w_mtx);
|
|
if (value < 0 || witness_watch >= 0)
|
|
witness_watch = value;
|
|
else
|
|
error = EINVAL;
|
|
mtx_leave(&w_mtx);
|
|
}
|
|
return (error);
|
|
}
|