12190 lines
332 KiB
C
12190 lines
332 KiB
C
/* $OpenBSD: if_iwm.c,v 1.417 2024/09/01 03:08:59 jsg Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2014, 2016 genua gmbh <info@genua.de>
|
|
* Author: Stefan Sperling <stsp@openbsd.org>
|
|
* Copyright (c) 2014 Fixup Software Ltd.
|
|
* Copyright (c) 2017 Stefan Sperling <stsp@openbsd.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*-
|
|
* Based on BSD-licensed source modules in the Linux iwlwifi driver,
|
|
* which were used as the reference documentation for this implementation.
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 Intel Deutschland GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <ilw@linux.intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 Intel Deutschland GmbH
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <sys/refcnt.h>
|
|
#include <sys/task.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
#include <net/if.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_amrr.h>
|
|
#include <net80211/ieee80211_ra.h>
|
|
#include <net80211/ieee80211_ra_vht.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
#include <net80211/ieee80211_priv.h> /* for SEQ_LT */
|
|
#undef DPRINTF /* defined in ieee80211_priv.h */
|
|
|
|
#define DEVNAME(_s) ((_s)->sc_dev.dv_xname)
|
|
|
|
#define IC2IFP(_ic_) (&(_ic_)->ic_if)
|
|
|
|
#define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_)))
|
|
#define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_)))
|
|
|
|
#ifdef IWM_DEBUG
|
|
#define DPRINTF(x) do { if (iwm_debug > 0) printf x; } while (0)
|
|
#define DPRINTFN(n, x) do { if (iwm_debug >= (n)) printf x; } while (0)
|
|
int iwm_debug = 1;
|
|
#else
|
|
#define DPRINTF(x) do { ; } while (0)
|
|
#define DPRINTFN(n, x) do { ; } while (0)
|
|
#endif
|
|
|
|
#include <dev/pci/if_iwmreg.h>
|
|
#include <dev/pci/if_iwmvar.h>
|
|
|
|
const uint8_t iwm_nvm_channels[] = {
|
|
/* 2.4 GHz */
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
/* 5 GHz */
|
|
36, 40, 44 , 48, 52, 56, 60, 64,
|
|
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
|
149, 153, 157, 161, 165
|
|
};
|
|
|
|
const uint8_t iwm_nvm_channels_8000[] = {
|
|
/* 2.4 GHz */
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
/* 5 GHz */
|
|
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
|
|
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
|
149, 153, 157, 161, 165, 169, 173, 177, 181
|
|
};
|
|
|
|
#define IWM_NUM_2GHZ_CHANNELS 14
|
|
|
|
const struct iwm_rate {
|
|
uint16_t rate;
|
|
uint8_t plcp;
|
|
uint8_t ht_plcp;
|
|
} iwm_rates[] = {
|
|
/* Legacy */ /* HT */
|
|
{ 2, IWM_RATE_1M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 4, IWM_RATE_2M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 11, IWM_RATE_5M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 22, IWM_RATE_11M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 12, IWM_RATE_6M_PLCP, IWM_RATE_HT_SISO_MCS_0_PLCP },
|
|
{ 18, IWM_RATE_9M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 24, IWM_RATE_12M_PLCP, IWM_RATE_HT_SISO_MCS_1_PLCP },
|
|
{ 26, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_8_PLCP },
|
|
{ 36, IWM_RATE_18M_PLCP, IWM_RATE_HT_SISO_MCS_2_PLCP },
|
|
{ 48, IWM_RATE_24M_PLCP, IWM_RATE_HT_SISO_MCS_3_PLCP },
|
|
{ 52, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_9_PLCP },
|
|
{ 72, IWM_RATE_36M_PLCP, IWM_RATE_HT_SISO_MCS_4_PLCP },
|
|
{ 78, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_10_PLCP },
|
|
{ 96, IWM_RATE_48M_PLCP, IWM_RATE_HT_SISO_MCS_5_PLCP },
|
|
{ 104, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_11_PLCP },
|
|
{ 108, IWM_RATE_54M_PLCP, IWM_RATE_HT_SISO_MCS_6_PLCP },
|
|
{ 128, IWM_RATE_INVM_PLCP, IWM_RATE_HT_SISO_MCS_7_PLCP },
|
|
{ 156, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_12_PLCP },
|
|
{ 208, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_13_PLCP },
|
|
{ 234, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_14_PLCP },
|
|
{ 260, IWM_RATE_INVM_PLCP, IWM_RATE_HT_MIMO2_MCS_15_PLCP },
|
|
};
|
|
#define IWM_RIDX_CCK 0
|
|
#define IWM_RIDX_OFDM 4
|
|
#define IWM_RIDX_MAX (nitems(iwm_rates)-1)
|
|
#define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
|
|
#define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
|
|
#define IWM_RVAL_IS_OFDM(_i_) ((_i_) >= 12 && (_i_) != 22)
|
|
|
|
/* Convert an MCS index into an iwm_rates[] index. */
|
|
const int iwm_ht_mcs2ridx[] = {
|
|
IWM_RATE_MCS_0_INDEX,
|
|
IWM_RATE_MCS_1_INDEX,
|
|
IWM_RATE_MCS_2_INDEX,
|
|
IWM_RATE_MCS_3_INDEX,
|
|
IWM_RATE_MCS_4_INDEX,
|
|
IWM_RATE_MCS_5_INDEX,
|
|
IWM_RATE_MCS_6_INDEX,
|
|
IWM_RATE_MCS_7_INDEX,
|
|
IWM_RATE_MCS_8_INDEX,
|
|
IWM_RATE_MCS_9_INDEX,
|
|
IWM_RATE_MCS_10_INDEX,
|
|
IWM_RATE_MCS_11_INDEX,
|
|
IWM_RATE_MCS_12_INDEX,
|
|
IWM_RATE_MCS_13_INDEX,
|
|
IWM_RATE_MCS_14_INDEX,
|
|
IWM_RATE_MCS_15_INDEX,
|
|
};
|
|
|
|
struct iwm_nvm_section {
|
|
uint16_t length;
|
|
uint8_t *data;
|
|
};
|
|
|
|
int iwm_is_mimo_ht_plcp(uint8_t);
|
|
int iwm_is_mimo_ht_mcs(int);
|
|
int iwm_store_cscheme(struct iwm_softc *, uint8_t *, size_t);
|
|
int iwm_firmware_store_section(struct iwm_softc *, enum iwm_ucode_type,
|
|
uint8_t *, size_t);
|
|
int iwm_set_default_calib(struct iwm_softc *, const void *);
|
|
void iwm_fw_info_free(struct iwm_fw_info *);
|
|
void iwm_fw_version_str(char *, size_t, uint32_t, uint32_t, uint32_t);
|
|
int iwm_read_firmware(struct iwm_softc *);
|
|
uint32_t iwm_read_prph_unlocked(struct iwm_softc *, uint32_t);
|
|
uint32_t iwm_read_prph(struct iwm_softc *, uint32_t);
|
|
void iwm_write_prph_unlocked(struct iwm_softc *, uint32_t, uint32_t);
|
|
void iwm_write_prph(struct iwm_softc *, uint32_t, uint32_t);
|
|
int iwm_read_mem(struct iwm_softc *, uint32_t, void *, int);
|
|
int iwm_write_mem(struct iwm_softc *, uint32_t, const void *, int);
|
|
int iwm_write_mem32(struct iwm_softc *, uint32_t, uint32_t);
|
|
int iwm_poll_bit(struct iwm_softc *, int, uint32_t, uint32_t, int);
|
|
int iwm_nic_lock(struct iwm_softc *);
|
|
void iwm_nic_assert_locked(struct iwm_softc *);
|
|
void iwm_nic_unlock(struct iwm_softc *);
|
|
int iwm_set_bits_mask_prph(struct iwm_softc *, uint32_t, uint32_t,
|
|
uint32_t);
|
|
int iwm_set_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
|
|
int iwm_clear_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
|
|
int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *, bus_size_t,
|
|
bus_size_t);
|
|
void iwm_dma_contig_free(struct iwm_dma_info *);
|
|
int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
|
|
void iwm_disable_rx_dma(struct iwm_softc *);
|
|
void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
|
|
void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
|
|
int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, int);
|
|
void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
|
|
void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
|
|
void iwm_enable_rfkill_int(struct iwm_softc *);
|
|
int iwm_check_rfkill(struct iwm_softc *);
|
|
void iwm_enable_interrupts(struct iwm_softc *);
|
|
void iwm_enable_fwload_interrupt(struct iwm_softc *);
|
|
void iwm_restore_interrupts(struct iwm_softc *);
|
|
void iwm_disable_interrupts(struct iwm_softc *);
|
|
void iwm_ict_reset(struct iwm_softc *);
|
|
int iwm_set_hw_ready(struct iwm_softc *);
|
|
int iwm_prepare_card_hw(struct iwm_softc *);
|
|
void iwm_apm_config(struct iwm_softc *);
|
|
int iwm_apm_init(struct iwm_softc *);
|
|
void iwm_apm_stop(struct iwm_softc *);
|
|
int iwm_allow_mcast(struct iwm_softc *);
|
|
void iwm_init_msix_hw(struct iwm_softc *);
|
|
void iwm_conf_msix_hw(struct iwm_softc *, int);
|
|
int iwm_clear_persistence_bit(struct iwm_softc *);
|
|
int iwm_start_hw(struct iwm_softc *);
|
|
void iwm_stop_device(struct iwm_softc *);
|
|
void iwm_nic_config(struct iwm_softc *);
|
|
int iwm_nic_rx_init(struct iwm_softc *);
|
|
int iwm_nic_rx_legacy_init(struct iwm_softc *);
|
|
int iwm_nic_rx_mq_init(struct iwm_softc *);
|
|
int iwm_nic_tx_init(struct iwm_softc *);
|
|
int iwm_nic_init(struct iwm_softc *);
|
|
int iwm_enable_ac_txq(struct iwm_softc *, int, int);
|
|
int iwm_enable_txq(struct iwm_softc *, int, int, int, int, uint8_t,
|
|
uint16_t);
|
|
int iwm_disable_txq(struct iwm_softc *, int, int, uint8_t);
|
|
int iwm_post_alive(struct iwm_softc *);
|
|
struct iwm_phy_db_entry *iwm_phy_db_get_section(struct iwm_softc *, uint16_t,
|
|
uint16_t);
|
|
int iwm_phy_db_set_section(struct iwm_softc *,
|
|
struct iwm_calib_res_notif_phy_db *);
|
|
int iwm_is_valid_channel(uint16_t);
|
|
uint8_t iwm_ch_id_to_ch_index(uint16_t);
|
|
uint16_t iwm_channel_id_to_papd(uint16_t);
|
|
uint16_t iwm_channel_id_to_txp(struct iwm_softc *, uint16_t);
|
|
int iwm_phy_db_get_section_data(struct iwm_softc *, uint32_t, uint8_t **,
|
|
uint16_t *, uint16_t);
|
|
int iwm_send_phy_db_cmd(struct iwm_softc *, uint16_t, uint16_t, void *);
|
|
int iwm_phy_db_send_all_channel_groups(struct iwm_softc *, uint16_t,
|
|
uint8_t);
|
|
int iwm_send_phy_db_data(struct iwm_softc *);
|
|
void iwm_protect_session(struct iwm_softc *, struct iwm_node *, uint32_t,
|
|
uint32_t);
|
|
void iwm_unprotect_session(struct iwm_softc *, struct iwm_node *);
|
|
int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, uint16_t,
|
|
uint8_t *, uint16_t *);
|
|
int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
|
|
uint16_t *, size_t);
|
|
uint8_t iwm_fw_valid_tx_ant(struct iwm_softc *);
|
|
uint8_t iwm_fw_valid_rx_ant(struct iwm_softc *);
|
|
int iwm_valid_siso_ant_rate_mask(struct iwm_softc *);
|
|
void iwm_init_channel_map(struct iwm_softc *, const uint16_t * const,
|
|
const uint8_t *nvm_channels, int nchan);
|
|
int iwm_mimo_enabled(struct iwm_softc *);
|
|
void iwm_setup_ht_rates(struct iwm_softc *);
|
|
void iwm_setup_vht_rates(struct iwm_softc *);
|
|
void iwm_mac_ctxt_task(void *);
|
|
void iwm_phy_ctxt_task(void *);
|
|
void iwm_updateprot(struct ieee80211com *);
|
|
void iwm_updateslot(struct ieee80211com *);
|
|
void iwm_updateedca(struct ieee80211com *);
|
|
void iwm_updatechan(struct ieee80211com *);
|
|
void iwm_updatedtim(struct ieee80211com *);
|
|
void iwm_init_reorder_buffer(struct iwm_reorder_buffer *, uint16_t,
|
|
uint16_t);
|
|
void iwm_clear_reorder_buffer(struct iwm_softc *, struct iwm_rxba_data *);
|
|
int iwm_ampdu_rx_start(struct ieee80211com *, struct ieee80211_node *,
|
|
uint8_t);
|
|
void iwm_ampdu_rx_stop(struct ieee80211com *, struct ieee80211_node *,
|
|
uint8_t);
|
|
void iwm_rx_ba_session_expired(void *);
|
|
void iwm_reorder_timer_expired(void *);
|
|
int iwm_sta_rx_agg(struct iwm_softc *, struct ieee80211_node *, uint8_t,
|
|
uint16_t, uint16_t, int, int);
|
|
int iwm_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *,
|
|
uint8_t);
|
|
void iwm_ampdu_tx_stop(struct ieee80211com *, struct ieee80211_node *,
|
|
uint8_t);
|
|
void iwm_ba_task(void *);
|
|
|
|
int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
|
|
const uint16_t *, const uint16_t *,
|
|
const uint16_t *, const uint16_t *,
|
|
const uint16_t *, int);
|
|
void iwm_set_hw_address_8000(struct iwm_softc *, struct iwm_nvm_data *,
|
|
const uint16_t *, const uint16_t *);
|
|
int iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *);
|
|
int iwm_nvm_init(struct iwm_softc *);
|
|
int iwm_firmware_load_sect(struct iwm_softc *, uint32_t, const uint8_t *,
|
|
uint32_t);
|
|
int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t, const uint8_t *,
|
|
uint32_t);
|
|
int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
|
|
int iwm_load_cpu_sections_8000(struct iwm_softc *, struct iwm_fw_sects *,
|
|
int , int *);
|
|
int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
|
|
int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
|
|
int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
|
|
int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
|
|
int iwm_send_phy_cfg_cmd(struct iwm_softc *);
|
|
int iwm_load_ucode_wait_alive(struct iwm_softc *, enum iwm_ucode_type);
|
|
int iwm_send_dqa_cmd(struct iwm_softc *);
|
|
int iwm_run_init_mvm_ucode(struct iwm_softc *, int);
|
|
int iwm_config_ltr(struct iwm_softc *);
|
|
int iwm_rx_addbuf(struct iwm_softc *, int, int);
|
|
int iwm_get_signal_strength(struct iwm_softc *, struct iwm_rx_phy_info *);
|
|
int iwm_rxmq_get_signal_strength(struct iwm_softc *, struct iwm_rx_mpdu_desc *);
|
|
void iwm_rx_rx_phy_cmd(struct iwm_softc *, struct iwm_rx_packet *,
|
|
struct iwm_rx_data *);
|
|
int iwm_get_noise(const struct iwm_statistics_rx_non_phy *);
|
|
int iwm_rx_hwdecrypt(struct iwm_softc *, struct mbuf *, uint32_t,
|
|
struct ieee80211_rxinfo *);
|
|
int iwm_ccmp_decap(struct iwm_softc *, struct mbuf *,
|
|
struct ieee80211_node *, struct ieee80211_rxinfo *);
|
|
void iwm_rx_frame(struct iwm_softc *, struct mbuf *, int, uint32_t, int, int,
|
|
uint32_t, struct ieee80211_rxinfo *, struct mbuf_list *);
|
|
void iwm_ht_single_rate_control(struct iwm_softc *, struct ieee80211_node *,
|
|
int, uint8_t, int);
|
|
void iwm_vht_single_rate_control(struct iwm_softc *, struct ieee80211_node *,
|
|
int, int, uint8_t, int);
|
|
void iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *,
|
|
struct iwm_node *, int, int);
|
|
void iwm_txd_done(struct iwm_softc *, struct iwm_tx_data *);
|
|
void iwm_txq_advance(struct iwm_softc *, struct iwm_tx_ring *, int);
|
|
void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
|
|
struct iwm_rx_data *);
|
|
void iwm_clear_oactive(struct iwm_softc *, struct iwm_tx_ring *);
|
|
void iwm_ampdu_rate_control(struct iwm_softc *, struct ieee80211_node *,
|
|
struct iwm_tx_ring *, int, uint16_t, uint16_t);
|
|
void iwm_rx_compressed_ba(struct iwm_softc *, struct iwm_rx_packet *);
|
|
void iwm_rx_bmiss(struct iwm_softc *, struct iwm_rx_packet *,
|
|
struct iwm_rx_data *);
|
|
int iwm_binding_cmd(struct iwm_softc *, struct iwm_node *, uint32_t);
|
|
uint8_t iwm_get_vht_ctrl_pos(struct ieee80211com *, struct ieee80211_channel *);
|
|
int iwm_phy_ctxt_cmd_uhb(struct iwm_softc *, struct iwm_phy_ctxt *, uint8_t,
|
|
uint8_t, uint32_t, uint32_t, uint8_t, uint8_t);
|
|
void iwm_phy_ctxt_cmd_hdr(struct iwm_softc *, struct iwm_phy_ctxt *,
|
|
struct iwm_phy_context_cmd *, uint32_t, uint32_t);
|
|
void iwm_phy_ctxt_cmd_data(struct iwm_softc *, struct iwm_phy_context_cmd *,
|
|
struct ieee80211_channel *, uint8_t, uint8_t, uint8_t, uint8_t);
|
|
int iwm_phy_ctxt_cmd(struct iwm_softc *, struct iwm_phy_ctxt *, uint8_t,
|
|
uint8_t, uint32_t, uint32_t, uint8_t, uint8_t);
|
|
int iwm_send_cmd(struct iwm_softc *, struct iwm_host_cmd *);
|
|
int iwm_send_cmd_pdu(struct iwm_softc *, uint32_t, uint32_t, uint16_t,
|
|
const void *);
|
|
int iwm_send_cmd_status(struct iwm_softc *, struct iwm_host_cmd *,
|
|
uint32_t *);
|
|
int iwm_send_cmd_pdu_status(struct iwm_softc *, uint32_t, uint16_t,
|
|
const void *, uint32_t *);
|
|
void iwm_free_resp(struct iwm_softc *, struct iwm_host_cmd *);
|
|
void iwm_cmd_done(struct iwm_softc *, int, int, int);
|
|
void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, uint16_t);
|
|
void iwm_reset_sched(struct iwm_softc *, int, int, uint8_t);
|
|
uint8_t iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
|
|
struct ieee80211_frame *, struct iwm_tx_cmd *);
|
|
int iwm_tx(struct iwm_softc *, struct mbuf *, struct ieee80211_node *, int);
|
|
int iwm_flush_tx_path(struct iwm_softc *, int);
|
|
int iwm_wait_tx_queues_empty(struct iwm_softc *);
|
|
void iwm_led_enable(struct iwm_softc *);
|
|
void iwm_led_disable(struct iwm_softc *);
|
|
int iwm_led_is_enabled(struct iwm_softc *);
|
|
void iwm_led_blink_timeout(void *);
|
|
void iwm_led_blink_start(struct iwm_softc *);
|
|
void iwm_led_blink_stop(struct iwm_softc *);
|
|
int iwm_beacon_filter_send_cmd(struct iwm_softc *,
|
|
struct iwm_beacon_filter_cmd *);
|
|
void iwm_beacon_filter_set_cqm_params(struct iwm_softc *, struct iwm_node *,
|
|
struct iwm_beacon_filter_cmd *);
|
|
int iwm_update_beacon_abort(struct iwm_softc *, struct iwm_node *, int);
|
|
void iwm_power_build_cmd(struct iwm_softc *, struct iwm_node *,
|
|
struct iwm_mac_power_cmd *);
|
|
int iwm_power_mac_update_mode(struct iwm_softc *, struct iwm_node *);
|
|
int iwm_power_update_device(struct iwm_softc *);
|
|
int iwm_enable_beacon_filter(struct iwm_softc *, struct iwm_node *);
|
|
int iwm_disable_beacon_filter(struct iwm_softc *);
|
|
int iwm_add_sta_cmd(struct iwm_softc *, struct iwm_node *, int);
|
|
int iwm_add_aux_sta(struct iwm_softc *);
|
|
int iwm_drain_sta(struct iwm_softc *sc, struct iwm_node *, int);
|
|
int iwm_flush_sta(struct iwm_softc *, struct iwm_node *);
|
|
int iwm_rm_sta_cmd(struct iwm_softc *, struct iwm_node *);
|
|
uint16_t iwm_scan_rx_chain(struct iwm_softc *);
|
|
uint32_t iwm_scan_rate_n_flags(struct iwm_softc *, int, int);
|
|
uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *,
|
|
struct iwm_scan_channel_cfg_lmac *, int, int);
|
|
int iwm_fill_probe_req(struct iwm_softc *, struct iwm_scan_probe_req *);
|
|
int iwm_lmac_scan(struct iwm_softc *, int);
|
|
int iwm_config_umac_scan(struct iwm_softc *);
|
|
int iwm_umac_scan(struct iwm_softc *, int);
|
|
void iwm_mcc_update(struct iwm_softc *, struct iwm_mcc_chub_notif *);
|
|
uint8_t iwm_ridx2rate(struct ieee80211_rateset *, int);
|
|
int iwm_rval2ridx(int);
|
|
void iwm_ack_rates(struct iwm_softc *, struct iwm_node *, int *, int *);
|
|
void iwm_mac_ctxt_cmd_common(struct iwm_softc *, struct iwm_node *,
|
|
struct iwm_mac_ctx_cmd *, uint32_t);
|
|
void iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *, struct iwm_node *,
|
|
struct iwm_mac_data_sta *, int);
|
|
int iwm_mac_ctxt_cmd(struct iwm_softc *, struct iwm_node *, uint32_t, int);
|
|
int iwm_update_quotas(struct iwm_softc *, struct iwm_node *, int);
|
|
void iwm_add_task(struct iwm_softc *, struct taskq *, struct task *);
|
|
void iwm_del_task(struct iwm_softc *, struct taskq *, struct task *);
|
|
int iwm_scan(struct iwm_softc *);
|
|
int iwm_bgscan(struct ieee80211com *);
|
|
void iwm_bgscan_done(struct ieee80211com *,
|
|
struct ieee80211_node_switch_bss_arg *, size_t);
|
|
void iwm_bgscan_done_task(void *);
|
|
int iwm_umac_scan_abort(struct iwm_softc *);
|
|
int iwm_lmac_scan_abort(struct iwm_softc *);
|
|
int iwm_scan_abort(struct iwm_softc *);
|
|
int iwm_phy_ctxt_update(struct iwm_softc *, struct iwm_phy_ctxt *,
|
|
struct ieee80211_channel *, uint8_t, uint8_t, uint32_t, uint8_t,
|
|
uint8_t);
|
|
int iwm_auth(struct iwm_softc *);
|
|
int iwm_deauth(struct iwm_softc *);
|
|
int iwm_run(struct iwm_softc *);
|
|
int iwm_run_stop(struct iwm_softc *);
|
|
struct ieee80211_node *iwm_node_alloc(struct ieee80211com *);
|
|
int iwm_set_key_v1(struct ieee80211com *, struct ieee80211_node *,
|
|
struct ieee80211_key *);
|
|
int iwm_set_key(struct ieee80211com *, struct ieee80211_node *,
|
|
struct ieee80211_key *);
|
|
void iwm_delete_key_v1(struct ieee80211com *,
|
|
struct ieee80211_node *, struct ieee80211_key *);
|
|
void iwm_delete_key(struct ieee80211com *,
|
|
struct ieee80211_node *, struct ieee80211_key *);
|
|
void iwm_calib_timeout(void *);
|
|
void iwm_set_rate_table_vht(struct iwm_node *, struct iwm_lq_cmd *);
|
|
void iwm_set_rate_table(struct iwm_node *, struct iwm_lq_cmd *);
|
|
void iwm_setrates(struct iwm_node *, int);
|
|
int iwm_media_change(struct ifnet *);
|
|
void iwm_newstate_task(void *);
|
|
int iwm_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
|
void iwm_endscan(struct iwm_softc *);
|
|
void iwm_fill_sf_command(struct iwm_softc *, struct iwm_sf_cfg_cmd *,
|
|
struct ieee80211_node *);
|
|
int iwm_sf_config(struct iwm_softc *, int);
|
|
int iwm_send_bt_init_conf(struct iwm_softc *);
|
|
int iwm_send_soc_conf(struct iwm_softc *);
|
|
int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
|
|
int iwm_send_temp_report_ths_cmd(struct iwm_softc *);
|
|
void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t);
|
|
void iwm_free_fw_paging(struct iwm_softc *);
|
|
int iwm_save_fw_paging(struct iwm_softc *, const struct iwm_fw_sects *);
|
|
int iwm_send_paging_cmd(struct iwm_softc *, const struct iwm_fw_sects *);
|
|
int iwm_init_hw(struct iwm_softc *);
|
|
int iwm_init(struct ifnet *);
|
|
void iwm_start(struct ifnet *);
|
|
void iwm_stop(struct ifnet *);
|
|
void iwm_watchdog(struct ifnet *);
|
|
int iwm_ioctl(struct ifnet *, u_long, caddr_t);
|
|
const char *iwm_desc_lookup(uint32_t);
|
|
void iwm_nic_error(struct iwm_softc *);
|
|
void iwm_dump_driver_status(struct iwm_softc *);
|
|
void iwm_nic_umac_error(struct iwm_softc *);
|
|
void iwm_rx_mpdu(struct iwm_softc *, struct mbuf *, void *, size_t,
|
|
struct mbuf_list *);
|
|
void iwm_flip_address(uint8_t *);
|
|
int iwm_detect_duplicate(struct iwm_softc *, struct mbuf *,
|
|
struct iwm_rx_mpdu_desc *, struct ieee80211_rxinfo *);
|
|
int iwm_is_sn_less(uint16_t, uint16_t, uint16_t);
|
|
void iwm_release_frames(struct iwm_softc *, struct ieee80211_node *,
|
|
struct iwm_rxba_data *, struct iwm_reorder_buffer *, uint16_t,
|
|
struct mbuf_list *);
|
|
int iwm_oldsn_workaround(struct iwm_softc *, struct ieee80211_node *,
|
|
int, struct iwm_reorder_buffer *, uint32_t, uint32_t);
|
|
int iwm_rx_reorder(struct iwm_softc *, struct mbuf *, int,
|
|
struct iwm_rx_mpdu_desc *, int, int, uint32_t,
|
|
struct ieee80211_rxinfo *, struct mbuf_list *);
|
|
void iwm_rx_mpdu_mq(struct iwm_softc *, struct mbuf *, void *, size_t,
|
|
struct mbuf_list *);
|
|
int iwm_rx_pkt_valid(struct iwm_rx_packet *);
|
|
void iwm_rx_pkt(struct iwm_softc *, struct iwm_rx_data *,
|
|
struct mbuf_list *);
|
|
void iwm_notif_intr(struct iwm_softc *);
|
|
int iwm_intr(void *);
|
|
int iwm_intr_msix(void *);
|
|
int iwm_match(struct device *, void *, void *);
|
|
int iwm_preinit(struct iwm_softc *);
|
|
void iwm_attach_hook(struct device *);
|
|
void iwm_attach(struct device *, struct device *, void *);
|
|
void iwm_init_task(void *);
|
|
int iwm_activate(struct device *, int);
|
|
void iwm_resume(struct iwm_softc *);
|
|
int iwm_wakeup(struct iwm_softc *);
|
|
|
|
#if NBPFILTER > 0
|
|
void iwm_radiotap_attach(struct iwm_softc *);
|
|
#endif
|
|
|
|
uint8_t
|
|
iwm_lookup_cmd_ver(struct iwm_softc *sc, uint8_t grp, uint8_t cmd)
|
|
{
|
|
const struct iwm_fw_cmd_version *entry;
|
|
int i;
|
|
|
|
for (i = 0; i < sc->n_cmd_versions; i++) {
|
|
entry = &sc->cmd_versions[i];
|
|
if (entry->group == grp && entry->cmd == cmd)
|
|
return entry->cmd_ver;
|
|
}
|
|
|
|
return IWM_FW_CMD_VER_UNKNOWN;
|
|
}
|
|
|
|
int
|
|
iwm_is_mimo_ht_plcp(uint8_t ht_plcp)
|
|
{
|
|
return (ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP &&
|
|
(ht_plcp & IWM_RATE_HT_MCS_NSS_MSK));
|
|
}
|
|
|
|
int
|
|
iwm_is_mimo_ht_mcs(int mcs)
|
|
{
|
|
int ridx = iwm_ht_mcs2ridx[mcs];
|
|
return iwm_is_mimo_ht_plcp(iwm_rates[ridx].ht_plcp);
|
|
|
|
}
|
|
|
|
int
|
|
iwm_store_cscheme(struct iwm_softc *sc, uint8_t *data, size_t dlen)
|
|
{
|
|
struct iwm_fw_cscheme_list *l = (void *)data;
|
|
|
|
if (dlen < sizeof(*l) ||
|
|
dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
|
|
return EINVAL;
|
|
|
|
/* we don't actually store anything for now, always use s/w crypto */
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type,
|
|
uint8_t *data, size_t dlen)
|
|
{
|
|
struct iwm_fw_sects *fws;
|
|
struct iwm_fw_onesect *fwone;
|
|
|
|
if (type >= IWM_UCODE_TYPE_MAX)
|
|
return EINVAL;
|
|
if (dlen < sizeof(uint32_t))
|
|
return EINVAL;
|
|
|
|
fws = &sc->sc_fw.fw_sects[type];
|
|
if (fws->fw_count >= IWM_UCODE_SECT_MAX)
|
|
return EINVAL;
|
|
|
|
fwone = &fws->fw_sect[fws->fw_count];
|
|
|
|
/* first 32bit are device load offset */
|
|
memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
|
|
|
|
/* rest is data */
|
|
fwone->fws_data = data + sizeof(uint32_t);
|
|
fwone->fws_len = dlen - sizeof(uint32_t);
|
|
|
|
fws->fw_count++;
|
|
fws->fw_totlen += fwone->fws_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define IWM_DEFAULT_SCAN_CHANNELS 40
|
|
/* Newer firmware might support more channels. Raise this value if needed. */
|
|
#define IWM_MAX_SCAN_CHANNELS 52 /* as of 8265-34 firmware image */
|
|
|
|
struct iwm_tlv_calib_data {
|
|
uint32_t ucode_type;
|
|
struct iwm_tlv_calib_ctrl calib;
|
|
} __packed;
|
|
|
|
int
|
|
iwm_set_default_calib(struct iwm_softc *sc, const void *data)
|
|
{
|
|
const struct iwm_tlv_calib_data *def_calib = data;
|
|
uint32_t ucode_type = le32toh(def_calib->ucode_type);
|
|
|
|
if (ucode_type >= IWM_UCODE_TYPE_MAX)
|
|
return EINVAL;
|
|
|
|
sc->sc_default_calib[ucode_type].flow_trigger =
|
|
def_calib->calib.flow_trigger;
|
|
sc->sc_default_calib[ucode_type].event_trigger =
|
|
def_calib->calib.event_trigger;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_fw_info_free(struct iwm_fw_info *fw)
|
|
{
|
|
free(fw->fw_rawdata, M_DEVBUF, fw->fw_rawsize);
|
|
fw->fw_rawdata = NULL;
|
|
fw->fw_rawsize = 0;
|
|
/* don't touch fw->fw_status */
|
|
memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
|
|
}
|
|
|
|
void
|
|
iwm_fw_version_str(char *buf, size_t bufsize,
|
|
uint32_t major, uint32_t minor, uint32_t api)
|
|
{
|
|
/*
|
|
* Starting with major version 35 the Linux driver prints the minor
|
|
* version in hexadecimal.
|
|
*/
|
|
if (major >= 35)
|
|
snprintf(buf, bufsize, "%u.%08x.%u", major, minor, api);
|
|
else
|
|
snprintf(buf, bufsize, "%u.%u.%u", major, minor, api);
|
|
}
|
|
|
|
int
|
|
iwm_read_firmware(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_fw_info *fw = &sc->sc_fw;
|
|
struct iwm_tlv_ucode_header *uhdr;
|
|
struct iwm_ucode_tlv tlv;
|
|
uint32_t tlv_type;
|
|
uint8_t *data;
|
|
uint32_t usniffer_img;
|
|
uint32_t paging_mem_size;
|
|
int err;
|
|
size_t len;
|
|
|
|
if (fw->fw_status == IWM_FW_STATUS_DONE)
|
|
return 0;
|
|
|
|
while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
|
|
tsleep_nsec(&sc->sc_fw, 0, "iwmfwp", INFSLP);
|
|
fw->fw_status = IWM_FW_STATUS_INPROGRESS;
|
|
|
|
if (fw->fw_rawdata != NULL)
|
|
iwm_fw_info_free(fw);
|
|
|
|
err = loadfirmware(sc->sc_fwname,
|
|
(u_char **)&fw->fw_rawdata, &fw->fw_rawsize);
|
|
if (err) {
|
|
printf("%s: could not read firmware %s (error %d)\n",
|
|
DEVNAME(sc), sc->sc_fwname, err);
|
|
goto out;
|
|
}
|
|
|
|
sc->sc_capaflags = 0;
|
|
sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
|
|
memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
|
|
memset(sc->sc_ucode_api, 0, sizeof(sc->sc_ucode_api));
|
|
sc->n_cmd_versions = 0;
|
|
|
|
uhdr = (void *)fw->fw_rawdata;
|
|
if (*(uint32_t *)fw->fw_rawdata != 0
|
|
|| le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
|
|
printf("%s: invalid firmware %s\n",
|
|
DEVNAME(sc), sc->sc_fwname);
|
|
err = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
iwm_fw_version_str(sc->sc_fwver, sizeof(sc->sc_fwver),
|
|
IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
|
|
IWM_UCODE_MINOR(le32toh(uhdr->ver)),
|
|
IWM_UCODE_API(le32toh(uhdr->ver)));
|
|
|
|
data = uhdr->data;
|
|
len = fw->fw_rawsize - sizeof(*uhdr);
|
|
|
|
while (len >= sizeof(tlv)) {
|
|
size_t tlv_len;
|
|
void *tlv_data;
|
|
|
|
memcpy(&tlv, data, sizeof(tlv));
|
|
tlv_len = le32toh(tlv.length);
|
|
tlv_type = le32toh(tlv.type);
|
|
|
|
len -= sizeof(tlv);
|
|
data += sizeof(tlv);
|
|
tlv_data = data;
|
|
|
|
if (len < tlv_len) {
|
|
printf("%s: firmware too short: %zu bytes\n",
|
|
DEVNAME(sc), len);
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
|
|
switch (tlv_type) {
|
|
case IWM_UCODE_TLV_PROBE_MAX_LEN:
|
|
if (tlv_len < sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_capa_max_probe_len
|
|
= le32toh(*(uint32_t *)tlv_data);
|
|
if (sc->sc_capa_max_probe_len >
|
|
IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
break;
|
|
case IWM_UCODE_TLV_PAN:
|
|
if (tlv_len) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
|
|
break;
|
|
case IWM_UCODE_TLV_FLAGS:
|
|
if (tlv_len < sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
/*
|
|
* Apparently there can be many flags, but Linux driver
|
|
* parses only the first one, and so do we.
|
|
*
|
|
* XXX: why does this override IWM_UCODE_TLV_PAN?
|
|
* Intentional or a bug? Observations from
|
|
* current firmware file:
|
|
* 1) TLV_PAN is parsed first
|
|
* 2) TLV_FLAGS contains TLV_FLAGS_PAN
|
|
* ==> this resets TLV_PAN to itself... hnnnk
|
|
*/
|
|
sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data);
|
|
break;
|
|
case IWM_UCODE_TLV_CSCHEME:
|
|
err = iwm_store_cscheme(sc, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_NUM_OF_CPU: {
|
|
uint32_t num_cpu;
|
|
if (tlv_len != sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
num_cpu = le32toh(*(uint32_t *)tlv_data);
|
|
if (num_cpu < 1 || num_cpu > 2) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
break;
|
|
}
|
|
case IWM_UCODE_TLV_SEC_RT:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_SEC_INIT:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_INIT, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_SEC_WOWLAN:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_WOW, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_DEF_CALIB:
|
|
if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
err = iwm_set_default_calib(sc, tlv_data);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_PHY_SKU:
|
|
if (tlv_len != sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data);
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_API_CHANGES_SET: {
|
|
struct iwm_ucode_api *api;
|
|
int idx, i;
|
|
if (tlv_len != sizeof(*api)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
api = (struct iwm_ucode_api *)tlv_data;
|
|
idx = le32toh(api->api_index);
|
|
if (idx >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
for (i = 0; i < 32; i++) {
|
|
if ((le32toh(api->api_flags) & (1 << i)) == 0)
|
|
continue;
|
|
setbit(sc->sc_ucode_api, i + (32 * idx));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
|
|
struct iwm_ucode_capa *capa;
|
|
int idx, i;
|
|
if (tlv_len != sizeof(*capa)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
capa = (struct iwm_ucode_capa *)tlv_data;
|
|
idx = le32toh(capa->api_index);
|
|
if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
|
|
goto parse_out;
|
|
}
|
|
for (i = 0; i < 32; i++) {
|
|
if ((le32toh(capa->api_capa) & (1 << i)) == 0)
|
|
continue;
|
|
setbit(sc->sc_enabled_capa, i + (32 * idx));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_UCODE_TLV_CMD_VERSIONS:
|
|
if (tlv_len % sizeof(struct iwm_fw_cmd_version)) {
|
|
tlv_len /= sizeof(struct iwm_fw_cmd_version);
|
|
tlv_len *= sizeof(struct iwm_fw_cmd_version);
|
|
}
|
|
if (sc->n_cmd_versions != 0) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
if (tlv_len > sizeof(sc->cmd_versions)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
memcpy(&sc->cmd_versions[0], tlv_data, tlv_len);
|
|
sc->n_cmd_versions = tlv_len / sizeof(struct iwm_fw_cmd_version);
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
|
|
case IWM_UCODE_TLV_FW_GSCAN_CAPA:
|
|
/* ignore, not used by current driver */
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_SEC_RT_USNIFFER:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
|
|
tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_PAGING:
|
|
if (tlv_len != sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
paging_mem_size = le32toh(*(const uint32_t *)tlv_data);
|
|
|
|
DPRINTF(("%s: Paging: paging enabled (size = %u bytes)\n",
|
|
DEVNAME(sc), paging_mem_size));
|
|
if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
|
|
printf("%s: Driver only supports up to %u"
|
|
" bytes for paging image (%u requested)\n",
|
|
DEVNAME(sc), IWM_MAX_PAGING_IMAGE_SIZE,
|
|
paging_mem_size);
|
|
err = EINVAL;
|
|
goto out;
|
|
}
|
|
if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
|
|
printf("%s: Paging: image isn't multiple of %u\n",
|
|
DEVNAME(sc), IWM_FW_PAGING_SIZE);
|
|
err = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
fw->fw_sects[IWM_UCODE_TYPE_REGULAR].paging_mem_size =
|
|
paging_mem_size;
|
|
usniffer_img = IWM_UCODE_TYPE_REGULAR_USNIFFER;
|
|
fw->fw_sects[usniffer_img].paging_mem_size =
|
|
paging_mem_size;
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_N_SCAN_CHANNELS:
|
|
if (tlv_len != sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_capa_n_scan_channels =
|
|
le32toh(*(uint32_t *)tlv_data);
|
|
if (sc->sc_capa_n_scan_channels > IWM_MAX_SCAN_CHANNELS) {
|
|
err = ERANGE;
|
|
goto parse_out;
|
|
}
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_FW_VERSION:
|
|
if (tlv_len != sizeof(uint32_t) * 3) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
|
|
iwm_fw_version_str(sc->sc_fwver, sizeof(sc->sc_fwver),
|
|
le32toh(((uint32_t *)tlv_data)[0]),
|
|
le32toh(((uint32_t *)tlv_data)[1]),
|
|
le32toh(((uint32_t *)tlv_data)[2]));
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_FW_DBG_DEST:
|
|
case IWM_UCODE_TLV_FW_DBG_CONF:
|
|
case IWM_UCODE_TLV_UMAC_DEBUG_ADDRS:
|
|
case IWM_UCODE_TLV_LMAC_DEBUG_ADDRS:
|
|
case IWM_UCODE_TLV_TYPE_DEBUG_INFO:
|
|
case IWM_UCODE_TLV_TYPE_BUFFER_ALLOCATION:
|
|
case IWM_UCODE_TLV_TYPE_HCMD:
|
|
case IWM_UCODE_TLV_TYPE_REGIONS:
|
|
case IWM_UCODE_TLV_TYPE_TRIGGERS:
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_HW_TYPE:
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_FW_MEM_SEG:
|
|
break;
|
|
|
|
/* undocumented TLVs found in iwm-9000-43 image */
|
|
case 0x1000003:
|
|
case 0x1000004:
|
|
break;
|
|
|
|
default:
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
|
|
/*
|
|
* Check for size_t overflow and ignore missing padding at
|
|
* end of firmware file.
|
|
*/
|
|
if (roundup(tlv_len, 4) > len)
|
|
break;
|
|
|
|
len -= roundup(tlv_len, 4);
|
|
data += roundup(tlv_len, 4);
|
|
}
|
|
|
|
KASSERT(err == 0);
|
|
|
|
parse_out:
|
|
if (err) {
|
|
printf("%s: firmware parse error %d, "
|
|
"section type %d\n", DEVNAME(sc), err, tlv_type);
|
|
}
|
|
|
|
out:
|
|
if (err) {
|
|
fw->fw_status = IWM_FW_STATUS_NONE;
|
|
if (fw->fw_rawdata != NULL)
|
|
iwm_fw_info_free(fw);
|
|
} else
|
|
fw->fw_status = IWM_FW_STATUS_DONE;
|
|
wakeup(&sc->sc_fw);
|
|
|
|
return err;
|
|
}
|
|
|
|
uint32_t
|
|
iwm_read_prph_unlocked(struct iwm_softc *sc, uint32_t addr)
|
|
{
|
|
IWM_WRITE(sc,
|
|
IWM_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24)));
|
|
IWM_BARRIER_READ_WRITE(sc);
|
|
return IWM_READ(sc, IWM_HBUS_TARG_PRPH_RDAT);
|
|
}
|
|
|
|
uint32_t
|
|
iwm_read_prph(struct iwm_softc *sc, uint32_t addr)
|
|
{
|
|
iwm_nic_assert_locked(sc);
|
|
return iwm_read_prph_unlocked(sc, addr);
|
|
}
|
|
|
|
void
|
|
iwm_write_prph_unlocked(struct iwm_softc *sc, uint32_t addr, uint32_t val)
|
|
{
|
|
IWM_WRITE(sc,
|
|
IWM_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24)));
|
|
IWM_BARRIER_WRITE(sc);
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WDAT, val);
|
|
}
|
|
|
|
void
|
|
iwm_write_prph(struct iwm_softc *sc, uint32_t addr, uint32_t val)
|
|
{
|
|
iwm_nic_assert_locked(sc);
|
|
iwm_write_prph_unlocked(sc, addr, val);
|
|
}
|
|
|
|
void
|
|
iwm_write_prph64(struct iwm_softc *sc, uint64_t addr, uint64_t val)
|
|
{
|
|
iwm_write_prph(sc, (uint32_t)addr, val & 0xffffffff);
|
|
iwm_write_prph(sc, (uint32_t)addr + 4, val >> 32);
|
|
}
|
|
|
|
int
|
|
iwm_read_mem(struct iwm_softc *sc, uint32_t addr, void *buf, int dwords)
|
|
{
|
|
int offs, err = 0;
|
|
uint32_t *vals = buf;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_RADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
vals[offs] = IWM_READ(sc, IWM_HBUS_TARG_MEM_RDAT);
|
|
iwm_nic_unlock(sc);
|
|
} else {
|
|
err = EBUSY;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_write_mem(struct iwm_softc *sc, uint32_t addr, const void *buf, int dwords)
|
|
{
|
|
int offs;
|
|
const uint32_t *vals = buf;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WADDR, addr);
|
|
/* WADDR auto-increments */
|
|
for (offs = 0; offs < dwords; offs++) {
|
|
uint32_t val = vals ? vals[offs] : 0;
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WDAT, val);
|
|
}
|
|
iwm_nic_unlock(sc);
|
|
} else {
|
|
return EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_write_mem32(struct iwm_softc *sc, uint32_t addr, uint32_t val)
|
|
{
|
|
return iwm_write_mem(sc, addr, &val, 1);
|
|
}
|
|
|
|
int
|
|
iwm_poll_bit(struct iwm_softc *sc, int reg, uint32_t bits, uint32_t mask,
|
|
int timo)
|
|
{
|
|
for (;;) {
|
|
if ((IWM_READ(sc, reg) & mask) == (bits & mask)) {
|
|
return 1;
|
|
}
|
|
if (timo < 10) {
|
|
return 0;
|
|
}
|
|
timo -= 10;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
|
|
int
|
|
iwm_nic_lock(struct iwm_softc *sc)
|
|
{
|
|
if (sc->sc_nic_locks > 0) {
|
|
iwm_nic_assert_locked(sc);
|
|
sc->sc_nic_locks++;
|
|
return 1; /* already locked */
|
|
}
|
|
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
|
|
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000)
|
|
DELAY(2);
|
|
|
|
if (iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY
|
|
| IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP, 150000)) {
|
|
sc->sc_nic_locks++;
|
|
return 1;
|
|
}
|
|
|
|
printf("%s: acquiring device failed\n", DEVNAME(sc));
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_nic_assert_locked(struct iwm_softc *sc)
|
|
{
|
|
if (sc->sc_nic_locks <= 0)
|
|
panic("%s: nic locks counter %d", DEVNAME(sc), sc->sc_nic_locks);
|
|
}
|
|
|
|
void
|
|
iwm_nic_unlock(struct iwm_softc *sc)
|
|
{
|
|
if (sc->sc_nic_locks > 0) {
|
|
if (--sc->sc_nic_locks == 0)
|
|
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
} else
|
|
printf("%s: NIC already unlocked\n", DEVNAME(sc));
|
|
}
|
|
|
|
int
|
|
iwm_set_bits_mask_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits,
|
|
uint32_t mask)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
val = iwm_read_prph(sc, reg) & mask;
|
|
val |= bits;
|
|
iwm_write_prph(sc, reg, val);
|
|
iwm_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
return EBUSY;
|
|
}
|
|
|
|
int
|
|
iwm_set_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
|
|
{
|
|
return iwm_set_bits_mask_prph(sc, reg, bits, ~0);
|
|
}
|
|
|
|
int
|
|
iwm_clear_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
|
|
{
|
|
return iwm_set_bits_mask_prph(sc, reg, 0, ~bits);
|
|
}
|
|
|
|
int
|
|
iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
|
|
bus_size_t size, bus_size_t alignment)
|
|
{
|
|
int nsegs, err;
|
|
caddr_t va;
|
|
|
|
dma->tag = tag;
|
|
dma->size = size;
|
|
|
|
err = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
|
|
&dma->map);
|
|
if (err)
|
|
goto fail;
|
|
|
|
err = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
|
|
BUS_DMA_NOWAIT);
|
|
if (err)
|
|
goto fail;
|
|
|
|
err = bus_dmamem_map(tag, &dma->seg, 1, size, &va,
|
|
BUS_DMA_NOWAIT);
|
|
if (err)
|
|
goto fail;
|
|
dma->vaddr = va;
|
|
|
|
err = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
|
|
BUS_DMA_NOWAIT);
|
|
if (err)
|
|
goto fail;
|
|
|
|
memset(dma->vaddr, 0, size);
|
|
bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
|
|
dma->paddr = dma->map->dm_segs[0].ds_addr;
|
|
|
|
return 0;
|
|
|
|
fail: iwm_dma_contig_free(dma);
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_dma_contig_free(struct iwm_dma_info *dma)
|
|
{
|
|
if (dma->map != NULL) {
|
|
if (dma->vaddr != NULL) {
|
|
bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->tag, dma->map);
|
|
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
|
|
bus_dmamem_free(dma->tag, &dma->seg, 1);
|
|
dma->vaddr = NULL;
|
|
}
|
|
bus_dmamap_destroy(dma->tag, dma->map);
|
|
dma->map = NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
|
|
{
|
|
bus_size_t size;
|
|
size_t descsz;
|
|
int count, i, err;
|
|
|
|
ring->cur = 0;
|
|
|
|
if (sc->sc_mqrx_supported) {
|
|
count = IWM_RX_MQ_RING_COUNT;
|
|
descsz = sizeof(uint64_t);
|
|
} else {
|
|
count = IWM_RX_RING_COUNT;
|
|
descsz = sizeof(uint32_t);
|
|
}
|
|
|
|
/* Allocate RX descriptors (256-byte aligned). */
|
|
size = count * descsz;
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 256);
|
|
if (err) {
|
|
printf("%s: could not allocate RX ring DMA memory\n",
|
|
DEVNAME(sc));
|
|
goto fail;
|
|
}
|
|
ring->desc = ring->free_desc_dma.vaddr;
|
|
|
|
/* Allocate RX status area (16-byte aligned). */
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
|
|
sizeof(*ring->stat), 16);
|
|
if (err) {
|
|
printf("%s: could not allocate RX status DMA memory\n",
|
|
DEVNAME(sc));
|
|
goto fail;
|
|
}
|
|
ring->stat = ring->stat_dma.vaddr;
|
|
|
|
if (sc->sc_mqrx_supported) {
|
|
size = count * sizeof(uint32_t);
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma,
|
|
size, 256);
|
|
if (err) {
|
|
printf("%s: could not allocate RX ring DMA memory\n",
|
|
DEVNAME(sc));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct iwm_rx_data *data = &ring->data[i];
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
err = bus_dmamap_create(sc->sc_dmat, IWM_RBUF_SIZE, 1,
|
|
IWM_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
|
|
&data->map);
|
|
if (err) {
|
|
printf("%s: could not create RX buf DMA map\n",
|
|
DEVNAME(sc));
|
|
goto fail;
|
|
}
|
|
|
|
err = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
return 0;
|
|
|
|
fail: iwm_free_rx_ring(sc, ring);
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_disable_rx_dma(struct iwm_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
if (sc->sc_mqrx_supported) {
|
|
iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0);
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (iwm_read_prph(sc, IWM_RFH_GEN_STATUS) &
|
|
IWM_RXF_DMA_IDLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
} else {
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (IWM_READ(sc, IWM_FH_MEM_RSSR_RX_STATUS_REG)&
|
|
IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
|
|
{
|
|
ring->cur = 0;
|
|
bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,
|
|
ring->stat_dma.size, BUS_DMASYNC_PREWRITE);
|
|
memset(ring->stat, 0, sizeof(*ring->stat));
|
|
bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,
|
|
ring->stat_dma.size, BUS_DMASYNC_POSTWRITE);
|
|
|
|
}
|
|
|
|
void
|
|
iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
|
|
{
|
|
int count, i;
|
|
|
|
iwm_dma_contig_free(&ring->free_desc_dma);
|
|
iwm_dma_contig_free(&ring->stat_dma);
|
|
iwm_dma_contig_free(&ring->used_desc_dma);
|
|
|
|
if (sc->sc_mqrx_supported)
|
|
count = IWM_RX_MQ_RING_COUNT;
|
|
else
|
|
count = IWM_RX_RING_COUNT;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct iwm_rx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
}
|
|
|
|
int
|
|
iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
|
|
{
|
|
bus_addr_t paddr;
|
|
bus_size_t size;
|
|
int i, err;
|
|
|
|
ring->qid = qid;
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
ring->tail = 0;
|
|
|
|
/* Allocate TX descriptors (256-byte aligned). */
|
|
size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
|
|
if (err) {
|
|
printf("%s: could not allocate TX ring DMA memory\n",
|
|
DEVNAME(sc));
|
|
goto fail;
|
|
}
|
|
ring->desc = ring->desc_dma.vaddr;
|
|
|
|
/*
|
|
* There is no need to allocate DMA buffers for unused rings.
|
|
* 7k/8k/9k hardware supports up to 31 Tx rings which is more
|
|
* than we currently need.
|
|
*
|
|
* In DQA mode we use 1 command queue + 4 DQA mgmt/data queues.
|
|
* The command is queue 0 (sc->txq[0]), and 4 mgmt/data frame queues
|
|
* are sc->tqx[IWM_DQA_MIN_MGMT_QUEUE + ac], i.e. sc->txq[5:8],
|
|
* in order to provide one queue per EDCA category.
|
|
* Tx aggregation requires additional queues, one queue per TID for
|
|
* which aggregation is enabled. We map TID 0-7 to sc->txq[10:17].
|
|
*
|
|
* In non-DQA mode, we use rings 0 through 9 (0-3 are EDCA, 9 is cmd),
|
|
* and Tx aggregation is not supported.
|
|
*
|
|
* Unfortunately, we cannot tell if DQA will be used until the
|
|
* firmware gets loaded later, so just allocate sufficient rings
|
|
* in order to satisfy both cases.
|
|
*/
|
|
if (qid > IWM_LAST_AGG_TX_QUEUE)
|
|
return 0;
|
|
|
|
size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
|
|
if (err) {
|
|
printf("%s: could not allocate cmd DMA memory\n", DEVNAME(sc));
|
|
goto fail;
|
|
}
|
|
ring->cmd = ring->cmd_dma.vaddr;
|
|
|
|
paddr = ring->cmd_dma.paddr;
|
|
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
|
|
struct iwm_tx_data *data = &ring->data[i];
|
|
size_t mapsize;
|
|
|
|
data->cmd_paddr = paddr;
|
|
data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
|
|
+ offsetof(struct iwm_tx_cmd, scratch);
|
|
paddr += sizeof(struct iwm_device_cmd);
|
|
|
|
/* FW commands may require more mapped space than packets. */
|
|
if (qid == IWM_CMD_QUEUE || qid == IWM_DQA_CMD_QUEUE)
|
|
mapsize = (sizeof(struct iwm_cmd_header) +
|
|
IWM_MAX_CMD_PAYLOAD_SIZE);
|
|
else
|
|
mapsize = MCLBYTES;
|
|
err = bus_dmamap_create(sc->sc_dmat, mapsize,
|
|
IWM_NUM_OF_TBS - 2, mapsize, 0, BUS_DMA_NOWAIT,
|
|
&data->map);
|
|
if (err) {
|
|
printf("%s: could not create TX buf DMA map\n",
|
|
DEVNAME(sc));
|
|
goto fail;
|
|
}
|
|
}
|
|
KASSERT(paddr == ring->cmd_dma.paddr + size);
|
|
return 0;
|
|
|
|
fail: iwm_free_tx_ring(sc, ring);
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
|
|
struct iwm_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
/* Clear TX descriptors. */
|
|
memset(ring->desc, 0, ring->desc_dma.size);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
|
|
ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
|
|
sc->qfullmsk &= ~(1 << ring->qid);
|
|
sc->qenablemsk &= ~(1 << ring->qid);
|
|
/* 7000 family NICs are locked while commands are in progress. */
|
|
if (ring->qid == sc->cmdqid && ring->queued > 0) {
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
ring->tail = 0;
|
|
}
|
|
|
|
void
|
|
iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
iwm_dma_contig_free(&ring->desc_dma);
|
|
iwm_dma_contig_free(&ring->cmd_dma);
|
|
|
|
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
|
|
struct iwm_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_enable_rfkill_int(struct iwm_softc *sc)
|
|
{
|
|
if (!sc->sc_msix) {
|
|
sc->sc_intmask = IWM_CSR_INT_BIT_RF_KILL;
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
|
|
} else {
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
|
|
sc->sc_fh_init_mask);
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
|
|
~IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL);
|
|
sc->sc_hw_mask = IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL;
|
|
}
|
|
|
|
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_9000)
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
|
|
}
|
|
|
|
int
|
|
iwm_check_rfkill(struct iwm_softc *sc)
|
|
{
|
|
uint32_t v;
|
|
int rv;
|
|
|
|
/*
|
|
* "documentation" is not really helpful here:
|
|
* 27: HW_RF_KILL_SW
|
|
* Indicates state of (platform's) hardware RF-Kill switch
|
|
*
|
|
* But apparently when it's off, it's on ...
|
|
*/
|
|
v = IWM_READ(sc, IWM_CSR_GP_CNTRL);
|
|
rv = (v & IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) == 0;
|
|
if (rv) {
|
|
sc->sc_flags |= IWM_FLAG_RFKILL;
|
|
} else {
|
|
sc->sc_flags &= ~IWM_FLAG_RFKILL;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
void
|
|
iwm_enable_interrupts(struct iwm_softc *sc)
|
|
{
|
|
if (!sc->sc_msix) {
|
|
sc->sc_intmask = IWM_CSR_INI_SET_MASK;
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
|
|
} else {
|
|
/*
|
|
* fh/hw_mask keeps all the unmasked causes.
|
|
* Unlike msi, in msix cause is enabled when it is unset.
|
|
*/
|
|
sc->sc_hw_mask = sc->sc_hw_init_mask;
|
|
sc->sc_fh_mask = sc->sc_fh_init_mask;
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
|
|
~sc->sc_fh_mask);
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
|
|
~sc->sc_hw_mask);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_enable_fwload_interrupt(struct iwm_softc *sc)
|
|
{
|
|
if (!sc->sc_msix) {
|
|
sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX;
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
|
|
} else {
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
|
|
sc->sc_hw_init_mask);
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
|
|
~IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
|
|
sc->sc_fh_mask = IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM;
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_restore_interrupts(struct iwm_softc *sc)
|
|
{
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
|
|
}
|
|
|
|
void
|
|
iwm_disable_interrupts(struct iwm_softc *sc)
|
|
{
|
|
if (!sc->sc_msix) {
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
|
|
|
|
/* acknowledge all interrupts */
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
|
|
} else {
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
|
|
sc->sc_fh_init_mask);
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
|
|
sc->sc_hw_init_mask);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_ict_reset(struct iwm_softc *sc)
|
|
{
|
|
iwm_disable_interrupts(sc);
|
|
|
|
memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
|
|
sc->ict_cur = 0;
|
|
|
|
/* Set physical address of ICT (4KB aligned). */
|
|
IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
|
|
IWM_CSR_DRAM_INT_TBL_ENABLE
|
|
| IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
|
|
| IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
|
|
| sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
|
|
|
|
/* Switch to ICT interrupt mode in driver. */
|
|
sc->sc_flags |= IWM_FLAG_USE_ICT;
|
|
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
iwm_enable_interrupts(sc);
|
|
}
|
|
|
|
#define IWM_HW_READY_TIMEOUT 50
|
|
int
|
|
iwm_set_hw_ready(struct iwm_softc *sc)
|
|
{
|
|
int ready;
|
|
|
|
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
|
|
|
|
ready = iwm_poll_bit(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
IWM_HW_READY_TIMEOUT);
|
|
if (ready)
|
|
IWM_SETBITS(sc, IWM_CSR_MBOX_SET_REG,
|
|
IWM_CSR_MBOX_SET_REG_OS_ALIVE);
|
|
|
|
return ready;
|
|
}
|
|
#undef IWM_HW_READY_TIMEOUT
|
|
|
|
int
|
|
iwm_prepare_card_hw(struct iwm_softc *sc)
|
|
{
|
|
int t = 0;
|
|
int ntries;
|
|
|
|
if (iwm_set_hw_ready(sc))
|
|
return 0;
|
|
|
|
IWM_SETBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,
|
|
IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
DELAY(1000);
|
|
|
|
for (ntries = 0; ntries < 10; ntries++) {
|
|
/* If HW is not ready, prepare the conditions to check again */
|
|
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_PREPARE);
|
|
|
|
do {
|
|
if (iwm_set_hw_ready(sc))
|
|
return 0;
|
|
DELAY(200);
|
|
t += 200;
|
|
} while (t < 150000);
|
|
DELAY(25000);
|
|
}
|
|
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
void
|
|
iwm_apm_config(struct iwm_softc *sc)
|
|
{
|
|
pcireg_t lctl, cap;
|
|
|
|
/*
|
|
* HW bug W/A for instability in PCIe bus L0S->L1 transition.
|
|
* Check if BIOS (or OS) enabled L1-ASPM on this device.
|
|
* If so (likely), disable L0S, so device moves directly L0->L1;
|
|
* costs negligible amount of power savings.
|
|
* If not (unlikely), enable L0S, so there is at least some
|
|
* power savings, even without L1.
|
|
*/
|
|
lctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
|
|
sc->sc_cap_off + PCI_PCIE_LCSR);
|
|
if (lctl & PCI_PCIE_LCSR_ASPM_L1) {
|
|
IWM_SETBITS(sc, IWM_CSR_GIO_REG,
|
|
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
} else {
|
|
IWM_CLRBITS(sc, IWM_CSR_GIO_REG,
|
|
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
}
|
|
|
|
cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
|
|
sc->sc_cap_off + PCI_PCIE_DCSR2);
|
|
sc->sc_ltr_enabled = (cap & PCI_PCIE_DCSR2_LTREN) ? 1 : 0;
|
|
DPRINTF(("%s: L1 %sabled - LTR %sabled\n",
|
|
DEVNAME(sc),
|
|
(lctl & PCI_PCIE_LCSR_ASPM_L1) ? "En" : "Dis",
|
|
sc->sc_ltr_enabled ? "En" : "Dis"));
|
|
}
|
|
|
|
/*
|
|
* Start up NIC's basic functionality after it has been reset
|
|
* e.g. after platform boot or shutdown.
|
|
* NOTE: This does not load uCode nor start the embedded processor
|
|
*/
|
|
int
|
|
iwm_apm_init(struct iwm_softc *sc)
|
|
{
|
|
int err = 0;
|
|
|
|
/* Disable L0S exit timer (platform NMI workaround) */
|
|
if (sc->sc_device_family < IWM_DEVICE_FAMILY_8000)
|
|
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
|
|
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
|
|
|
|
/*
|
|
* Disable L0s without affecting L1;
|
|
* don't wait for ICH L0s (ICH bug W/A)
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
|
|
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
|
|
|
|
/* Set FH wait threshold to maximum (HW error during stress W/A) */
|
|
IWM_SETBITS(sc, IWM_CSR_DBG_HPET_MEM_REG, IWM_CSR_DBG_HPET_MEM_REG_VAL);
|
|
|
|
/*
|
|
* Enable HAP INTA (interrupt from management bus) to
|
|
* wake device's PCI Express link L1a -> L0s
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
|
|
|
|
iwm_apm_config(sc);
|
|
|
|
#if 0 /* not for 7k/8k */
|
|
/* Configure analog phase-lock-loop before activating to D0A */
|
|
if (trans->cfg->base_params->pll_cfg_val)
|
|
IWM_SETBITS(trans, IWM_CSR_ANA_PLL_CFG,
|
|
trans->cfg->base_params->pll_cfg_val);
|
|
#endif
|
|
|
|
/*
|
|
* Set "initialization complete" bit to move adapter from
|
|
* D0U* --> D0A* (powered-up active) state.
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/*
|
|
* Wait for clock stabilization; once stabilized, access to
|
|
* device-internal resources is supported, e.g. iwm_write_prph()
|
|
* and accesses to uCode SRAM.
|
|
*/
|
|
if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) {
|
|
printf("%s: timeout waiting for clock stabilization\n",
|
|
DEVNAME(sc));
|
|
err = ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
if (sc->host_interrupt_operation_mode) {
|
|
/*
|
|
* This is a bit of an abuse - This is needed for 7260 / 3160
|
|
* only check host_interrupt_operation_mode even if this is
|
|
* not related to host_interrupt_operation_mode.
|
|
*
|
|
* Enable the oscillator to count wake up time for L1 exit. This
|
|
* consumes slightly more power (100uA) - but allows to be sure
|
|
* that we wake up from L1 on time.
|
|
*
|
|
* This looks weird: read twice the same register, discard the
|
|
* value, set a bit, and yet again, read that same register
|
|
* just to discard the value. But that's the way the hardware
|
|
* seems to like it.
|
|
*/
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
err = iwm_set_bits_prph(sc, IWM_OSC_CLK,
|
|
IWM_OSC_CLK_FORCE_CONTROL);
|
|
if (err)
|
|
goto out;
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable DMA clock and wait for it to stabilize.
|
|
*
|
|
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
|
|
* do not disable clocks. This preserves any hardware bits already
|
|
* set by default in "CLK_CTRL_REG" after reset.
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc, IWM_APMG_CLK_EN_REG,
|
|
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
DELAY(20);
|
|
|
|
/* Disable L1-Active */
|
|
err = iwm_set_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
|
|
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Clear the interrupt in APMG if the NIC is in RFKILL */
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc, IWM_APMG_RTC_INT_STT_REG,
|
|
IWM_APMG_RTC_INT_STT_RFKILL);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
}
|
|
out:
|
|
if (err)
|
|
printf("%s: apm init error %d\n", DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_apm_stop(struct iwm_softc *sc)
|
|
{
|
|
IWM_SETBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,
|
|
IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_PREPARE |
|
|
IWM_CSR_HW_IF_CONFIG_REG_ENABLE_PME);
|
|
DELAY(1000);
|
|
IWM_CLRBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,
|
|
IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED);
|
|
DELAY(5000);
|
|
|
|
/* stop device's busmaster DMA activity */
|
|
IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_STOP_MASTER);
|
|
|
|
if (!iwm_poll_bit(sc, IWM_CSR_RESET,
|
|
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED,
|
|
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, 100))
|
|
printf("%s: timeout waiting for master\n", DEVNAME(sc));
|
|
|
|
/*
|
|
* Clear "initialization complete" bit to move adapter from
|
|
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
|
|
*/
|
|
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
}
|
|
|
|
void
|
|
iwm_init_msix_hw(struct iwm_softc *sc)
|
|
{
|
|
iwm_conf_msix_hw(sc, 0);
|
|
|
|
if (!sc->sc_msix)
|
|
return;
|
|
|
|
sc->sc_fh_init_mask = ~IWM_READ(sc, IWM_CSR_MSIX_FH_INT_MASK_AD);
|
|
sc->sc_fh_mask = sc->sc_fh_init_mask;
|
|
sc->sc_hw_init_mask = ~IWM_READ(sc, IWM_CSR_MSIX_HW_INT_MASK_AD);
|
|
sc->sc_hw_mask = sc->sc_hw_init_mask;
|
|
}
|
|
|
|
void
|
|
iwm_conf_msix_hw(struct iwm_softc *sc, int stopped)
|
|
{
|
|
int vector = 0;
|
|
|
|
if (!sc->sc_msix) {
|
|
/* Newer chips default to MSIX. */
|
|
if (sc->sc_mqrx_supported && !stopped && iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc, IWM_UREG_CHICK,
|
|
IWM_UREG_CHICK_MSI_ENABLE);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!stopped && iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc, IWM_UREG_CHICK, IWM_UREG_CHICK_MSIX_ENABLE);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
|
|
/* Disable all interrupts */
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD, ~0);
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD, ~0);
|
|
|
|
/* Map fallback-queue (command/mgmt) to a single vector */
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_RX_IVAR(0),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
/* Map RSS queue (data) to the same vector */
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_RX_IVAR(1),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
|
|
/* Enable the RX queues cause interrupts */
|
|
IWM_CLRBITS(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
|
|
IWM_MSIX_FH_INT_CAUSES_Q0 | IWM_MSIX_FH_INT_CAUSES_Q1);
|
|
|
|
/* Map non-RX causes to the same vector */
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_D2S_CH0_NUM),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_D2S_CH1_NUM),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_S2D),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_FH_ERR),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_ALIVE),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_WAKEUP),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_IML),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_CT_KILL),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_RF_KILL),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_PERIODIC),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_SW_ERR),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_SCD),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_FH_TX),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_HW_ERR),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_HAP),
|
|
vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE);
|
|
|
|
/* Enable non-RX causes interrupts */
|
|
IWM_CLRBITS(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,
|
|
IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM |
|
|
IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM |
|
|
IWM_MSIX_FH_INT_CAUSES_S2D |
|
|
IWM_MSIX_FH_INT_CAUSES_FH_ERR);
|
|
IWM_CLRBITS(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,
|
|
IWM_MSIX_HW_INT_CAUSES_REG_ALIVE |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_IML |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_SCD |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_FH_TX |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR |
|
|
IWM_MSIX_HW_INT_CAUSES_REG_HAP);
|
|
}
|
|
|
|
int
|
|
iwm_clear_persistence_bit(struct iwm_softc *sc)
|
|
{
|
|
uint32_t hpm, wprot;
|
|
|
|
hpm = iwm_read_prph_unlocked(sc, IWM_HPM_DEBUG);
|
|
if (hpm != 0xa5a5a5a0 && (hpm & IWM_HPM_PERSISTENCE_BIT)) {
|
|
wprot = iwm_read_prph_unlocked(sc, IWM_PREG_PRPH_WPROT_9000);
|
|
if (wprot & IWM_PREG_WFPM_ACCESS) {
|
|
printf("%s: cannot clear persistence bit\n",
|
|
DEVNAME(sc));
|
|
return EPERM;
|
|
}
|
|
iwm_write_prph_unlocked(sc, IWM_HPM_DEBUG,
|
|
hpm & ~IWM_HPM_PERSISTENCE_BIT);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_start_hw(struct iwm_softc *sc)
|
|
{
|
|
int err;
|
|
|
|
err = iwm_prepare_card_hw(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_9000) {
|
|
err = iwm_clear_persistence_bit(sc);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Reset the entire device */
|
|
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
|
|
DELAY(5000);
|
|
|
|
err = iwm_apm_init(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
iwm_init_msix_hw(sc);
|
|
|
|
iwm_enable_rfkill_int(sc);
|
|
iwm_check_rfkill(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
iwm_stop_device(struct iwm_softc *sc)
|
|
{
|
|
int chnl, ntries;
|
|
int qid;
|
|
|
|
iwm_disable_interrupts(sc);
|
|
sc->sc_flags &= ~IWM_FLAG_USE_ICT;
|
|
|
|
/* Stop all DMA channels. */
|
|
if (iwm_nic_lock(sc)) {
|
|
/* Deactivate TX scheduler. */
|
|
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
|
|
|
|
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
|
|
IWM_WRITE(sc,
|
|
IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
|
|
for (ntries = 0; ntries < 200; ntries++) {
|
|
uint32_t r;
|
|
|
|
r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
|
|
if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
|
|
chnl))
|
|
break;
|
|
DELAY(20);
|
|
}
|
|
}
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
iwm_disable_rx_dma(sc);
|
|
|
|
iwm_reset_rx_ring(sc, &sc->rxq);
|
|
|
|
for (qid = 0; qid < nitems(sc->txq); qid++)
|
|
iwm_reset_tx_ring(sc, &sc->txq[qid]);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
if (iwm_nic_lock(sc)) {
|
|
/* Power-down device's busmaster DMA clocks */
|
|
iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
|
|
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
DELAY(5);
|
|
}
|
|
|
|
/* Make sure (redundant) we've released our request to stay awake */
|
|
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
if (sc->sc_nic_locks > 0)
|
|
printf("%s: %d active NIC locks forcefully cleared\n",
|
|
DEVNAME(sc), sc->sc_nic_locks);
|
|
sc->sc_nic_locks = 0;
|
|
|
|
/* Stop the device, and put it in low power state */
|
|
iwm_apm_stop(sc);
|
|
|
|
/* Reset the on-board processor. */
|
|
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
|
|
DELAY(5000);
|
|
|
|
/*
|
|
* Upon stop, the IVAR table gets erased, so msi-x won't
|
|
* work. This causes a bug in RF-KILL flows, since the interrupt
|
|
* that enables radio won't fire on the correct irq, and the
|
|
* driver won't be able to handle the interrupt.
|
|
* Configure the IVAR table again after reset.
|
|
*/
|
|
iwm_conf_msix_hw(sc, 1);
|
|
|
|
/*
|
|
* Upon stop, the APM issues an interrupt if HW RF kill is set.
|
|
* Clear the interrupt again.
|
|
*/
|
|
iwm_disable_interrupts(sc);
|
|
|
|
/* Even though we stop the HW we still want the RF kill interrupt. */
|
|
iwm_enable_rfkill_int(sc);
|
|
iwm_check_rfkill(sc);
|
|
|
|
iwm_prepare_card_hw(sc);
|
|
}
|
|
|
|
void
|
|
iwm_nic_config(struct iwm_softc *sc)
|
|
{
|
|
uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
|
|
uint32_t mask, val, reg_val = 0;
|
|
|
|
radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
|
|
IWM_FW_PHY_CFG_RADIO_TYPE_POS;
|
|
radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
|
|
IWM_FW_PHY_CFG_RADIO_STEP_POS;
|
|
radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
|
|
IWM_FW_PHY_CFG_RADIO_DASH_POS;
|
|
|
|
reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
|
|
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
|
|
reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
|
|
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
|
|
|
|
/* radio configuration */
|
|
reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
|
|
reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
|
|
reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
|
|
|
|
mask = IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH |
|
|
IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP |
|
|
IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP |
|
|
IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH |
|
|
IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE |
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI;
|
|
|
|
val = IWM_READ(sc, IWM_CSR_HW_IF_CONFIG_REG);
|
|
val &= ~mask;
|
|
val |= reg_val;
|
|
IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, val);
|
|
|
|
/*
|
|
* W/A : NIC is stuck in a reset state after Early PCIe power off
|
|
* (PCIe power is lost before PERST# is asserted), causing ME FW
|
|
* to lose ownership and not being able to obtain it back.
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
|
|
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
|
|
IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
|
|
~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
|
|
}
|
|
|
|
int
|
|
iwm_nic_rx_init(struct iwm_softc *sc)
|
|
{
|
|
if (sc->sc_mqrx_supported)
|
|
return iwm_nic_rx_mq_init(sc);
|
|
else
|
|
return iwm_nic_rx_legacy_init(sc);
|
|
}
|
|
|
|
int
|
|
iwm_nic_rx_mq_init(struct iwm_softc *sc)
|
|
{
|
|
int enabled;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
/* Stop RX DMA. */
|
|
iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0);
|
|
/* Disable RX used and free queue operation. */
|
|
iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, 0);
|
|
|
|
iwm_write_prph64(sc, IWM_RFH_Q0_FRBDCB_BA_LSB,
|
|
sc->rxq.free_desc_dma.paddr);
|
|
iwm_write_prph64(sc, IWM_RFH_Q0_URBDCB_BA_LSB,
|
|
sc->rxq.used_desc_dma.paddr);
|
|
iwm_write_prph64(sc, IWM_RFH_Q0_URBD_STTS_WPTR_LSB,
|
|
sc->rxq.stat_dma.paddr);
|
|
iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_WIDX, 0);
|
|
iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_RIDX, 0);
|
|
iwm_write_prph(sc, IWM_RFH_Q0_URBDCB_WIDX, 0);
|
|
|
|
/* We configure only queue 0 for now. */
|
|
enabled = ((1 << 0) << 16) | (1 << 0);
|
|
|
|
/* Enable RX DMA, 4KB buffer size. */
|
|
iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG,
|
|
IWM_RFH_DMA_EN_ENABLE_VAL |
|
|
IWM_RFH_RXF_DMA_RB_SIZE_4K |
|
|
IWM_RFH_RXF_DMA_MIN_RB_4_8 |
|
|
IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
|
|
IWM_RFH_RXF_DMA_RBDCB_SIZE_512);
|
|
|
|
/* Enable RX DMA snooping. */
|
|
iwm_write_prph(sc, IWM_RFH_GEN_CFG,
|
|
IWM_RFH_GEN_CFG_RFH_DMA_SNOOP |
|
|
IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP |
|
|
(sc->sc_integrated ? IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
|
|
IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128));
|
|
|
|
/* Enable the configured queue(s). */
|
|
iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, enabled);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
|
|
|
|
IWM_WRITE(sc, IWM_RFH_Q0_FRBDCB_WIDX_TRG, 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_nic_rx_legacy_init(struct iwm_softc *sc)
|
|
{
|
|
memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
|
|
|
|
iwm_disable_rx_dma(sc);
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
/* reset and flush pointers */
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
|
|
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
|
|
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
|
|
|
|
/* Set physical address of RX ring (256-byte aligned). */
|
|
IWM_WRITE(sc,
|
|
IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.free_desc_dma.paddr >> 8);
|
|
|
|
/* Set physical address of RX status (16-byte aligned). */
|
|
IWM_WRITE(sc,
|
|
IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
|
|
|
|
/* Enable RX. */
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
|
|
IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
|
|
IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */
|
|
IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
|
|
(IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
|
|
IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
|
|
IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
|
|
|
|
IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
|
|
|
|
/* W/A for interrupt coalescing bug in 7260 and 3160 */
|
|
if (sc->host_interrupt_operation_mode)
|
|
IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
/*
|
|
* This value should initially be 0 (before preparing any RBs),
|
|
* and should be 8 after preparing the first 8 RBs (for example).
|
|
*/
|
|
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_nic_tx_init(struct iwm_softc *sc)
|
|
{
|
|
int qid, err;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
/* Deactivate TX scheduler. */
|
|
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
|
|
|
|
/* Set physical address of "keep warm" page (16-byte aligned). */
|
|
IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
|
|
|
|
for (qid = 0; qid < nitems(sc->txq); qid++) {
|
|
struct iwm_tx_ring *txq = &sc->txq[qid];
|
|
|
|
/* Set physical address of TX ring (256-byte aligned). */
|
|
IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
|
|
txq->desc_dma.paddr >> 8);
|
|
}
|
|
|
|
err = iwm_set_bits_prph(sc, IWM_SCD_GP_CTRL,
|
|
IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE |
|
|
IWM_SCD_GP_CTRL_ENABLE_31_QUEUES);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_nic_init(struct iwm_softc *sc)
|
|
{
|
|
int err;
|
|
|
|
iwm_apm_init(sc);
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
|
|
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
|
|
IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
|
|
~IWM_APMG_PS_CTRL_MSK_PWR_SRC);
|
|
|
|
iwm_nic_config(sc);
|
|
|
|
err = iwm_nic_rx_init(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_nic_tx_init(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Map a TID to an ieee80211_edca_ac category. */
|
|
const uint8_t iwm_tid_to_ac[IWM_MAX_TID_COUNT] = {
|
|
EDCA_AC_BE,
|
|
EDCA_AC_BK,
|
|
EDCA_AC_BK,
|
|
EDCA_AC_BE,
|
|
EDCA_AC_VI,
|
|
EDCA_AC_VI,
|
|
EDCA_AC_VO,
|
|
EDCA_AC_VO,
|
|
};
|
|
|
|
/* Map ieee80211_edca_ac categories to firmware Tx FIFO. */
|
|
const uint8_t iwm_ac_to_tx_fifo[] = {
|
|
IWM_TX_FIFO_BE,
|
|
IWM_TX_FIFO_BK,
|
|
IWM_TX_FIFO_VI,
|
|
IWM_TX_FIFO_VO,
|
|
};
|
|
|
|
int
|
|
iwm_enable_ac_txq(struct iwm_softc *sc, int qid, int fifo)
|
|
{
|
|
int err;
|
|
iwm_nic_assert_locked(sc);
|
|
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
|
|
|
|
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
|
|
(0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
|
|
| (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
|
|
|
|
err = iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
|
|
|
|
iwm_write_mem32(sc,
|
|
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
|
|
|
|
/* Set scheduler window size and frame limit. */
|
|
iwm_write_mem32(sc,
|
|
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
|
|
sizeof(uint32_t),
|
|
((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
|
|
IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
|
|
((IWM_FRAME_LIMIT
|
|
<< IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
|
|
IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
|
|
|
|
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
|
|
(1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
|
|
(fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
|
|
(1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
|
|
IWM_SCD_QUEUE_STTS_REG_MSK);
|
|
|
|
if (qid == sc->cmdqid)
|
|
iwm_write_prph(sc, IWM_SCD_EN_CTRL,
|
|
iwm_read_prph(sc, IWM_SCD_EN_CTRL) | (1 << qid));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo,
|
|
int aggregate, uint8_t tid, uint16_t ssn)
|
|
{
|
|
struct iwm_tx_ring *ring = &sc->txq[qid];
|
|
struct iwm_scd_txq_cfg_cmd cmd;
|
|
int err, idx, scd_bug;
|
|
|
|
iwm_nic_assert_locked(sc);
|
|
|
|
/*
|
|
* If we need to move the SCD write pointer by steps of
|
|
* 0x40, 0x80 or 0xc0, it gets stuck.
|
|
* This is really ugly, but this is the easiest way out for
|
|
* this sad hardware issue.
|
|
* This bug has been fixed on devices 9000 and up.
|
|
*/
|
|
scd_bug = !sc->sc_mqrx_supported &&
|
|
!((ssn - ring->cur) & 0x3f) &&
|
|
(ssn != ring->cur);
|
|
if (scd_bug)
|
|
ssn = (ssn + 1) & 0xfff;
|
|
|
|
idx = IWM_AGG_SSN_TO_TXQ_IDX(ssn);
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | idx);
|
|
ring->cur = idx;
|
|
ring->tail = idx;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.tid = tid;
|
|
cmd.scd_queue = qid;
|
|
cmd.enable = 1;
|
|
cmd.sta_id = sta_id;
|
|
cmd.tx_fifo = fifo;
|
|
cmd.aggregate = aggregate;
|
|
cmd.ssn = htole16(ssn);
|
|
cmd.window = IWM_FRAME_LIMIT;
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, 0,
|
|
sizeof(cmd), &cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
sc->qenablemsk |= (1 << qid);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_disable_txq(struct iwm_softc *sc, int sta_id, int qid, uint8_t tid)
|
|
{
|
|
struct iwm_scd_txq_cfg_cmd cmd;
|
|
int err;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.tid = tid;
|
|
cmd.scd_queue = qid;
|
|
cmd.enable = 0;
|
|
cmd.sta_id = sta_id;
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
sc->qenablemsk &= ~(1 << qid);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_post_alive(struct iwm_softc *sc)
|
|
{
|
|
int nwords;
|
|
int err, chnl;
|
|
uint32_t base;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
|
|
|
|
iwm_ict_reset(sc);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
/* Clear TX scheduler state in SRAM. */
|
|
nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
|
|
IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
|
|
/ sizeof(uint32_t);
|
|
err = iwm_write_mem(sc,
|
|
sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
|
|
NULL, nwords);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
/* Set physical address of TX scheduler rings (1KB aligned). */
|
|
iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
|
|
|
|
iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
|
|
|
|
/* enable command channel */
|
|
err = iwm_enable_ac_txq(sc, sc->cmdqid, IWM_TX_FIFO_CMD);
|
|
if (err) {
|
|
iwm_nic_unlock(sc);
|
|
return err;
|
|
}
|
|
|
|
/* Activate TX scheduler. */
|
|
iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
|
|
|
|
/* Enable DMA channels. */
|
|
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
|
|
}
|
|
|
|
IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
|
|
IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
/* Enable L1-Active */
|
|
if (sc->sc_device_family < IWM_DEVICE_FAMILY_8000) {
|
|
err = iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
|
|
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
struct iwm_phy_db_entry *
|
|
iwm_phy_db_get_section(struct iwm_softc *sc, uint16_t type, uint16_t chg_id)
|
|
{
|
|
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
|
|
|
|
if (type >= IWM_PHY_DB_MAX)
|
|
return NULL;
|
|
|
|
switch (type) {
|
|
case IWM_PHY_DB_CFG:
|
|
return &phy_db->cfg;
|
|
case IWM_PHY_DB_CALIB_NCH:
|
|
return &phy_db->calib_nch;
|
|
case IWM_PHY_DB_CALIB_CHG_PAPD:
|
|
if (chg_id >= IWM_NUM_PAPD_CH_GROUPS)
|
|
return NULL;
|
|
return &phy_db->calib_ch_group_papd[chg_id];
|
|
case IWM_PHY_DB_CALIB_CHG_TXP:
|
|
if (chg_id >= IWM_NUM_TXP_CH_GROUPS)
|
|
return NULL;
|
|
return &phy_db->calib_ch_group_txp[chg_id];
|
|
default:
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
iwm_phy_db_set_section(struct iwm_softc *sc,
|
|
struct iwm_calib_res_notif_phy_db *phy_db_notif)
|
|
{
|
|
uint16_t type = le16toh(phy_db_notif->type);
|
|
uint16_t size = le16toh(phy_db_notif->length);
|
|
struct iwm_phy_db_entry *entry;
|
|
uint16_t chg_id = 0;
|
|
|
|
if (type == IWM_PHY_DB_CALIB_CHG_PAPD ||
|
|
type == IWM_PHY_DB_CALIB_CHG_TXP)
|
|
chg_id = le16toh(*(uint16_t *)phy_db_notif->data);
|
|
|
|
entry = iwm_phy_db_get_section(sc, type, chg_id);
|
|
if (!entry)
|
|
return EINVAL;
|
|
|
|
if (entry->data)
|
|
free(entry->data, M_DEVBUF, entry->size);
|
|
entry->data = malloc(size, M_DEVBUF, M_NOWAIT);
|
|
if (!entry->data) {
|
|
entry->size = 0;
|
|
return ENOMEM;
|
|
}
|
|
memcpy(entry->data, phy_db_notif->data, size);
|
|
entry->size = size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_is_valid_channel(uint16_t ch_id)
|
|
{
|
|
if (ch_id <= 14 ||
|
|
(36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) ||
|
|
(100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) ||
|
|
(145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
uint8_t
|
|
iwm_ch_id_to_ch_index(uint16_t ch_id)
|
|
{
|
|
if (!iwm_is_valid_channel(ch_id))
|
|
return 0xff;
|
|
|
|
if (ch_id <= 14)
|
|
return ch_id - 1;
|
|
if (ch_id <= 64)
|
|
return (ch_id + 20) / 4;
|
|
if (ch_id <= 140)
|
|
return (ch_id - 12) / 4;
|
|
return (ch_id - 13) / 4;
|
|
}
|
|
|
|
|
|
uint16_t
|
|
iwm_channel_id_to_papd(uint16_t ch_id)
|
|
{
|
|
if (!iwm_is_valid_channel(ch_id))
|
|
return 0xff;
|
|
|
|
if (1 <= ch_id && ch_id <= 14)
|
|
return 0;
|
|
if (36 <= ch_id && ch_id <= 64)
|
|
return 1;
|
|
if (100 <= ch_id && ch_id <= 140)
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
uint16_t
|
|
iwm_channel_id_to_txp(struct iwm_softc *sc, uint16_t ch_id)
|
|
{
|
|
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
|
|
struct iwm_phy_db_chg_txp *txp_chg;
|
|
int i;
|
|
uint8_t ch_index = iwm_ch_id_to_ch_index(ch_id);
|
|
|
|
if (ch_index == 0xff)
|
|
return 0xff;
|
|
|
|
for (i = 0; i < IWM_NUM_TXP_CH_GROUPS; i++) {
|
|
txp_chg = (void *)phy_db->calib_ch_group_txp[i].data;
|
|
if (!txp_chg)
|
|
return 0xff;
|
|
/*
|
|
* Looking for the first channel group the max channel
|
|
* of which is higher than the requested channel.
|
|
*/
|
|
if (le16toh(txp_chg->max_channel_idx) >= ch_index)
|
|
return i;
|
|
}
|
|
return 0xff;
|
|
}
|
|
|
|
int
|
|
iwm_phy_db_get_section_data(struct iwm_softc *sc, uint32_t type, uint8_t **data,
|
|
uint16_t *size, uint16_t ch_id)
|
|
{
|
|
struct iwm_phy_db_entry *entry;
|
|
uint16_t ch_group_id = 0;
|
|
|
|
if (type == IWM_PHY_DB_CALIB_CHG_PAPD)
|
|
ch_group_id = iwm_channel_id_to_papd(ch_id);
|
|
else if (type == IWM_PHY_DB_CALIB_CHG_TXP)
|
|
ch_group_id = iwm_channel_id_to_txp(sc, ch_id);
|
|
|
|
entry = iwm_phy_db_get_section(sc, type, ch_group_id);
|
|
if (!entry)
|
|
return EINVAL;
|
|
|
|
*data = entry->data;
|
|
*size = entry->size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_send_phy_db_cmd(struct iwm_softc *sc, uint16_t type, uint16_t length,
|
|
void *data)
|
|
{
|
|
struct iwm_phy_db_cmd phy_db_cmd;
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_PHY_DB_CMD,
|
|
.flags = IWM_CMD_ASYNC,
|
|
};
|
|
|
|
phy_db_cmd.type = le16toh(type);
|
|
phy_db_cmd.length = le16toh(length);
|
|
|
|
cmd.data[0] = &phy_db_cmd;
|
|
cmd.len[0] = sizeof(struct iwm_phy_db_cmd);
|
|
cmd.data[1] = data;
|
|
cmd.len[1] = length;
|
|
|
|
return iwm_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_phy_db_send_all_channel_groups(struct iwm_softc *sc, uint16_t type,
|
|
uint8_t max_ch_groups)
|
|
{
|
|
uint16_t i;
|
|
int err;
|
|
struct iwm_phy_db_entry *entry;
|
|
|
|
for (i = 0; i < max_ch_groups; i++) {
|
|
entry = iwm_phy_db_get_section(sc, type, i);
|
|
if (!entry)
|
|
return EINVAL;
|
|
|
|
if (!entry->size)
|
|
continue;
|
|
|
|
err = iwm_send_phy_db_cmd(sc, type, entry->size, entry->data);
|
|
if (err)
|
|
return err;
|
|
|
|
DELAY(1000);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_send_phy_db_data(struct iwm_softc *sc)
|
|
{
|
|
uint8_t *data = NULL;
|
|
uint16_t size = 0;
|
|
int err;
|
|
|
|
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CFG, &data, &size, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CFG, size, data);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CALIB_NCH,
|
|
&data, &size, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CALIB_NCH, size, data);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_phy_db_send_all_channel_groups(sc,
|
|
IWM_PHY_DB_CALIB_CHG_PAPD, IWM_NUM_PAPD_CH_GROUPS);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_phy_db_send_all_channel_groups(sc,
|
|
IWM_PHY_DB_CALIB_CHG_TXP, IWM_NUM_TXP_CH_GROUPS);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For the high priority TE use a time event type that has similar priority to
|
|
* the FW's action scan priority.
|
|
*/
|
|
#define IWM_ROC_TE_TYPE_NORMAL IWM_TE_P2P_DEVICE_DISCOVERABLE
|
|
#define IWM_ROC_TE_TYPE_MGMT_TX IWM_TE_P2P_CLIENT_ASSOC
|
|
|
|
int
|
|
iwm_send_time_event_cmd(struct iwm_softc *sc,
|
|
const struct iwm_time_event_cmd *cmd)
|
|
{
|
|
struct iwm_rx_packet *pkt;
|
|
struct iwm_time_event_resp *resp;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = IWM_TIME_EVENT_CMD,
|
|
.flags = IWM_CMD_WANT_RESP,
|
|
.resp_pkt_len = sizeof(*pkt) + sizeof(*resp),
|
|
};
|
|
uint32_t resp_len;
|
|
int err;
|
|
|
|
hcmd.data[0] = cmd;
|
|
hcmd.len[0] = sizeof(*cmd);
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
if (err)
|
|
return err;
|
|
|
|
pkt = hcmd.resp_pkt;
|
|
if (!pkt || (pkt->hdr.flags & IWM_CMD_FAILED_MSK)) {
|
|
err = EIO;
|
|
goto out;
|
|
}
|
|
|
|
resp_len = iwm_rx_packet_payload_len(pkt);
|
|
if (resp_len != sizeof(*resp)) {
|
|
err = EIO;
|
|
goto out;
|
|
}
|
|
|
|
resp = (void *)pkt->data;
|
|
if (le32toh(resp->status) == 0)
|
|
sc->sc_time_event_uid = le32toh(resp->unique_id);
|
|
else
|
|
err = EIO;
|
|
out:
|
|
iwm_free_resp(sc, &hcmd);
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_protect_session(struct iwm_softc *sc, struct iwm_node *in,
|
|
uint32_t duration, uint32_t max_delay)
|
|
{
|
|
struct iwm_time_event_cmd time_cmd;
|
|
|
|
/* Do nothing if a time event is already scheduled. */
|
|
if (sc->sc_flags & IWM_FLAG_TE_ACTIVE)
|
|
return;
|
|
|
|
memset(&time_cmd, 0, sizeof(time_cmd));
|
|
|
|
time_cmd.action = htole32(IWM_FW_CTXT_ACTION_ADD);
|
|
time_cmd.id_and_color =
|
|
htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
time_cmd.id = htole32(IWM_TE_BSS_STA_AGGRESSIVE_ASSOC);
|
|
|
|
time_cmd.apply_time = htole32(0);
|
|
|
|
time_cmd.max_frags = IWM_TE_V2_FRAG_NONE;
|
|
time_cmd.max_delay = htole32(max_delay);
|
|
/* TODO: why do we need to interval = bi if it is not periodic? */
|
|
time_cmd.interval = htole32(1);
|
|
time_cmd.duration = htole32(duration);
|
|
time_cmd.repeat = 1;
|
|
time_cmd.policy
|
|
= htole16(IWM_TE_V2_NOTIF_HOST_EVENT_START |
|
|
IWM_TE_V2_NOTIF_HOST_EVENT_END |
|
|
IWM_T2_V2_START_IMMEDIATELY);
|
|
|
|
if (iwm_send_time_event_cmd(sc, &time_cmd) == 0)
|
|
sc->sc_flags |= IWM_FLAG_TE_ACTIVE;
|
|
|
|
DELAY(100);
|
|
}
|
|
|
|
void
|
|
iwm_unprotect_session(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
struct iwm_time_event_cmd time_cmd;
|
|
|
|
/* Do nothing if the time event has already ended. */
|
|
if ((sc->sc_flags & IWM_FLAG_TE_ACTIVE) == 0)
|
|
return;
|
|
|
|
memset(&time_cmd, 0, sizeof(time_cmd));
|
|
|
|
time_cmd.action = htole32(IWM_FW_CTXT_ACTION_REMOVE);
|
|
time_cmd.id_and_color =
|
|
htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
time_cmd.id = htole32(sc->sc_time_event_uid);
|
|
|
|
if (iwm_send_time_event_cmd(sc, &time_cmd) == 0)
|
|
sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
|
|
|
|
DELAY(100);
|
|
}
|
|
|
|
/*
|
|
* NVM read access and content parsing. We do not support
|
|
* external NVM or writing NVM.
|
|
*/
|
|
|
|
/* list of NVM sections we are allowed/need to read */
|
|
const int iwm_nvm_to_read[] = {
|
|
IWM_NVM_SECTION_TYPE_HW,
|
|
IWM_NVM_SECTION_TYPE_SW,
|
|
IWM_NVM_SECTION_TYPE_REGULATORY,
|
|
IWM_NVM_SECTION_TYPE_CALIBRATION,
|
|
IWM_NVM_SECTION_TYPE_PRODUCTION,
|
|
IWM_NVM_SECTION_TYPE_REGULATORY_SDP,
|
|
IWM_NVM_SECTION_TYPE_HW_8000,
|
|
IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
|
|
IWM_NVM_SECTION_TYPE_PHY_SKU,
|
|
};
|
|
|
|
#define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
|
|
|
|
#define IWM_NVM_WRITE_OPCODE 1
|
|
#define IWM_NVM_READ_OPCODE 0
|
|
|
|
int
|
|
iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset,
|
|
uint16_t length, uint8_t *data, uint16_t *len)
|
|
{
|
|
offset = 0;
|
|
struct iwm_nvm_access_cmd nvm_access_cmd = {
|
|
.offset = htole16(offset),
|
|
.length = htole16(length),
|
|
.type = htole16(section),
|
|
.op_code = IWM_NVM_READ_OPCODE,
|
|
};
|
|
struct iwm_nvm_access_resp *nvm_resp;
|
|
struct iwm_rx_packet *pkt;
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_NVM_ACCESS_CMD,
|
|
.flags = (IWM_CMD_WANT_RESP | IWM_CMD_SEND_IN_RFKILL),
|
|
.resp_pkt_len = IWM_CMD_RESP_MAX,
|
|
.data = { &nvm_access_cmd, },
|
|
};
|
|
int err, offset_read;
|
|
size_t bytes_read;
|
|
uint8_t *resp_data;
|
|
|
|
cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
|
|
|
|
err = iwm_send_cmd(sc, &cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
pkt = cmd.resp_pkt;
|
|
if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
|
|
err = EIO;
|
|
goto exit;
|
|
}
|
|
|
|
/* Extract NVM response */
|
|
nvm_resp = (void *)pkt->data;
|
|
if (nvm_resp == NULL)
|
|
return EIO;
|
|
|
|
err = le16toh(nvm_resp->status);
|
|
bytes_read = le16toh(nvm_resp->length);
|
|
offset_read = le16toh(nvm_resp->offset);
|
|
resp_data = nvm_resp->data;
|
|
if (err) {
|
|
err = EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
if (offset_read != offset) {
|
|
err = EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
if (bytes_read > length) {
|
|
err = EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
memcpy(data + offset, resp_data, bytes_read);
|
|
*len = bytes_read;
|
|
|
|
exit:
|
|
iwm_free_resp(sc, &cmd);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Reads an NVM section completely.
|
|
* NICs prior to 7000 family doesn't have a real NVM, but just read
|
|
* section 0 which is the EEPROM. Because the EEPROM reading is unlimited
|
|
* by uCode, we need to manually check in this case that we don't
|
|
* overflow and try to read more than the EEPROM size.
|
|
*/
|
|
int
|
|
iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data,
|
|
uint16_t *len, size_t max_len)
|
|
{
|
|
uint16_t chunklen, seglen;
|
|
int err = 0;
|
|
|
|
chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
|
|
*len = 0;
|
|
|
|
/* Read NVM chunks until exhausted (reading less than requested) */
|
|
while (seglen == chunklen && *len < max_len) {
|
|
err = iwm_nvm_read_chunk(sc,
|
|
section, *len, chunklen, data, &seglen);
|
|
if (err)
|
|
return err;
|
|
|
|
*len += seglen;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
uint8_t
|
|
iwm_fw_valid_tx_ant(struct iwm_softc *sc)
|
|
{
|
|
uint8_t tx_ant;
|
|
|
|
tx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
|
|
>> IWM_FW_PHY_CFG_TX_CHAIN_POS);
|
|
|
|
if (sc->sc_nvm.valid_tx_ant)
|
|
tx_ant &= sc->sc_nvm.valid_tx_ant;
|
|
|
|
return tx_ant;
|
|
}
|
|
|
|
uint8_t
|
|
iwm_fw_valid_rx_ant(struct iwm_softc *sc)
|
|
{
|
|
uint8_t rx_ant;
|
|
|
|
rx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RX_CHAIN)
|
|
>> IWM_FW_PHY_CFG_RX_CHAIN_POS);
|
|
|
|
if (sc->sc_nvm.valid_rx_ant)
|
|
rx_ant &= sc->sc_nvm.valid_rx_ant;
|
|
|
|
return rx_ant;
|
|
}
|
|
|
|
int
|
|
iwm_valid_siso_ant_rate_mask(struct iwm_softc *sc)
|
|
{
|
|
uint8_t valid_tx_ant = iwm_fw_valid_tx_ant(sc);
|
|
|
|
/*
|
|
* According to the Linux driver, antenna B should be preferred
|
|
* on 9k devices since it is not shared with bluetooth. However,
|
|
* there are 9k devices which do not support antenna B at all.
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_9000 &&
|
|
(valid_tx_ant & IWM_ANT_B))
|
|
return IWM_RATE_MCS_ANT_B_MSK;
|
|
|
|
return IWM_RATE_MCS_ANT_A_MSK;
|
|
}
|
|
|
|
void
|
|
iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags,
|
|
const uint8_t *nvm_channels, int nchan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_nvm_data *data = &sc->sc_nvm;
|
|
int ch_idx;
|
|
struct ieee80211_channel *channel;
|
|
uint16_t ch_flags;
|
|
int is_5ghz;
|
|
int flags, hw_value;
|
|
|
|
for (ch_idx = 0; ch_idx < nchan; ch_idx++) {
|
|
ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
|
|
|
|
if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
|
|
!data->sku_cap_band_52GHz_enable)
|
|
ch_flags &= ~IWM_NVM_CHANNEL_VALID;
|
|
|
|
if (!(ch_flags & IWM_NVM_CHANNEL_VALID))
|
|
continue;
|
|
|
|
hw_value = nvm_channels[ch_idx];
|
|
channel = &ic->ic_channels[hw_value];
|
|
|
|
is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
|
|
if (!is_5ghz) {
|
|
flags = IEEE80211_CHAN_2GHZ;
|
|
channel->ic_flags
|
|
= IEEE80211_CHAN_CCK
|
|
| IEEE80211_CHAN_OFDM
|
|
| IEEE80211_CHAN_DYN
|
|
| IEEE80211_CHAN_2GHZ;
|
|
} else {
|
|
flags = IEEE80211_CHAN_5GHZ;
|
|
channel->ic_flags =
|
|
IEEE80211_CHAN_A;
|
|
}
|
|
channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags);
|
|
|
|
if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
|
|
channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
|
|
|
|
if (data->sku_cap_11n_enable) {
|
|
channel->ic_flags |= IEEE80211_CHAN_HT;
|
|
if (ch_flags & IWM_NVM_CHANNEL_40MHZ)
|
|
channel->ic_flags |= IEEE80211_CHAN_40MHZ;
|
|
}
|
|
|
|
if (is_5ghz && data->sku_cap_11ac_enable) {
|
|
channel->ic_flags |= IEEE80211_CHAN_VHT;
|
|
if (ch_flags & IWM_NVM_CHANNEL_80MHZ)
|
|
channel->ic_xflags |= IEEE80211_CHANX_80MHZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
iwm_mimo_enabled(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
return !sc->sc_nvm.sku_cap_mimo_disable &&
|
|
(ic->ic_userflags & IEEE80211_F_NOMIMO) == 0;
|
|
}
|
|
|
|
void
|
|
iwm_setup_ht_rates(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t rx_ant;
|
|
|
|
/* TX is supported with the same MCS as RX. */
|
|
ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED;
|
|
|
|
memset(ic->ic_sup_mcs, 0, sizeof(ic->ic_sup_mcs));
|
|
ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
|
|
|
|
if (!iwm_mimo_enabled(sc))
|
|
return;
|
|
|
|
rx_ant = iwm_fw_valid_rx_ant(sc);
|
|
if ((rx_ant & IWM_ANT_AB) == IWM_ANT_AB ||
|
|
(rx_ant & IWM_ANT_BC) == IWM_ANT_BC)
|
|
ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */
|
|
}
|
|
|
|
void
|
|
iwm_setup_vht_rates(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t rx_ant = iwm_fw_valid_rx_ant(sc);
|
|
int n;
|
|
|
|
ic->ic_vht_rxmcs = (IEEE80211_VHT_MCS_0_9 <<
|
|
IEEE80211_VHT_MCS_FOR_SS_SHIFT(1));
|
|
|
|
if (iwm_mimo_enabled(sc) &&
|
|
((rx_ant & IWM_ANT_AB) == IWM_ANT_AB ||
|
|
(rx_ant & IWM_ANT_BC) == IWM_ANT_BC)) {
|
|
ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_0_9 <<
|
|
IEEE80211_VHT_MCS_FOR_SS_SHIFT(2));
|
|
} else {
|
|
ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_SS_NOT_SUPP <<
|
|
IEEE80211_VHT_MCS_FOR_SS_SHIFT(2));
|
|
}
|
|
|
|
for (n = 3; n <= IEEE80211_VHT_NUM_SS; n++) {
|
|
ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_SS_NOT_SUPP <<
|
|
IEEE80211_VHT_MCS_FOR_SS_SHIFT(n));
|
|
}
|
|
|
|
ic->ic_vht_txmcs = ic->ic_vht_rxmcs;
|
|
}
|
|
|
|
void
|
|
iwm_init_reorder_buffer(struct iwm_reorder_buffer *reorder_buf,
|
|
uint16_t ssn, uint16_t buf_size)
|
|
{
|
|
reorder_buf->head_sn = ssn;
|
|
reorder_buf->num_stored = 0;
|
|
reorder_buf->buf_size = buf_size;
|
|
reorder_buf->last_amsdu = 0;
|
|
reorder_buf->last_sub_index = 0;
|
|
reorder_buf->removed = 0;
|
|
reorder_buf->valid = 0;
|
|
reorder_buf->consec_oldsn_drops = 0;
|
|
reorder_buf->consec_oldsn_ampdu_gp2 = 0;
|
|
reorder_buf->consec_oldsn_prev_drop = 0;
|
|
}
|
|
|
|
void
|
|
iwm_clear_reorder_buffer(struct iwm_softc *sc, struct iwm_rxba_data *rxba)
|
|
{
|
|
int i;
|
|
struct iwm_reorder_buffer *reorder_buf = &rxba->reorder_buf;
|
|
struct iwm_reorder_buf_entry *entry;
|
|
|
|
for (i = 0; i < reorder_buf->buf_size; i++) {
|
|
entry = &rxba->entries[i];
|
|
ml_purge(&entry->frames);
|
|
timerclear(&entry->reorder_time);
|
|
}
|
|
|
|
reorder_buf->removed = 1;
|
|
timeout_del(&reorder_buf->reorder_timer);
|
|
timerclear(&rxba->last_rx);
|
|
timeout_del(&rxba->session_timer);
|
|
rxba->baid = IWM_RX_REORDER_DATA_INVALID_BAID;
|
|
}
|
|
|
|
#define RX_REORDER_BUF_TIMEOUT_MQ_USEC (100000ULL)
|
|
|
|
void
|
|
iwm_rx_ba_session_expired(void *arg)
|
|
{
|
|
struct iwm_rxba_data *rxba = arg;
|
|
struct iwm_softc *sc = rxba->sc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
struct timeval now, timeout, expiry;
|
|
int s;
|
|
|
|
s = splnet();
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0 &&
|
|
ic->ic_state == IEEE80211_S_RUN &&
|
|
rxba->baid != IWM_RX_REORDER_DATA_INVALID_BAID) {
|
|
getmicrouptime(&now);
|
|
USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC, &timeout);
|
|
timeradd(&rxba->last_rx, &timeout, &expiry);
|
|
if (timercmp(&now, &expiry, <)) {
|
|
timeout_add_usec(&rxba->session_timer, rxba->timeout);
|
|
} else {
|
|
ic->ic_stats.is_ht_rx_ba_timeout++;
|
|
ieee80211_delba_request(ic, ni,
|
|
IEEE80211_REASON_TIMEOUT, 0, rxba->tid);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
iwm_reorder_timer_expired(void *arg)
|
|
{
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
struct iwm_reorder_buffer *buf = arg;
|
|
struct iwm_rxba_data *rxba = iwm_rxba_data_from_reorder_buf(buf);
|
|
struct iwm_reorder_buf_entry *entries = &rxba->entries[0];
|
|
struct iwm_softc *sc = rxba->sc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
int i, s;
|
|
uint16_t sn = 0, index = 0;
|
|
int expired = 0;
|
|
int cont = 0;
|
|
struct timeval now, timeout, expiry;
|
|
|
|
if (!buf->num_stored || buf->removed)
|
|
return;
|
|
|
|
s = splnet();
|
|
getmicrouptime(&now);
|
|
USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC, &timeout);
|
|
|
|
for (i = 0; i < buf->buf_size ; i++) {
|
|
index = (buf->head_sn + i) % buf->buf_size;
|
|
|
|
if (ml_empty(&entries[index].frames)) {
|
|
/*
|
|
* If there is a hole and the next frame didn't expire
|
|
* we want to break and not advance SN.
|
|
*/
|
|
cont = 0;
|
|
continue;
|
|
}
|
|
timeradd(&entries[index].reorder_time, &timeout, &expiry);
|
|
if (!cont && timercmp(&now, &expiry, <))
|
|
break;
|
|
|
|
expired = 1;
|
|
/* continue until next hole after this expired frame */
|
|
cont = 1;
|
|
sn = (buf->head_sn + (i + 1)) & 0xfff;
|
|
}
|
|
|
|
if (expired) {
|
|
/* SN is set to the last expired frame + 1 */
|
|
iwm_release_frames(sc, ni, rxba, buf, sn, &ml);
|
|
if_input(&sc->sc_ic.ic_if, &ml);
|
|
ic->ic_stats.is_ht_rx_ba_window_gap_timeout++;
|
|
} else {
|
|
/*
|
|
* If no frame expired and there are stored frames, index is now
|
|
* pointing to the first unexpired frame - modify reorder timeout
|
|
* accordingly.
|
|
*/
|
|
timeout_add_usec(&buf->reorder_timer,
|
|
RX_REORDER_BUF_TIMEOUT_MQ_USEC);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
#define IWM_MAX_RX_BA_SESSIONS 16
|
|
|
|
int
|
|
iwm_sta_rx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid,
|
|
uint16_t ssn, uint16_t winsize, int timeout_val, int start)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_add_sta_cmd cmd;
|
|
struct iwm_node *in = (void *)ni;
|
|
int err, s;
|
|
uint32_t status;
|
|
size_t cmdsize;
|
|
struct iwm_rxba_data *rxba = NULL;
|
|
uint8_t baid = 0;
|
|
|
|
s = splnet();
|
|
|
|
if (start && sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS) {
|
|
ieee80211_addba_req_refuse(ic, ni, tid);
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.sta_id = IWM_STATION_ID;
|
|
cmd.mac_id_n_color
|
|
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
cmd.add_modify = IWM_STA_MODE_MODIFY;
|
|
|
|
if (start) {
|
|
cmd.add_immediate_ba_tid = (uint8_t)tid;
|
|
cmd.add_immediate_ba_ssn = ssn;
|
|
cmd.rx_ba_window = winsize;
|
|
} else {
|
|
cmd.remove_immediate_ba_tid = (uint8_t)tid;
|
|
}
|
|
cmd.modify_mask = start ? IWM_STA_MODIFY_ADD_BA_TID :
|
|
IWM_STA_MODIFY_REMOVE_BA_TID;
|
|
|
|
status = IWM_ADD_STA_SUCCESS;
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
|
|
cmdsize = sizeof(cmd);
|
|
else
|
|
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize, &cmd,
|
|
&status);
|
|
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
|
|
err = EIO;
|
|
if (err) {
|
|
if (start)
|
|
ieee80211_addba_req_refuse(ic, ni, tid);
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
if (sc->sc_mqrx_supported) {
|
|
/* Deaggregation is done in hardware. */
|
|
if (start) {
|
|
if (!(status & IWM_ADD_STA_BAID_VALID_MASK)) {
|
|
ieee80211_addba_req_refuse(ic, ni, tid);
|
|
splx(s);
|
|
return EIO;
|
|
}
|
|
baid = (status & IWM_ADD_STA_BAID_MASK) >>
|
|
IWM_ADD_STA_BAID_SHIFT;
|
|
if (baid == IWM_RX_REORDER_DATA_INVALID_BAID ||
|
|
baid >= nitems(sc->sc_rxba_data)) {
|
|
ieee80211_addba_req_refuse(ic, ni, tid);
|
|
splx(s);
|
|
return EIO;
|
|
}
|
|
rxba = &sc->sc_rxba_data[baid];
|
|
if (rxba->baid != IWM_RX_REORDER_DATA_INVALID_BAID) {
|
|
ieee80211_addba_req_refuse(ic, ni, tid);
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
rxba->sta_id = IWM_STATION_ID;
|
|
rxba->tid = tid;
|
|
rxba->baid = baid;
|
|
rxba->timeout = timeout_val;
|
|
getmicrouptime(&rxba->last_rx);
|
|
iwm_init_reorder_buffer(&rxba->reorder_buf, ssn,
|
|
winsize);
|
|
if (timeout_val != 0) {
|
|
struct ieee80211_rx_ba *ba;
|
|
timeout_add_usec(&rxba->session_timer,
|
|
timeout_val);
|
|
/* XXX disable net80211's BA timeout handler */
|
|
ba = &ni->ni_rx_ba[tid];
|
|
ba->ba_timeout_val = 0;
|
|
}
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
|
|
rxba = &sc->sc_rxba_data[i];
|
|
if (rxba->baid ==
|
|
IWM_RX_REORDER_DATA_INVALID_BAID)
|
|
continue;
|
|
if (rxba->tid != tid)
|
|
continue;
|
|
iwm_clear_reorder_buffer(sc, rxba);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (start) {
|
|
sc->sc_rx_ba_sessions++;
|
|
ieee80211_addba_req_accept(ic, ni, tid);
|
|
} else if (sc->sc_rx_ba_sessions > 0)
|
|
sc->sc_rx_ba_sessions--;
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_mac_ctxt_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
int err, s = splnet();
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
|
|
ic->ic_state != IEEE80211_S_RUN) {
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
|
|
if (err)
|
|
printf("%s: failed to update MAC\n", DEVNAME(sc));
|
|
|
|
iwm_unprotect_session(sc, in);
|
|
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
iwm_updateprot(struct ieee80211com *ic)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
|
|
if (ic->ic_state == IEEE80211_S_RUN &&
|
|
!task_pending(&sc->newstate_task))
|
|
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
|
|
}
|
|
|
|
void
|
|
iwm_updateslot(struct ieee80211com *ic)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
|
|
if (ic->ic_state == IEEE80211_S_RUN &&
|
|
!task_pending(&sc->newstate_task))
|
|
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
|
|
}
|
|
|
|
void
|
|
iwm_updateedca(struct ieee80211com *ic)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
|
|
if (ic->ic_state == IEEE80211_S_RUN &&
|
|
!task_pending(&sc->newstate_task))
|
|
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
|
|
}
|
|
|
|
void
|
|
iwm_phy_ctxt_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
uint8_t chains, sco, vht_chan_width;
|
|
int err, s = splnet();
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
|
|
ic->ic_state != IEEE80211_S_RUN ||
|
|
in->in_phyctxt == NULL) {
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
chains = iwm_mimo_enabled(sc) ? 2 : 1;
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
IEEE80211_CHAN_40MHZ_ALLOWED(ni->ni_chan) &&
|
|
ieee80211_node_supports_ht_chan40(ni))
|
|
sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
|
|
else
|
|
sco = IEEE80211_HTOP0_SCO_SCN;
|
|
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
|
|
IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan) &&
|
|
ieee80211_node_supports_vht_chan80(ni))
|
|
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
|
|
else
|
|
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT;
|
|
if (in->in_phyctxt->sco != sco ||
|
|
in->in_phyctxt->vht_chan_width != vht_chan_width) {
|
|
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
|
|
in->in_phyctxt->channel, chains, chains, 0, sco,
|
|
vht_chan_width);
|
|
if (err)
|
|
printf("%s: failed to update PHY\n", DEVNAME(sc));
|
|
iwm_setrates(in, 0);
|
|
}
|
|
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
iwm_updatechan(struct ieee80211com *ic)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
|
|
if (ic->ic_state == IEEE80211_S_RUN &&
|
|
!task_pending(&sc->newstate_task))
|
|
iwm_add_task(sc, systq, &sc->phy_ctxt_task);
|
|
}
|
|
|
|
void
|
|
iwm_updatedtim(struct ieee80211com *ic)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
|
|
if (ic->ic_state == IEEE80211_S_RUN &&
|
|
!task_pending(&sc->newstate_task))
|
|
iwm_add_task(sc, systq, &sc->mac_ctxt_task);
|
|
}
|
|
|
|
int
|
|
iwm_sta_tx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid,
|
|
uint16_t ssn, uint16_t winsize, int start)
|
|
{
|
|
struct iwm_add_sta_cmd cmd;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ni;
|
|
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
|
|
struct iwm_tx_ring *ring;
|
|
enum ieee80211_edca_ac ac;
|
|
int fifo;
|
|
uint32_t status;
|
|
int err;
|
|
size_t cmdsize;
|
|
|
|
/* Ensure we can map this TID to an aggregation queue. */
|
|
if (tid >= IWM_MAX_TID_COUNT || qid > IWM_LAST_AGG_TX_QUEUE)
|
|
return ENOSPC;
|
|
|
|
if (start) {
|
|
if ((sc->tx_ba_queue_mask & (1 << qid)) != 0)
|
|
return 0;
|
|
} else {
|
|
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
|
|
return 0;
|
|
}
|
|
|
|
ring = &sc->txq[qid];
|
|
ac = iwm_tid_to_ac[tid];
|
|
fifo = iwm_ac_to_tx_fifo[ac];
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.sta_id = IWM_STATION_ID;
|
|
cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
|
|
in->in_color));
|
|
cmd.add_modify = IWM_STA_MODE_MODIFY;
|
|
|
|
if (start) {
|
|
/* Enable Tx aggregation for this queue. */
|
|
in->tid_disable_ampdu &= ~(1 << tid);
|
|
in->tfd_queue_msk |= (1 << qid);
|
|
} else {
|
|
in->tid_disable_ampdu |= (1 << tid);
|
|
/*
|
|
* Queue remains enabled in the TFD queue mask
|
|
* until we leave RUN state.
|
|
*/
|
|
err = iwm_flush_sta(sc, in);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
cmd.tfd_queue_msk |= htole32(in->tfd_queue_msk);
|
|
cmd.tid_disable_tx = htole16(in->tid_disable_ampdu);
|
|
cmd.modify_mask = (IWM_STA_MODIFY_QUEUES |
|
|
IWM_STA_MODIFY_TID_DISABLE_TX);
|
|
|
|
if (start && (sc->qenablemsk & (1 << qid)) == 0) {
|
|
if (!iwm_nic_lock(sc)) {
|
|
if (start)
|
|
ieee80211_addba_resp_refuse(ic, ni, tid,
|
|
IEEE80211_STATUS_UNSPECIFIED);
|
|
return EBUSY;
|
|
}
|
|
err = iwm_enable_txq(sc, IWM_STATION_ID, qid, fifo, 1, tid,
|
|
ssn);
|
|
iwm_nic_unlock(sc);
|
|
if (err) {
|
|
printf("%s: could not enable Tx queue %d (error %d)\n",
|
|
DEVNAME(sc), qid, err);
|
|
if (start)
|
|
ieee80211_addba_resp_refuse(ic, ni, tid,
|
|
IEEE80211_STATUS_UNSPECIFIED);
|
|
return err;
|
|
}
|
|
/*
|
|
* If iwm_enable_txq() employed the SCD hardware bug
|
|
* workaround we must skip the frame with seqnum SSN.
|
|
*/
|
|
if (ring->cur != IWM_AGG_SSN_TO_TXQ_IDX(ssn)) {
|
|
ssn = (ssn + 1) & 0xfff;
|
|
KASSERT(ring->cur == IWM_AGG_SSN_TO_TXQ_IDX(ssn));
|
|
ieee80211_output_ba_move_window(ic, ni, tid, ssn);
|
|
ni->ni_qos_txseqs[tid] = ssn;
|
|
}
|
|
}
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
|
|
cmdsize = sizeof(cmd);
|
|
else
|
|
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
|
|
|
|
status = 0;
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize, &cmd, &status);
|
|
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
|
|
err = EIO;
|
|
if (err) {
|
|
printf("%s: could not update sta (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
if (start)
|
|
ieee80211_addba_resp_refuse(ic, ni, tid,
|
|
IEEE80211_STATUS_UNSPECIFIED);
|
|
return err;
|
|
}
|
|
|
|
if (start) {
|
|
sc->tx_ba_queue_mask |= (1 << qid);
|
|
ieee80211_addba_resp_accept(ic, ni, tid);
|
|
} else {
|
|
sc->tx_ba_queue_mask &= ~(1 << qid);
|
|
|
|
/*
|
|
* Clear pending frames but keep the queue enabled.
|
|
* Firmware panics if we disable the queue here.
|
|
*/
|
|
iwm_txq_advance(sc, ring, ring->cur);
|
|
iwm_clear_oactive(sc, ring);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_ba_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
int s = splnet();
|
|
int tid, err = 0;
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
|
|
ic->ic_state != IEEE80211_S_RUN) {
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
for (tid = 0; tid < IWM_MAX_TID_COUNT && !err; tid++) {
|
|
if (sc->sc_flags & IWM_FLAG_SHUTDOWN)
|
|
break;
|
|
if (sc->ba_rx.start_tidmask & (1 << tid)) {
|
|
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
|
|
err = iwm_sta_rx_agg(sc, ni, tid, ba->ba_winstart,
|
|
ba->ba_winsize, ba->ba_timeout_val, 1);
|
|
sc->ba_rx.start_tidmask &= ~(1 << tid);
|
|
} else if (sc->ba_rx.stop_tidmask & (1 << tid)) {
|
|
err = iwm_sta_rx_agg(sc, ni, tid, 0, 0, 0, 0);
|
|
sc->ba_rx.stop_tidmask &= ~(1 << tid);
|
|
}
|
|
}
|
|
|
|
for (tid = 0; tid < IWM_MAX_TID_COUNT && !err; tid++) {
|
|
if (sc->sc_flags & IWM_FLAG_SHUTDOWN)
|
|
break;
|
|
if (sc->ba_tx.start_tidmask & (1 << tid)) {
|
|
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
|
|
err = iwm_sta_tx_agg(sc, ni, tid, ba->ba_winstart,
|
|
ba->ba_winsize, 1);
|
|
sc->ba_tx.start_tidmask &= ~(1 << tid);
|
|
} else if (sc->ba_tx.stop_tidmask & (1 << tid)) {
|
|
err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0);
|
|
sc->ba_tx.stop_tidmask &= ~(1 << tid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We "recover" from failure to start or stop a BA session
|
|
* by resetting the device.
|
|
*/
|
|
if (err && (sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
|
|
task_add(systq, &sc->init_task);
|
|
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* This function is called by upper layer when an ADDBA request is received
|
|
* from another STA and before the ADDBA response is sent.
|
|
*/
|
|
int
|
|
iwm_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
|
|
if (sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS ||
|
|
tid > IWM_MAX_TID_COUNT)
|
|
return ENOSPC;
|
|
|
|
if (sc->ba_rx.start_tidmask & (1 << tid))
|
|
return EBUSY;
|
|
|
|
sc->ba_rx.start_tidmask |= (1 << tid);
|
|
iwm_add_task(sc, systq, &sc->ba_task);
|
|
|
|
return EBUSY;
|
|
}
|
|
|
|
/*
|
|
* This function is called by upper layer on teardown of an HT-immediate
|
|
* Block Ack agreement (eg. upon receipt of a DELBA frame).
|
|
*/
|
|
void
|
|
iwm_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
|
|
if (tid > IWM_MAX_TID_COUNT || sc->ba_rx.stop_tidmask & (1 << tid))
|
|
return;
|
|
|
|
sc->ba_rx.stop_tidmask |= (1 << tid);
|
|
iwm_add_task(sc, systq, &sc->ba_task);
|
|
}
|
|
|
|
int
|
|
iwm_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
|
|
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
|
|
|
|
/* We only implement Tx aggregation with DQA-capable firmware. */
|
|
if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
return ENOTSUP;
|
|
|
|
/* Ensure we can map this TID to an aggregation queue. */
|
|
if (tid >= IWM_MAX_TID_COUNT)
|
|
return EINVAL;
|
|
|
|
/* We only support a fixed Tx aggregation window size, for now. */
|
|
if (ba->ba_winsize != IWM_FRAME_LIMIT)
|
|
return ENOTSUP;
|
|
|
|
/* Is firmware already using Tx aggregation on this queue? */
|
|
if ((sc->tx_ba_queue_mask & (1 << qid)) != 0)
|
|
return ENOSPC;
|
|
|
|
/* Are we already processing an ADDBA request? */
|
|
if (sc->ba_tx.start_tidmask & (1 << tid))
|
|
return EBUSY;
|
|
|
|
sc->ba_tx.start_tidmask |= (1 << tid);
|
|
iwm_add_task(sc, systq, &sc->ba_task);
|
|
|
|
return EBUSY;
|
|
}
|
|
|
|
void
|
|
iwm_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
|
|
|
|
if (tid > IWM_MAX_TID_COUNT || sc->ba_tx.stop_tidmask & (1 << tid))
|
|
return;
|
|
|
|
/* Is firmware currently using Tx aggregation on this queue? */
|
|
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
|
|
return;
|
|
|
|
sc->ba_tx.stop_tidmask |= (1 << tid);
|
|
iwm_add_task(sc, systq, &sc->ba_task);
|
|
}
|
|
|
|
void
|
|
iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
|
|
const uint16_t *mac_override, const uint16_t *nvm_hw)
|
|
{
|
|
const uint8_t *hw_addr;
|
|
|
|
if (mac_override) {
|
|
static const uint8_t reserved_mac[] = {
|
|
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
|
|
};
|
|
|
|
hw_addr = (const uint8_t *)(mac_override +
|
|
IWM_MAC_ADDRESS_OVERRIDE_8000);
|
|
|
|
/*
|
|
* Store the MAC address from MAO section.
|
|
* No byte swapping is required in MAO section
|
|
*/
|
|
memcpy(data->hw_addr, hw_addr, ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* Force the use of the OTP MAC address in case of reserved MAC
|
|
* address in the NVM, or if address is given but invalid.
|
|
*/
|
|
if (memcmp(reserved_mac, hw_addr, ETHER_ADDR_LEN) != 0 &&
|
|
(memcmp(etherbroadcastaddr, data->hw_addr,
|
|
sizeof(etherbroadcastaddr)) != 0) &&
|
|
(memcmp(etheranyaddr, data->hw_addr,
|
|
sizeof(etheranyaddr)) != 0) &&
|
|
!ETHER_IS_MULTICAST(data->hw_addr))
|
|
return;
|
|
}
|
|
|
|
if (nvm_hw) {
|
|
/* Read the mac address from WFMP registers. */
|
|
uint32_t mac_addr0, mac_addr1;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
goto out;
|
|
mac_addr0 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
|
|
mac_addr1 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
|
|
iwm_nic_unlock(sc);
|
|
|
|
hw_addr = (const uint8_t *)&mac_addr0;
|
|
data->hw_addr[0] = hw_addr[3];
|
|
data->hw_addr[1] = hw_addr[2];
|
|
data->hw_addr[2] = hw_addr[1];
|
|
data->hw_addr[3] = hw_addr[0];
|
|
|
|
hw_addr = (const uint8_t *)&mac_addr1;
|
|
data->hw_addr[4] = hw_addr[1];
|
|
data->hw_addr[5] = hw_addr[0];
|
|
|
|
return;
|
|
}
|
|
out:
|
|
printf("%s: mac address not found\n", DEVNAME(sc));
|
|
memset(data->hw_addr, 0, sizeof(data->hw_addr));
|
|
}
|
|
|
|
int
|
|
iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw,
|
|
const uint16_t *nvm_sw, const uint16_t *nvm_calib,
|
|
const uint16_t *mac_override, const uint16_t *phy_sku,
|
|
const uint16_t *regulatory, int n_regulatory)
|
|
{
|
|
struct iwm_nvm_data *data = &sc->sc_nvm;
|
|
uint8_t hw_addr[ETHER_ADDR_LEN];
|
|
uint32_t sku;
|
|
uint16_t lar_config;
|
|
|
|
data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
uint16_t radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
|
|
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
|
|
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
|
|
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
|
|
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
|
|
|
|
sku = le16_to_cpup(nvm_sw + IWM_SKU);
|
|
} else {
|
|
uint32_t radio_cfg =
|
|
le32_to_cpup((uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
|
|
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
|
|
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
|
|
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
|
|
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg);
|
|
data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
|
|
data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
|
|
|
|
sku = le32_to_cpup((uint32_t *)(phy_sku + IWM_SKU_8000));
|
|
}
|
|
|
|
data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
|
|
data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
|
|
data->sku_cap_11n_enable = sku & IWM_NVM_SKU_CAP_11N_ENABLE;
|
|
data->sku_cap_11ac_enable = sku & IWM_NVM_SKU_CAP_11AC_ENABLE;
|
|
data->sku_cap_mimo_disable = sku & IWM_NVM_SKU_CAP_MIMO_DISABLE;
|
|
|
|
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000) {
|
|
uint16_t lar_offset = data->nvm_version < 0xE39 ?
|
|
IWM_NVM_LAR_OFFSET_8000_OLD :
|
|
IWM_NVM_LAR_OFFSET_8000;
|
|
|
|
lar_config = le16_to_cpup(regulatory + lar_offset);
|
|
data->lar_enabled = !!(lar_config &
|
|
IWM_NVM_LAR_ENABLED_8000);
|
|
data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS_8000);
|
|
} else
|
|
data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
|
|
|
|
|
|
/* The byte order is little endian 16 bit, meaning 214365 */
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
memcpy(hw_addr, nvm_hw + IWM_HW_ADDR, ETHER_ADDR_LEN);
|
|
data->hw_addr[0] = hw_addr[1];
|
|
data->hw_addr[1] = hw_addr[0];
|
|
data->hw_addr[2] = hw_addr[3];
|
|
data->hw_addr[3] = hw_addr[2];
|
|
data->hw_addr[4] = hw_addr[5];
|
|
data->hw_addr[5] = hw_addr[4];
|
|
} else
|
|
iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
if (sc->nvm_type == IWM_NVM_SDP) {
|
|
iwm_init_channel_map(sc, regulatory, iwm_nvm_channels,
|
|
MIN(n_regulatory, nitems(iwm_nvm_channels)));
|
|
} else {
|
|
iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS],
|
|
iwm_nvm_channels, nitems(iwm_nvm_channels));
|
|
}
|
|
} else
|
|
iwm_init_channel_map(sc, ®ulatory[IWM_NVM_CHANNELS_8000],
|
|
iwm_nvm_channels_8000,
|
|
MIN(n_regulatory, nitems(iwm_nvm_channels_8000)));
|
|
|
|
data->calib_version = 255; /* TODO:
|
|
this value will prevent some checks from
|
|
failing, we need to check if this
|
|
field is still needed, and if it does,
|
|
where is it in the NVM */
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
|
|
{
|
|
const uint16_t *hw, *sw, *calib, *mac_override = NULL, *phy_sku = NULL;
|
|
const uint16_t *regulatory = NULL;
|
|
int n_regulatory = 0;
|
|
|
|
/* Checking for required sections */
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
|
|
!sections[IWM_NVM_SECTION_TYPE_HW].data) {
|
|
return ENOENT;
|
|
}
|
|
|
|
hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
|
|
|
|
if (sc->nvm_type == IWM_NVM_SDP) {
|
|
if (!sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data)
|
|
return ENOENT;
|
|
regulatory = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data;
|
|
n_regulatory =
|
|
sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].length;
|
|
}
|
|
} else if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000) {
|
|
/* SW and REGULATORY sections are mandatory */
|
|
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
|
|
!sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
|
|
return ENOENT;
|
|
}
|
|
/* MAC_OVERRIDE or at least HW section must exist */
|
|
if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
|
|
!sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
|
|
return ENOENT;
|
|
}
|
|
|
|
/* PHY_SKU section is mandatory in B0 */
|
|
if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
|
|
return ENOENT;
|
|
}
|
|
|
|
regulatory = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
|
|
n_regulatory = sections[IWM_NVM_SECTION_TYPE_REGULATORY].length;
|
|
hw = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
|
|
mac_override =
|
|
(const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
|
|
phy_sku = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
|
|
} else {
|
|
panic("unknown device family %d", sc->sc_device_family);
|
|
}
|
|
|
|
sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
|
|
calib = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
|
|
|
|
/* XXX should pass in the length of every section */
|
|
return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
|
|
phy_sku, regulatory, n_regulatory);
|
|
}
|
|
|
|
int
|
|
iwm_nvm_init(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
|
|
int i, section, err;
|
|
uint16_t len;
|
|
uint8_t *buf;
|
|
const size_t bufsz = sc->sc_nvm_max_section_size;
|
|
|
|
memset(nvm_sections, 0, sizeof(nvm_sections));
|
|
|
|
buf = malloc(bufsz, M_DEVBUF, M_WAIT);
|
|
if (buf == NULL)
|
|
return ENOMEM;
|
|
|
|
for (i = 0; i < nitems(iwm_nvm_to_read); i++) {
|
|
section = iwm_nvm_to_read[i];
|
|
KASSERT(section <= nitems(nvm_sections));
|
|
|
|
err = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
|
|
if (err) {
|
|
err = 0;
|
|
continue;
|
|
}
|
|
nvm_sections[section].data = malloc(len, M_DEVBUF, M_WAIT);
|
|
if (nvm_sections[section].data == NULL) {
|
|
err = ENOMEM;
|
|
break;
|
|
}
|
|
memcpy(nvm_sections[section].data, buf, len);
|
|
nvm_sections[section].length = len;
|
|
}
|
|
free(buf, M_DEVBUF, bufsz);
|
|
if (err == 0)
|
|
err = iwm_parse_nvm_sections(sc, nvm_sections);
|
|
|
|
for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
|
|
if (nvm_sections[i].data != NULL)
|
|
free(nvm_sections[i].data, M_DEVBUF,
|
|
nvm_sections[i].length);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
|
|
const uint8_t *section, uint32_t byte_cnt)
|
|
{
|
|
int err = EINVAL;
|
|
uint32_t chunk_sz, offset;
|
|
|
|
chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
|
|
|
|
for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
|
|
uint32_t addr, len;
|
|
const uint8_t *data;
|
|
|
|
addr = dst_addr + offset;
|
|
len = MIN(chunk_sz, byte_cnt - offset);
|
|
data = section + offset;
|
|
|
|
err = iwm_firmware_load_chunk(sc, addr, data, len);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
|
|
const uint8_t *chunk, uint32_t byte_cnt)
|
|
{
|
|
struct iwm_dma_info *dma = &sc->fw_dma;
|
|
int err;
|
|
|
|
/* Copy firmware chunk into pre-allocated DMA-safe memory. */
|
|
memcpy(dma->vaddr, chunk, byte_cnt);
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
dma->map, 0, byte_cnt, BUS_DMASYNC_PREWRITE);
|
|
|
|
if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
|
|
dst_addr <= IWM_FW_MEM_EXTENDED_END) {
|
|
err = iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
|
|
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
sc->sc_fw_chunk_done = 0;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
|
|
IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
|
|
dst_addr);
|
|
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
|
|
dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
|
|
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
|
|
(iwm_get_dma_hi_addr(dma->paddr)
|
|
<< IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
|
|
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
|
|
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
|
|
IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
/* Wait for this segment to load. */
|
|
err = 0;
|
|
while (!sc->sc_fw_chunk_done) {
|
|
err = tsleep_nsec(&sc->sc_fw, 0, "iwmfw", SEC_TO_NSEC(1));
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
if (!sc->sc_fw_chunk_done)
|
|
printf("%s: fw chunk addr 0x%x len %d failed to load\n",
|
|
DEVNAME(sc), dst_addr, byte_cnt);
|
|
|
|
if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
|
|
dst_addr <= IWM_FW_MEM_EXTENDED_END) {
|
|
int err2 = iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
|
|
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
if (!err)
|
|
err = err2;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
struct iwm_fw_sects *fws;
|
|
int err, i;
|
|
void *data;
|
|
uint32_t dlen;
|
|
uint32_t offset;
|
|
|
|
fws = &sc->sc_fw.fw_sects[ucode_type];
|
|
for (i = 0; i < fws->fw_count; i++) {
|
|
data = fws->fw_sect[i].fws_data;
|
|
dlen = fws->fw_sect[i].fws_len;
|
|
offset = fws->fw_sect[i].fws_devoff;
|
|
if (dlen > sc->sc_fwdmasegsz) {
|
|
err = EFBIG;
|
|
} else
|
|
err = iwm_firmware_load_sect(sc, offset, data, dlen);
|
|
if (err) {
|
|
printf("%s: could not load firmware chunk %u of %u\n",
|
|
DEVNAME(sc), i, fws->fw_count);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
iwm_enable_interrupts(sc);
|
|
|
|
IWM_WRITE(sc, IWM_CSR_RESET, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
|
|
int cpu, int *first_ucode_section)
|
|
{
|
|
int shift_param;
|
|
int i, err = 0, sec_num = 0x1;
|
|
uint32_t val, last_read_idx = 0;
|
|
void *data;
|
|
uint32_t dlen;
|
|
uint32_t offset;
|
|
|
|
if (cpu == 1) {
|
|
shift_param = 0;
|
|
*first_ucode_section = 0;
|
|
} else {
|
|
shift_param = 16;
|
|
(*first_ucode_section)++;
|
|
}
|
|
|
|
for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
|
|
last_read_idx = i;
|
|
data = fws->fw_sect[i].fws_data;
|
|
dlen = fws->fw_sect[i].fws_len;
|
|
offset = fws->fw_sect[i].fws_devoff;
|
|
|
|
/*
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU1 to CPU2.
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU2 non paged to CPU2 paging sec.
|
|
*/
|
|
if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
|
|
offset == IWM_PAGING_SEPARATOR_SECTION)
|
|
break;
|
|
|
|
if (dlen > sc->sc_fwdmasegsz) {
|
|
err = EFBIG;
|
|
} else
|
|
err = iwm_firmware_load_sect(sc, offset, data, dlen);
|
|
if (err) {
|
|
printf("%s: could not load firmware chunk %d "
|
|
"(error %d)\n", DEVNAME(sc), i, err);
|
|
return err;
|
|
}
|
|
|
|
/* Notify the ucode of the loaded section number and status */
|
|
if (iwm_nic_lock(sc)) {
|
|
val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
|
|
val = val | (sec_num << shift_param);
|
|
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
|
|
sec_num = (sec_num << 1) | 0x1;
|
|
iwm_nic_unlock(sc);
|
|
} else {
|
|
err = EBUSY;
|
|
printf("%s: could not load firmware chunk %d "
|
|
"(error %d)\n", DEVNAME(sc), i, err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
if (cpu == 1)
|
|
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
|
|
else
|
|
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
|
|
iwm_nic_unlock(sc);
|
|
} else {
|
|
err = EBUSY;
|
|
printf("%s: could not finalize firmware loading (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
struct iwm_fw_sects *fws;
|
|
int err = 0;
|
|
int first_ucode_section;
|
|
|
|
fws = &sc->sc_fw.fw_sects[ucode_type];
|
|
|
|
/* configure the ucode to be ready to get the secured image */
|
|
/* release CPU reset */
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc, IWM_RELEASE_CPU_RESET,
|
|
IWM_RELEASE_CPU_RESET_BIT);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
|
|
/* load to FW the binary Secured sections of CPU1 */
|
|
err = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
|
|
if (err)
|
|
return err;
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
err = iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
|
|
if (err)
|
|
return err;
|
|
|
|
iwm_enable_interrupts(sc);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
int err;
|
|
|
|
splassert(IPL_NET);
|
|
|
|
sc->sc_uc.uc_intr = 0;
|
|
sc->sc_uc.uc_ok = 0;
|
|
|
|
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000)
|
|
err = iwm_load_firmware_8000(sc, ucode_type);
|
|
else
|
|
err = iwm_load_firmware_7000(sc, ucode_type);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
/* wait for the firmware to load */
|
|
err = tsleep_nsec(&sc->sc_uc, 0, "iwmuc", SEC_TO_NSEC(1));
|
|
if (err || !sc->sc_uc.uc_ok)
|
|
printf("%s: could not load firmware\n", DEVNAME(sc));
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
int err;
|
|
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
|
|
err = iwm_nic_init(sc);
|
|
if (err) {
|
|
printf("%s: unable to init nic\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
/* make sure rfkill handshake bits are cleared */
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
|
|
IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
|
|
|
|
/* clear (again), then enable firmware load interrupt */
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
iwm_enable_fwload_interrupt(sc);
|
|
|
|
/* really make sure rfkill handshake bits are cleared */
|
|
/* maybe we should write a few times more? just to make sure */
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
|
|
|
|
return iwm_load_firmware(sc, ucode_type);
|
|
}
|
|
|
|
int
|
|
iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
|
|
{
|
|
struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
|
|
.valid = htole32(valid_tx_ant),
|
|
};
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
|
|
0, sizeof(tx_ant_cmd), &tx_ant_cmd);
|
|
}
|
|
|
|
int
|
|
iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_phy_cfg_cmd phy_cfg_cmd;
|
|
enum iwm_ucode_type ucode_type = sc->sc_uc_current;
|
|
|
|
phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config |
|
|
sc->sc_extra_phy_config);
|
|
phy_cfg_cmd.calib_control.event_trigger =
|
|
sc->sc_default_calib[ucode_type].event_trigger;
|
|
phy_cfg_cmd.calib_control.flow_trigger =
|
|
sc->sc_default_calib[ucode_type].flow_trigger;
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, 0,
|
|
sizeof(phy_cfg_cmd), &phy_cfg_cmd);
|
|
}
|
|
|
|
int
|
|
iwm_send_dqa_cmd(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_dqa_enable_cmd dqa_cmd = {
|
|
.cmd_queue = htole32(IWM_DQA_CMD_QUEUE),
|
|
};
|
|
uint32_t cmd_id;
|
|
|
|
cmd_id = iwm_cmd_id(IWM_DQA_ENABLE_CMD, IWM_DATA_PATH_GROUP, 0);
|
|
return iwm_send_cmd_pdu(sc, cmd_id, 0, sizeof(dqa_cmd), &dqa_cmd);
|
|
}
|
|
|
|
int
|
|
iwm_load_ucode_wait_alive(struct iwm_softc *sc,
|
|
enum iwm_ucode_type ucode_type)
|
|
{
|
|
enum iwm_ucode_type old_type = sc->sc_uc_current;
|
|
struct iwm_fw_sects *fw = &sc->sc_fw.fw_sects[ucode_type];
|
|
int err;
|
|
|
|
err = iwm_read_firmware(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
sc->cmdqid = IWM_DQA_CMD_QUEUE;
|
|
else
|
|
sc->cmdqid = IWM_CMD_QUEUE;
|
|
|
|
sc->sc_uc_current = ucode_type;
|
|
err = iwm_start_fw(sc, ucode_type);
|
|
if (err) {
|
|
sc->sc_uc_current = old_type;
|
|
return err;
|
|
}
|
|
|
|
err = iwm_post_alive(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* configure and operate fw paging mechanism.
|
|
* driver configures the paging flow only once, CPU2 paging image
|
|
* included in the IWM_UCODE_INIT image.
|
|
*/
|
|
if (fw->paging_mem_size) {
|
|
err = iwm_save_fw_paging(sc, fw);
|
|
if (err) {
|
|
printf("%s: failed to save the FW paging image\n",
|
|
DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
err = iwm_send_paging_cmd(sc, fw);
|
|
if (err) {
|
|
printf("%s: failed to send the paging cmd\n",
|
|
DEVNAME(sc));
|
|
iwm_free_fw_paging(sc);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
|
|
{
|
|
const int wait_flags = (IWM_INIT_COMPLETE | IWM_CALIB_COMPLETE);
|
|
int err, s;
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
|
|
printf("%s: radio is disabled by hardware switch\n",
|
|
DEVNAME(sc));
|
|
return EPERM;
|
|
}
|
|
|
|
s = splnet();
|
|
sc->sc_init_complete = 0;
|
|
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_INIT);
|
|
if (err) {
|
|
printf("%s: failed to load init firmware\n", DEVNAME(sc));
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
if (sc->sc_device_family < IWM_DEVICE_FAMILY_8000) {
|
|
err = iwm_send_bt_init_conf(sc);
|
|
if (err) {
|
|
printf("%s: could not init bt coex (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
splx(s);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (justnvm) {
|
|
err = iwm_nvm_init(sc);
|
|
if (err) {
|
|
printf("%s: failed to read nvm\n", DEVNAME(sc));
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
if (IEEE80211_ADDR_EQ(etheranyaddr, sc->sc_ic.ic_myaddr))
|
|
IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr,
|
|
sc->sc_nvm.hw_addr);
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
err = iwm_sf_config(sc, IWM_SF_INIT_OFF);
|
|
if (err) {
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
/* Send TX valid antennas before triggering calibrations */
|
|
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
|
|
if (err) {
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Send phy configurations command to init uCode
|
|
* to start the 16.0 uCode init image internal calibrations.
|
|
*/
|
|
err = iwm_send_phy_cfg_cmd(sc);
|
|
if (err) {
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Nothing to do but wait for the init complete and phy DB
|
|
* notifications from the firmware.
|
|
*/
|
|
while ((sc->sc_init_complete & wait_flags) != wait_flags) {
|
|
err = tsleep_nsec(&sc->sc_init_complete, 0, "iwminit",
|
|
SEC_TO_NSEC(2));
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_config_ltr(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_ltr_config_cmd cmd = {
|
|
.flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE),
|
|
};
|
|
|
|
if (!sc->sc_ltr_enabled)
|
|
return 0;
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
|
|
{
|
|
struct iwm_rx_ring *ring = &sc->rxq;
|
|
struct iwm_rx_data *data = &ring->data[idx];
|
|
struct mbuf *m;
|
|
int err;
|
|
int fatal = 0;
|
|
|
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return ENOBUFS;
|
|
|
|
if (size <= MCLBYTES) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
} else {
|
|
MCLGETL(m, M_DONTWAIT, IWM_RBUF_SIZE);
|
|
}
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
fatal = 1;
|
|
}
|
|
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (err) {
|
|
/* XXX */
|
|
if (fatal)
|
|
panic("iwm: could not load RX mbuf");
|
|
m_freem(m);
|
|
return err;
|
|
}
|
|
data->m = m;
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Update RX descriptor. */
|
|
if (sc->sc_mqrx_supported) {
|
|
((uint64_t *)ring->desc)[idx] =
|
|
htole64(data->map->dm_segs[0].ds_addr);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->free_desc_dma.map,
|
|
idx * sizeof(uint64_t), sizeof(uint64_t),
|
|
BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
((uint32_t *)ring->desc)[idx] =
|
|
htole32(data->map->dm_segs[0].ds_addr >> 8);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->free_desc_dma.map,
|
|
idx * sizeof(uint32_t), sizeof(uint32_t),
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* RSSI values are reported by the FW as positive values - need to negate
|
|
* to obtain their dBM. Account for missing antennas by replacing 0
|
|
* values by -256dBm: practically 0 power and a non-feasible 8 bit value.
|
|
*/
|
|
int
|
|
iwm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
|
|
{
|
|
int energy_a, energy_b, energy_c, max_energy;
|
|
uint32_t val;
|
|
|
|
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
|
|
energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
|
|
IWM_RX_INFO_ENERGY_ANT_A_POS;
|
|
energy_a = energy_a ? -energy_a : -256;
|
|
energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
|
|
IWM_RX_INFO_ENERGY_ANT_B_POS;
|
|
energy_b = energy_b ? -energy_b : -256;
|
|
energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
|
|
IWM_RX_INFO_ENERGY_ANT_C_POS;
|
|
energy_c = energy_c ? -energy_c : -256;
|
|
max_energy = MAX(energy_a, energy_b);
|
|
max_energy = MAX(max_energy, energy_c);
|
|
|
|
return max_energy;
|
|
}
|
|
|
|
int
|
|
iwm_rxmq_get_signal_strength(struct iwm_softc *sc,
|
|
struct iwm_rx_mpdu_desc *desc)
|
|
{
|
|
int energy_a, energy_b;
|
|
|
|
energy_a = desc->v1.energy_a;
|
|
energy_b = desc->v1.energy_b;
|
|
energy_a = energy_a ? -energy_a : -256;
|
|
energy_b = energy_b ? -energy_b : -256;
|
|
return MAX(energy_a, energy_b);
|
|
}
|
|
|
|
void
|
|
iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_rx_data *data)
|
|
{
|
|
struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
|
|
sizeof(*phy_info), BUS_DMASYNC_POSTREAD);
|
|
|
|
memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
|
|
}
|
|
|
|
/*
|
|
* Retrieve the average noise (in dBm) among receivers.
|
|
*/
|
|
int
|
|
iwm_get_noise(const struct iwm_statistics_rx_non_phy *stats)
|
|
{
|
|
int i, total, nbant, noise;
|
|
|
|
total = nbant = noise = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
noise = letoh32(stats->beacon_silence_rssi[i]) & 0xff;
|
|
if (noise) {
|
|
total += noise;
|
|
nbant++;
|
|
}
|
|
}
|
|
|
|
/* There should be at least one antenna but check anyway. */
|
|
return (nbant == 0) ? -127 : (total / nbant) - 107;
|
|
}
|
|
|
|
int
|
|
iwm_ccmp_decap(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
|
|
struct ieee80211_rxinfo *rxi)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_key *k = &ni->ni_pairwise_key;
|
|
struct ieee80211_frame *wh;
|
|
uint64_t pn, *prsc;
|
|
uint8_t *ivp;
|
|
uint8_t tid;
|
|
int hdrlen, hasqos;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hdrlen = ieee80211_get_hdrlen(wh);
|
|
ivp = (uint8_t *)wh + hdrlen;
|
|
|
|
/* Check that ExtIV bit is set. */
|
|
if (!(ivp[3] & IEEE80211_WEP_EXTIV))
|
|
return 1;
|
|
|
|
hasqos = ieee80211_has_qos(wh);
|
|
tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
|
|
prsc = &k->k_rsc[tid];
|
|
|
|
/* Extract the 48-bit PN from the CCMP header. */
|
|
pn = (uint64_t)ivp[0] |
|
|
(uint64_t)ivp[1] << 8 |
|
|
(uint64_t)ivp[4] << 16 |
|
|
(uint64_t)ivp[5] << 24 |
|
|
(uint64_t)ivp[6] << 32 |
|
|
(uint64_t)ivp[7] << 40;
|
|
if (rxi->rxi_flags & IEEE80211_RXI_HWDEC_SAME_PN) {
|
|
if (pn < *prsc) {
|
|
ic->ic_stats.is_ccmp_replays++;
|
|
return 1;
|
|
}
|
|
} else if (pn <= *prsc) {
|
|
ic->ic_stats.is_ccmp_replays++;
|
|
return 1;
|
|
}
|
|
/* Last seen packet number is updated in ieee80211_inputm(). */
|
|
|
|
/*
|
|
* Some firmware versions strip the MIC, and some don't. It is not
|
|
* clear which of the capability flags could tell us what to expect.
|
|
* For now, keep things simple and just leave the MIC in place if
|
|
* it is present.
|
|
*
|
|
* The IV will be stripped by ieee80211_inputm().
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_rx_hwdecrypt(struct iwm_softc *sc, struct mbuf *m, uint32_t rx_pkt_status,
|
|
struct ieee80211_rxinfo *rxi)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
int ret = 0;
|
|
uint8_t type, subtype;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
if (type == IEEE80211_FC0_TYPE_CTL)
|
|
return 0;
|
|
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (ieee80211_has_qos(wh) && (subtype & IEEE80211_FC0_SUBTYPE_NODATA))
|
|
return 0;
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
!(wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
|
|
return 0;
|
|
|
|
ni = ieee80211_find_rxnode(ic, wh);
|
|
/* Handle hardware decryption. */
|
|
if ((ni->ni_flags & IEEE80211_NODE_RXPROT) &&
|
|
ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
|
|
if ((rx_pkt_status & IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK) !=
|
|
IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC) {
|
|
ic->ic_stats.is_ccmp_dec_errs++;
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
/* Check whether decryption was successful or not. */
|
|
if ((rx_pkt_status &
|
|
(IWM_RX_MPDU_RES_STATUS_DEC_DONE |
|
|
IWM_RX_MPDU_RES_STATUS_MIC_OK)) !=
|
|
(IWM_RX_MPDU_RES_STATUS_DEC_DONE |
|
|
IWM_RX_MPDU_RES_STATUS_MIC_OK)) {
|
|
ic->ic_stats.is_ccmp_dec_errs++;
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
rxi->rxi_flags |= IEEE80211_RXI_HWDEC;
|
|
}
|
|
out:
|
|
if (ret)
|
|
ifp->if_ierrors++;
|
|
ieee80211_release_node(ic, ni);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
iwm_rx_frame(struct iwm_softc *sc, struct mbuf *m, int chanidx,
|
|
uint32_t rx_pkt_status, int is_shortpre, int rate_n_flags,
|
|
uint32_t device_timestamp, struct ieee80211_rxinfo *rxi,
|
|
struct mbuf_list *ml)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
|
|
if (chanidx < 0 || chanidx >= nitems(ic->ic_channels))
|
|
chanidx = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
ni = ieee80211_find_rxnode(ic, wh);
|
|
if ((rxi->rxi_flags & IEEE80211_RXI_HWDEC) &&
|
|
iwm_ccmp_decap(sc, m, ni, rxi) != 0) {
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
ieee80211_release_node(ic, ni);
|
|
return;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
uint16_t chan_flags;
|
|
|
|
tap->wr_flags = 0;
|
|
if (is_shortpre)
|
|
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
tap->wr_chan_freq =
|
|
htole16(ic->ic_channels[chanidx].ic_freq);
|
|
chan_flags = ic->ic_channels[chanidx].ic_flags;
|
|
if (ic->ic_curmode != IEEE80211_MODE_11N &&
|
|
ic->ic_curmode != IEEE80211_MODE_11AC) {
|
|
chan_flags &= ~IEEE80211_CHAN_HT;
|
|
chan_flags &= ~IEEE80211_CHAN_40MHZ;
|
|
}
|
|
if (ic->ic_curmode != IEEE80211_MODE_11AC)
|
|
chan_flags &= ~IEEE80211_CHAN_VHT;
|
|
tap->wr_chan_flags = htole16(chan_flags);
|
|
tap->wr_dbm_antsignal = (int8_t)rxi->rxi_rssi;
|
|
tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
|
|
tap->wr_tsft = device_timestamp;
|
|
if (rate_n_flags & IWM_RATE_MCS_HT_MSK) {
|
|
uint8_t mcs = (rate_n_flags &
|
|
(IWM_RATE_HT_MCS_RATE_CODE_MSK |
|
|
IWM_RATE_HT_MCS_NSS_MSK));
|
|
tap->wr_rate = (0x80 | mcs);
|
|
} else {
|
|
uint8_t rate = (rate_n_flags &
|
|
IWM_RATE_LEGACY_RATE_MSK);
|
|
switch (rate) {
|
|
/* CCK rates. */
|
|
case 10: tap->wr_rate = 2; break;
|
|
case 20: tap->wr_rate = 4; break;
|
|
case 55: tap->wr_rate = 11; break;
|
|
case 110: tap->wr_rate = 22; break;
|
|
/* OFDM rates. */
|
|
case 0xd: tap->wr_rate = 12; break;
|
|
case 0xf: tap->wr_rate = 18; break;
|
|
case 0x5: tap->wr_rate = 24; break;
|
|
case 0x7: tap->wr_rate = 36; break;
|
|
case 0x9: tap->wr_rate = 48; break;
|
|
case 0xb: tap->wr_rate = 72; break;
|
|
case 0x1: tap->wr_rate = 96; break;
|
|
case 0x3: tap->wr_rate = 108; break;
|
|
/* Unknown rate: should not happen. */
|
|
default: tap->wr_rate = 0;
|
|
}
|
|
}
|
|
|
|
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
|
|
m, BPF_DIRECTION_IN);
|
|
}
|
|
#endif
|
|
ieee80211_inputm(IC2IFP(ic), m, ni, rxi, ml);
|
|
ieee80211_release_node(ic, ni);
|
|
}
|
|
|
|
void
|
|
iwm_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, void *pktdata,
|
|
size_t maxlen, struct mbuf_list *ml)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_rxinfo rxi;
|
|
struct iwm_rx_phy_info *phy_info;
|
|
struct iwm_rx_mpdu_res_start *rx_res;
|
|
int device_timestamp;
|
|
uint16_t phy_flags;
|
|
uint32_t len;
|
|
uint32_t rx_pkt_status;
|
|
int rssi, chanidx, rate_n_flags;
|
|
|
|
memset(&rxi, 0, sizeof(rxi));
|
|
|
|
phy_info = &sc->sc_last_phy_info;
|
|
rx_res = (struct iwm_rx_mpdu_res_start *)pktdata;
|
|
len = le16toh(rx_res->byte_count);
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
/* Allow control frames in monitor mode. */
|
|
if (len < sizeof(struct ieee80211_frame_cts)) {
|
|
ic->ic_stats.is_rx_tooshort++;
|
|
IC2IFP(ic)->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
} else if (len < sizeof(struct ieee80211_frame)) {
|
|
ic->ic_stats.is_rx_tooshort++;
|
|
IC2IFP(ic)->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (len > maxlen - sizeof(*rx_res)) {
|
|
IC2IFP(ic)->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
rx_pkt_status = le32toh(*(uint32_t *)(pktdata + sizeof(*rx_res) + len));
|
|
if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
|
|
!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
|
|
m_freem(m);
|
|
return; /* drop */
|
|
}
|
|
|
|
m->m_data = pktdata + sizeof(*rx_res);
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
if (iwm_rx_hwdecrypt(sc, m, rx_pkt_status, &rxi)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
chanidx = letoh32(phy_info->channel);
|
|
device_timestamp = le32toh(phy_info->system_timestamp);
|
|
phy_flags = letoh16(phy_info->phy_flags);
|
|
rate_n_flags = le32toh(phy_info->rate_n_flags);
|
|
|
|
rssi = iwm_get_signal_strength(sc, phy_info);
|
|
rssi = (0 - IWM_MIN_DBM) + rssi; /* normalize */
|
|
rssi = MIN(rssi, ic->ic_max_rssi); /* clip to max. 100% */
|
|
|
|
rxi.rxi_rssi = rssi;
|
|
rxi.rxi_tstamp = device_timestamp;
|
|
rxi.rxi_chan = chanidx;
|
|
|
|
iwm_rx_frame(sc, m, chanidx, rx_pkt_status,
|
|
(phy_flags & IWM_PHY_INFO_FLAG_SHPREAMBLE),
|
|
rate_n_flags, device_timestamp, &rxi, ml);
|
|
}
|
|
|
|
void
|
|
iwm_flip_address(uint8_t *addr)
|
|
{
|
|
int i;
|
|
uint8_t mac_addr[ETHER_ADDR_LEN];
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
mac_addr[i] = addr[ETHER_ADDR_LEN - i - 1];
|
|
IEEE80211_ADDR_COPY(addr, mac_addr);
|
|
}
|
|
|
|
/*
|
|
* Drop duplicate 802.11 retransmissions
|
|
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
|
|
* and handle pseudo-duplicate frames which result from deaggregation
|
|
* of A-MSDU frames in hardware.
|
|
*/
|
|
int
|
|
iwm_detect_duplicate(struct iwm_softc *sc, struct mbuf *m,
|
|
struct iwm_rx_mpdu_desc *desc, struct ieee80211_rxinfo *rxi)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
struct iwm_rxq_dup_data *dup_data = &in->dup_data;
|
|
uint8_t tid = IWM_MAX_TID_COUNT, subframe_idx;
|
|
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
|
|
uint8_t type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
int hasqos = ieee80211_has_qos(wh);
|
|
uint16_t seq;
|
|
|
|
if (type == IEEE80211_FC0_TYPE_CTL ||
|
|
(hasqos && (subtype & IEEE80211_FC0_SUBTYPE_NODATA)) ||
|
|
IEEE80211_IS_MULTICAST(wh->i_addr1))
|
|
return 0;
|
|
|
|
if (hasqos) {
|
|
tid = (ieee80211_get_qos(wh) & IEEE80211_QOS_TID);
|
|
if (tid > IWM_MAX_TID_COUNT)
|
|
tid = IWM_MAX_TID_COUNT;
|
|
}
|
|
|
|
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
|
|
subframe_idx = desc->amsdu_info &
|
|
IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
|
|
|
|
seq = letoh16(*(u_int16_t *)wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
|
|
if ((wh->i_fc[1] & IEEE80211_FC1_RETRY) &&
|
|
dup_data->last_seq[tid] == seq &&
|
|
dup_data->last_sub_frame[tid] >= subframe_idx)
|
|
return 1;
|
|
|
|
/*
|
|
* Allow the same frame sequence number for all A-MSDU subframes
|
|
* following the first subframe.
|
|
* Otherwise these subframes would be discarded as replays.
|
|
*/
|
|
if (dup_data->last_seq[tid] == seq &&
|
|
subframe_idx > dup_data->last_sub_frame[tid] &&
|
|
(desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU)) {
|
|
rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ;
|
|
}
|
|
|
|
dup_data->last_seq[tid] = seq;
|
|
dup_data->last_sub_frame[tid] = subframe_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns true if sn2 - buffer_size < sn1 < sn2.
|
|
* To be used only in order to compare reorder buffer head with NSSN.
|
|
* We fully trust NSSN unless it is behind us due to reorder timeout.
|
|
* Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
|
|
*/
|
|
int
|
|
iwm_is_sn_less(uint16_t sn1, uint16_t sn2, uint16_t buffer_size)
|
|
{
|
|
return SEQ_LT(sn1, sn2) && !SEQ_LT(sn1, sn2 - buffer_size);
|
|
}
|
|
|
|
void
|
|
iwm_release_frames(struct iwm_softc *sc, struct ieee80211_node *ni,
|
|
struct iwm_rxba_data *rxba, struct iwm_reorder_buffer *reorder_buf,
|
|
uint16_t nssn, struct mbuf_list *ml)
|
|
{
|
|
struct iwm_reorder_buf_entry *entries = &rxba->entries[0];
|
|
uint16_t ssn = reorder_buf->head_sn;
|
|
|
|
/* ignore nssn smaller than head sn - this can happen due to timeout */
|
|
if (iwm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
|
|
goto set_timer;
|
|
|
|
while (iwm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
|
|
int index = ssn % reorder_buf->buf_size;
|
|
struct mbuf *m;
|
|
int chanidx, is_shortpre;
|
|
uint32_t rx_pkt_status, rate_n_flags, device_timestamp;
|
|
struct ieee80211_rxinfo *rxi;
|
|
|
|
/* This data is the same for all A-MSDU subframes. */
|
|
chanidx = entries[index].chanidx;
|
|
rx_pkt_status = entries[index].rx_pkt_status;
|
|
is_shortpre = entries[index].is_shortpre;
|
|
rate_n_flags = entries[index].rate_n_flags;
|
|
device_timestamp = entries[index].device_timestamp;
|
|
rxi = &entries[index].rxi;
|
|
|
|
/*
|
|
* Empty the list. Will have more than one frame for A-MSDU.
|
|
* Empty list is valid as well since nssn indicates frames were
|
|
* received.
|
|
*/
|
|
while ((m = ml_dequeue(&entries[index].frames)) != NULL) {
|
|
iwm_rx_frame(sc, m, chanidx, rx_pkt_status, is_shortpre,
|
|
rate_n_flags, device_timestamp, rxi, ml);
|
|
reorder_buf->num_stored--;
|
|
|
|
/*
|
|
* Allow the same frame sequence number and CCMP PN for
|
|
* all A-MSDU subframes following the first subframe.
|
|
* Otherwise they would be discarded as replays.
|
|
*/
|
|
rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ;
|
|
rxi->rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN;
|
|
}
|
|
|
|
ssn = (ssn + 1) & 0xfff;
|
|
}
|
|
reorder_buf->head_sn = nssn;
|
|
|
|
set_timer:
|
|
if (reorder_buf->num_stored && !reorder_buf->removed) {
|
|
timeout_add_usec(&reorder_buf->reorder_timer,
|
|
RX_REORDER_BUF_TIMEOUT_MQ_USEC);
|
|
} else
|
|
timeout_del(&reorder_buf->reorder_timer);
|
|
}
|
|
|
|
int
|
|
iwm_oldsn_workaround(struct iwm_softc *sc, struct ieee80211_node *ni, int tid,
|
|
struct iwm_reorder_buffer *buffer, uint32_t reorder_data, uint32_t gp2)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
|
|
/* we have a new (A-)MPDU ... */
|
|
|
|
/*
|
|
* reset counter to 0 if we didn't have any oldsn in
|
|
* the last A-MPDU (as detected by GP2 being identical)
|
|
*/
|
|
if (!buffer->consec_oldsn_prev_drop)
|
|
buffer->consec_oldsn_drops = 0;
|
|
|
|
/* either way, update our tracking state */
|
|
buffer->consec_oldsn_ampdu_gp2 = gp2;
|
|
} else if (buffer->consec_oldsn_prev_drop) {
|
|
/*
|
|
* tracking state didn't change, and we had an old SN
|
|
* indication before - do nothing in this case, we
|
|
* already noted this one down and are waiting for the
|
|
* next A-MPDU (by GP2)
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* return unless this MPDU has old SN */
|
|
if (!(reorder_data & IWM_RX_MPDU_REORDER_BA_OLD_SN))
|
|
return 0;
|
|
|
|
/* update state */
|
|
buffer->consec_oldsn_prev_drop = 1;
|
|
buffer->consec_oldsn_drops++;
|
|
|
|
/* if limit is reached, send del BA and reset state */
|
|
if (buffer->consec_oldsn_drops == IWM_AMPDU_CONSEC_DROPS_DELBA) {
|
|
ieee80211_delba_request(ic, ni, IEEE80211_REASON_UNSPECIFIED,
|
|
0, tid);
|
|
buffer->consec_oldsn_prev_drop = 0;
|
|
buffer->consec_oldsn_drops = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle re-ordering of frames which were de-aggregated in hardware.
|
|
* Returns 1 if the MPDU was consumed (buffered or dropped).
|
|
* Returns 0 if the MPDU should be passed to upper layer.
|
|
*/
|
|
int
|
|
iwm_rx_reorder(struct iwm_softc *sc, struct mbuf *m, int chanidx,
|
|
struct iwm_rx_mpdu_desc *desc, int is_shortpre, int rate_n_flags,
|
|
uint32_t device_timestamp, struct ieee80211_rxinfo *rxi,
|
|
struct mbuf_list *ml)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
struct iwm_rxba_data *rxba;
|
|
struct iwm_reorder_buffer *buffer;
|
|
uint32_t reorder_data = le32toh(desc->reorder_data);
|
|
int is_amsdu = (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU);
|
|
int last_subframe =
|
|
(desc->amsdu_info & IWM_RX_MPDU_AMSDU_LAST_SUBFRAME);
|
|
uint8_t tid;
|
|
uint8_t subframe_idx = (desc->amsdu_info &
|
|
IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK);
|
|
struct iwm_reorder_buf_entry *entries;
|
|
int index;
|
|
uint16_t nssn, sn;
|
|
uint8_t baid, type, subtype;
|
|
int hasqos;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hasqos = ieee80211_has_qos(wh);
|
|
tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
|
|
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
/*
|
|
* We are only interested in Block Ack requests and unicast QoS data.
|
|
*/
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
|
|
return 0;
|
|
if (hasqos) {
|
|
if (subtype & IEEE80211_FC0_SUBTYPE_NODATA)
|
|
return 0;
|
|
} else {
|
|
if (type != IEEE80211_FC0_TYPE_CTL ||
|
|
subtype != IEEE80211_FC0_SUBTYPE_BAR)
|
|
return 0;
|
|
}
|
|
|
|
baid = (reorder_data & IWM_RX_MPDU_REORDER_BAID_MASK) >>
|
|
IWM_RX_MPDU_REORDER_BAID_SHIFT;
|
|
if (baid == IWM_RX_REORDER_DATA_INVALID_BAID ||
|
|
baid >= nitems(sc->sc_rxba_data))
|
|
return 0;
|
|
|
|
rxba = &sc->sc_rxba_data[baid];
|
|
if (rxba->baid == IWM_RX_REORDER_DATA_INVALID_BAID ||
|
|
tid != rxba->tid || rxba->sta_id != IWM_STATION_ID)
|
|
return 0;
|
|
|
|
if (rxba->timeout != 0)
|
|
getmicrouptime(&rxba->last_rx);
|
|
|
|
/* Bypass A-MPDU re-ordering in net80211. */
|
|
rxi->rxi_flags |= IEEE80211_RXI_AMPDU_DONE;
|
|
|
|
nssn = reorder_data & IWM_RX_MPDU_REORDER_NSSN_MASK;
|
|
sn = (reorder_data & IWM_RX_MPDU_REORDER_SN_MASK) >>
|
|
IWM_RX_MPDU_REORDER_SN_SHIFT;
|
|
|
|
buffer = &rxba->reorder_buf;
|
|
entries = &rxba->entries[0];
|
|
|
|
if (!buffer->valid) {
|
|
if (reorder_data & IWM_RX_MPDU_REORDER_BA_OLD_SN)
|
|
return 0;
|
|
buffer->valid = 1;
|
|
}
|
|
|
|
ni = ieee80211_find_rxnode(ic, wh);
|
|
if (type == IEEE80211_FC0_TYPE_CTL &&
|
|
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
|
|
iwm_release_frames(sc, ni, rxba, buffer, nssn, ml);
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* If there was a significant jump in the nssn - adjust.
|
|
* If the SN is smaller than the NSSN it might need to first go into
|
|
* the reorder buffer, in which case we just release up to it and the
|
|
* rest of the function will take care of storing it and releasing up to
|
|
* the nssn.
|
|
*/
|
|
if (!iwm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
|
|
buffer->buf_size) ||
|
|
!SEQ_LT(sn, buffer->head_sn + buffer->buf_size)) {
|
|
uint16_t min_sn = SEQ_LT(sn, nssn) ? sn : nssn;
|
|
ic->ic_stats.is_ht_rx_frame_above_ba_winend++;
|
|
iwm_release_frames(sc, ni, rxba, buffer, min_sn, ml);
|
|
}
|
|
|
|
if (iwm_oldsn_workaround(sc, ni, tid, buffer, reorder_data,
|
|
device_timestamp)) {
|
|
/* BA session will be torn down. */
|
|
ic->ic_stats.is_ht_rx_ba_window_jump++;
|
|
goto drop;
|
|
|
|
}
|
|
|
|
/* drop any outdated packets */
|
|
if (SEQ_LT(sn, buffer->head_sn)) {
|
|
ic->ic_stats.is_ht_rx_frame_below_ba_winstart++;
|
|
goto drop;
|
|
}
|
|
|
|
/* release immediately if allowed by nssn and no stored frames */
|
|
if (!buffer->num_stored && SEQ_LT(sn, nssn)) {
|
|
if (iwm_is_sn_less(buffer->head_sn, nssn, buffer->buf_size) &&
|
|
(!is_amsdu || last_subframe))
|
|
buffer->head_sn = nssn;
|
|
ieee80211_release_node(ic, ni);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* release immediately if there are no stored frames, and the sn is
|
|
* equal to the head.
|
|
* This can happen due to reorder timer, where NSSN is behind head_sn.
|
|
* When we released everything, and we got the next frame in the
|
|
* sequence, according to the NSSN we can't release immediately,
|
|
* while technically there is no hole and we can move forward.
|
|
*/
|
|
if (!buffer->num_stored && sn == buffer->head_sn) {
|
|
if (!is_amsdu || last_subframe)
|
|
buffer->head_sn = (buffer->head_sn + 1) & 0xfff;
|
|
ieee80211_release_node(ic, ni);
|
|
return 0;
|
|
}
|
|
|
|
index = sn % buffer->buf_size;
|
|
|
|
/*
|
|
* Check if we already stored this frame
|
|
* As AMSDU is either received or not as whole, logic is simple:
|
|
* If we have frames in that position in the buffer and the last frame
|
|
* originated from AMSDU had a different SN then it is a retransmission.
|
|
* If it is the same SN then if the subframe index is incrementing it
|
|
* is the same AMSDU - otherwise it is a retransmission.
|
|
*/
|
|
if (!ml_empty(&entries[index].frames)) {
|
|
if (!is_amsdu) {
|
|
ic->ic_stats.is_ht_rx_ba_no_buf++;
|
|
goto drop;
|
|
} else if (sn != buffer->last_amsdu ||
|
|
buffer->last_sub_index >= subframe_idx) {
|
|
ic->ic_stats.is_ht_rx_ba_no_buf++;
|
|
goto drop;
|
|
}
|
|
} else {
|
|
/* This data is the same for all A-MSDU subframes. */
|
|
entries[index].chanidx = chanidx;
|
|
entries[index].is_shortpre = is_shortpre;
|
|
entries[index].rate_n_flags = rate_n_flags;
|
|
entries[index].device_timestamp = device_timestamp;
|
|
memcpy(&entries[index].rxi, rxi, sizeof(entries[index].rxi));
|
|
}
|
|
|
|
/* put in reorder buffer */
|
|
ml_enqueue(&entries[index].frames, m);
|
|
buffer->num_stored++;
|
|
getmicrouptime(&entries[index].reorder_time);
|
|
|
|
if (is_amsdu) {
|
|
buffer->last_amsdu = sn;
|
|
buffer->last_sub_index = subframe_idx;
|
|
}
|
|
|
|
/*
|
|
* We cannot trust NSSN for AMSDU sub-frames that are not the last.
|
|
* The reason is that NSSN advances on the first sub-frame, and may
|
|
* cause the reorder buffer to advance before all the sub-frames arrive.
|
|
* Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
|
|
* SN 1. NSSN for first sub frame will be 3 with the result of driver
|
|
* releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
|
|
* already ahead and it will be dropped.
|
|
* If the last sub-frame is not on this queue - we will get frame
|
|
* release notification with up to date NSSN.
|
|
*/
|
|
if (!is_amsdu || last_subframe)
|
|
iwm_release_frames(sc, ni, rxba, buffer, nssn, ml);
|
|
|
|
ieee80211_release_node(ic, ni);
|
|
return 1;
|
|
|
|
drop:
|
|
m_freem(m);
|
|
ieee80211_release_node(ic, ni);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
iwm_rx_mpdu_mq(struct iwm_softc *sc, struct mbuf *m, void *pktdata,
|
|
size_t maxlen, struct mbuf_list *ml)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_rxinfo rxi;
|
|
struct iwm_rx_mpdu_desc *desc;
|
|
uint32_t len, hdrlen, rate_n_flags, device_timestamp;
|
|
int rssi;
|
|
uint8_t chanidx;
|
|
uint16_t phy_info;
|
|
|
|
memset(&rxi, 0, sizeof(rxi));
|
|
|
|
desc = (struct iwm_rx_mpdu_desc *)pktdata;
|
|
|
|
if (!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_CRC_OK)) ||
|
|
!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_OVERRUN_OK))) {
|
|
m_freem(m);
|
|
return; /* drop */
|
|
}
|
|
|
|
len = le16toh(desc->mpdu_len);
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
/* Allow control frames in monitor mode. */
|
|
if (len < sizeof(struct ieee80211_frame_cts)) {
|
|
ic->ic_stats.is_rx_tooshort++;
|
|
IC2IFP(ic)->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
} else if (len < sizeof(struct ieee80211_frame)) {
|
|
ic->ic_stats.is_rx_tooshort++;
|
|
IC2IFP(ic)->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (len > maxlen - sizeof(*desc)) {
|
|
IC2IFP(ic)->if_ierrors++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
m->m_data = pktdata + sizeof(*desc);
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
/* Account for padding following the frame header. */
|
|
if (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_PAD) {
|
|
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
|
|
int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
if (type == IEEE80211_FC0_TYPE_CTL) {
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
|
|
case IEEE80211_FC0_SUBTYPE_CTS:
|
|
hdrlen = sizeof(struct ieee80211_frame_cts);
|
|
break;
|
|
case IEEE80211_FC0_SUBTYPE_ACK:
|
|
hdrlen = sizeof(struct ieee80211_frame_ack);
|
|
break;
|
|
default:
|
|
hdrlen = sizeof(struct ieee80211_frame_min);
|
|
break;
|
|
}
|
|
} else
|
|
hdrlen = ieee80211_get_hdrlen(wh);
|
|
|
|
if ((le16toh(desc->status) &
|
|
IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK) ==
|
|
IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC) {
|
|
/* Padding is inserted after the IV. */
|
|
hdrlen += IEEE80211_CCMP_HDRLEN;
|
|
}
|
|
|
|
memmove(m->m_data + 2, m->m_data, hdrlen);
|
|
m_adj(m, 2);
|
|
}
|
|
|
|
/*
|
|
* Hardware de-aggregates A-MSDUs and copies the same MAC header
|
|
* in place for each subframe. But it leaves the 'A-MSDU present'
|
|
* bit set in the frame header. We need to clear this bit ourselves.
|
|
*
|
|
* And we must allow the same CCMP PN for subframes following the
|
|
* first subframe. Otherwise they would be discarded as replays.
|
|
*/
|
|
if (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU) {
|
|
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
|
|
uint8_t subframe_idx = (desc->amsdu_info &
|
|
IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK);
|
|
if (subframe_idx > 0)
|
|
rxi.rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN;
|
|
if (ieee80211_has_qos(wh) && ieee80211_has_addr4(wh) &&
|
|
m->m_len >= sizeof(struct ieee80211_qosframe_addr4)) {
|
|
struct ieee80211_qosframe_addr4 *qwh4 = mtod(m,
|
|
struct ieee80211_qosframe_addr4 *);
|
|
qwh4->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU);
|
|
|
|
/* HW reverses addr3 and addr4. */
|
|
iwm_flip_address(qwh4->i_addr3);
|
|
iwm_flip_address(qwh4->i_addr4);
|
|
} else if (ieee80211_has_qos(wh) &&
|
|
m->m_len >= sizeof(struct ieee80211_qosframe)) {
|
|
struct ieee80211_qosframe *qwh = mtod(m,
|
|
struct ieee80211_qosframe *);
|
|
qwh->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU);
|
|
|
|
/* HW reverses addr3. */
|
|
iwm_flip_address(qwh->i_addr3);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify decryption before duplicate detection. The latter uses
|
|
* the TID supplied in QoS frame headers and this TID is implicitly
|
|
* verified as part of the CCMP nonce.
|
|
*/
|
|
if (iwm_rx_hwdecrypt(sc, m, le16toh(desc->status), &rxi)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
if (iwm_detect_duplicate(sc, m, desc, &rxi)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
phy_info = le16toh(desc->phy_info);
|
|
rate_n_flags = le32toh(desc->v1.rate_n_flags);
|
|
chanidx = desc->v1.channel;
|
|
device_timestamp = desc->v1.gp2_on_air_rise;
|
|
|
|
rssi = iwm_rxmq_get_signal_strength(sc, desc);
|
|
rssi = (0 - IWM_MIN_DBM) + rssi; /* normalize */
|
|
rssi = MIN(rssi, ic->ic_max_rssi); /* clip to max. 100% */
|
|
|
|
rxi.rxi_rssi = rssi;
|
|
rxi.rxi_tstamp = le64toh(desc->v1.tsf_on_air_rise);
|
|
rxi.rxi_chan = chanidx;
|
|
|
|
if (iwm_rx_reorder(sc, m, chanidx, desc,
|
|
(phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE),
|
|
rate_n_flags, device_timestamp, &rxi, ml))
|
|
return;
|
|
|
|
iwm_rx_frame(sc, m, chanidx, le16toh(desc->status),
|
|
(phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE),
|
|
rate_n_flags, device_timestamp, &rxi, ml);
|
|
}
|
|
|
|
void
|
|
iwm_ra_choose(struct iwm_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ni;
|
|
int old_txmcs = ni->ni_txmcs;
|
|
int old_nss = ni->ni_vht_ss;
|
|
|
|
if (ni->ni_flags & IEEE80211_NODE_VHT)
|
|
ieee80211_ra_vht_choose(&in->in_rn_vht, ic, ni);
|
|
else
|
|
ieee80211_ra_choose(&in->in_rn, ic, ni);
|
|
|
|
/*
|
|
* If RA has chosen a new TX rate we must update
|
|
* the firmware's LQ rate table.
|
|
*/
|
|
if (ni->ni_txmcs != old_txmcs || ni->ni_vht_ss != old_nss)
|
|
iwm_setrates(in, 1);
|
|
}
|
|
|
|
void
|
|
iwm_ht_single_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni,
|
|
int txmcs, uint8_t failure_frame, int txfail)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ni;
|
|
|
|
/* Ignore Tx reports which don't match our last LQ command. */
|
|
if (txmcs != ni->ni_txmcs) {
|
|
if (++in->lq_rate_mismatch > 15) {
|
|
/* Try to sync firmware with the driver... */
|
|
iwm_setrates(in, 1);
|
|
in->lq_rate_mismatch = 0;
|
|
}
|
|
} else {
|
|
int mcs = txmcs;
|
|
const struct ieee80211_ht_rateset *rs =
|
|
ieee80211_ra_get_ht_rateset(txmcs,
|
|
ieee80211_node_supports_ht_chan40(ni),
|
|
ieee80211_ra_use_ht_sgi(ni));
|
|
unsigned int retries = 0, i;
|
|
|
|
in->lq_rate_mismatch = 0;
|
|
|
|
for (i = 0; i < failure_frame; i++) {
|
|
if (mcs > rs->min_mcs) {
|
|
ieee80211_ra_add_stats_ht(&in->in_rn,
|
|
ic, ni, mcs, 1, 1);
|
|
mcs--;
|
|
} else
|
|
retries++;
|
|
}
|
|
|
|
if (txfail && failure_frame == 0) {
|
|
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
|
|
txmcs, 1, 1);
|
|
} else {
|
|
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
|
|
mcs, retries + 1, retries);
|
|
}
|
|
|
|
iwm_ra_choose(sc, ni);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_vht_single_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni,
|
|
int txmcs, int nss, uint8_t failure_frame, int txfail)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ni;
|
|
uint8_t vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
|
|
uint8_t sco = IEEE80211_HTOP0_SCO_SCN;
|
|
|
|
/* Ignore Tx reports which don't match our last LQ command. */
|
|
if (txmcs != ni->ni_txmcs || nss != ni->ni_vht_ss) {
|
|
if (++in->lq_rate_mismatch > 15) {
|
|
/* Try to sync firmware with the driver... */
|
|
iwm_setrates(in, 1);
|
|
in->lq_rate_mismatch = 0;
|
|
}
|
|
} else {
|
|
int mcs = txmcs;
|
|
unsigned int retries = 0, i;
|
|
|
|
if (in->in_phyctxt) {
|
|
vht_chan_width = in->in_phyctxt->vht_chan_width;
|
|
sco = in->in_phyctxt->sco;
|
|
}
|
|
in->lq_rate_mismatch = 0;
|
|
|
|
for (i = 0; i < failure_frame; i++) {
|
|
if (mcs > 0) {
|
|
ieee80211_ra_vht_add_stats(&in->in_rn_vht,
|
|
ic, ni, mcs, nss, 1, 1);
|
|
if (vht_chan_width >=
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_80) {
|
|
/*
|
|
* First 4 Tx attempts used same MCS,
|
|
* twice at 80MHz and twice at 40MHz.
|
|
*/
|
|
if (i >= 4)
|
|
mcs--;
|
|
} else if (sco == IEEE80211_HTOP0_SCO_SCA ||
|
|
sco == IEEE80211_HTOP0_SCO_SCB) {
|
|
/*
|
|
* First 4 Tx attempts used same MCS,
|
|
* four times at 40MHz.
|
|
*/
|
|
if (i >= 4)
|
|
mcs--;
|
|
} else
|
|
mcs--;
|
|
} else
|
|
retries++;
|
|
}
|
|
|
|
if (txfail && failure_frame == 0) {
|
|
ieee80211_ra_vht_add_stats(&in->in_rn_vht, ic, ni,
|
|
txmcs, nss, 1, 1);
|
|
} else {
|
|
ieee80211_ra_vht_add_stats(&in->in_rn_vht, ic, ni,
|
|
mcs, nss, retries + 1, retries);
|
|
}
|
|
|
|
iwm_ra_choose(sc, ni);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_node *in, int txmcs, int txrate)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct iwm_tx_resp *tx_resp = (void *)pkt->data;
|
|
int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
|
|
uint32_t initial_rate = le32toh(tx_resp->initial_rate);
|
|
int txfail;
|
|
|
|
KASSERT(tx_resp->frame_count == 1);
|
|
|
|
txfail = (status != IWM_TX_STATUS_SUCCESS &&
|
|
status != IWM_TX_STATUS_DIRECT_DONE);
|
|
|
|
/*
|
|
* Update rate control statistics.
|
|
* Only report frames which were actually queued with the currently
|
|
* selected Tx rate. Because Tx queues are relatively long we may
|
|
* encounter previously selected rates here during Tx bursts.
|
|
* Providing feedback based on such frames can lead to suboptimal
|
|
* Tx rate control decisions.
|
|
*/
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0) {
|
|
if (txrate != ni->ni_txrate) {
|
|
if (++in->lq_rate_mismatch > 15) {
|
|
/* Try to sync firmware with the driver... */
|
|
iwm_setrates(in, 1);
|
|
in->lq_rate_mismatch = 0;
|
|
}
|
|
} else {
|
|
in->lq_rate_mismatch = 0;
|
|
|
|
in->in_amn.amn_txcnt++;
|
|
if (txfail)
|
|
in->in_amn.amn_retrycnt++;
|
|
if (tx_resp->failure_frame > 0)
|
|
in->in_amn.amn_retrycnt++;
|
|
}
|
|
} else if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
|
|
ic->ic_fixed_mcs == -1 && ic->ic_state == IEEE80211_S_RUN &&
|
|
(initial_rate & IWM_RATE_MCS_VHT_MSK)) {
|
|
int txmcs = initial_rate & IWM_RATE_VHT_MCS_RATE_CODE_MSK;
|
|
int nss = ((initial_rate & IWM_RATE_VHT_MCS_NSS_MSK) >>
|
|
IWM_RATE_VHT_MCS_NSS_POS) + 1;
|
|
iwm_vht_single_rate_control(sc, ni, txmcs, nss,
|
|
tx_resp->failure_frame, txfail);
|
|
} else if (ic->ic_fixed_mcs == -1 && ic->ic_state == IEEE80211_S_RUN &&
|
|
(initial_rate & IWM_RATE_MCS_HT_MSK)) {
|
|
int txmcs = initial_rate &
|
|
(IWM_RATE_HT_MCS_RATE_CODE_MSK | IWM_RATE_HT_MCS_NSS_MSK);
|
|
iwm_ht_single_rate_control(sc, ni, txmcs,
|
|
tx_resp->failure_frame, txfail);
|
|
}
|
|
|
|
if (txfail)
|
|
ifp->if_oerrors++;
|
|
}
|
|
|
|
void
|
|
iwm_txd_done(struct iwm_softc *sc, struct iwm_tx_data *txd)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txd->map);
|
|
m_freem(txd->m);
|
|
txd->m = NULL;
|
|
|
|
KASSERT(txd->in);
|
|
ieee80211_release_node(ic, &txd->in->in_ni);
|
|
txd->in = NULL;
|
|
txd->ampdu_nframes = 0;
|
|
txd->ampdu_txmcs = 0;
|
|
txd->ampdu_txnss = 0;
|
|
}
|
|
|
|
void
|
|
iwm_txq_advance(struct iwm_softc *sc, struct iwm_tx_ring *ring, int idx)
|
|
{
|
|
struct iwm_tx_data *txd;
|
|
|
|
while (ring->tail != idx) {
|
|
txd = &ring->data[ring->tail];
|
|
if (txd->m != NULL) {
|
|
iwm_reset_sched(sc, ring->qid, ring->tail, IWM_STATION_ID);
|
|
iwm_txd_done(sc, txd);
|
|
ring->queued--;
|
|
}
|
|
ring->tail = (ring->tail + 1) % IWM_TX_RING_COUNT;
|
|
}
|
|
|
|
wakeup(ring);
|
|
}
|
|
|
|
void
|
|
iwm_ampdu_tx_done(struct iwm_softc *sc, struct iwm_cmd_header *cmd_hdr,
|
|
struct iwm_node *in, struct iwm_tx_ring *txq, uint32_t initial_rate,
|
|
uint8_t nframes, uint8_t failure_frame, uint16_t ssn, int status,
|
|
struct iwm_agg_tx_status *agg_status)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int tid = cmd_hdr->qid - IWM_FIRST_AGG_TX_QUEUE;
|
|
struct iwm_tx_data *txdata = &txq->data[cmd_hdr->idx];
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ieee80211_tx_ba *ba;
|
|
int txfail = (status != IWM_TX_STATUS_SUCCESS &&
|
|
status != IWM_TX_STATUS_DIRECT_DONE);
|
|
uint16_t seq;
|
|
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
return;
|
|
|
|
if (nframes > 1) {
|
|
int i;
|
|
/*
|
|
* Collect information about this A-MPDU.
|
|
*/
|
|
|
|
for (i = 0; i < nframes; i++) {
|
|
uint8_t qid = agg_status[i].qid;
|
|
uint8_t idx = agg_status[i].idx;
|
|
uint16_t txstatus = (le16toh(agg_status[i].status) &
|
|
IWM_AGG_TX_STATE_STATUS_MSK);
|
|
|
|
if (txstatus != IWM_AGG_TX_STATE_TRANSMITTED)
|
|
continue;
|
|
|
|
if (qid != cmd_hdr->qid)
|
|
continue;
|
|
|
|
txdata = &txq->data[idx];
|
|
if (txdata->m == NULL)
|
|
continue;
|
|
|
|
/* The Tx rate was the same for all subframes. */
|
|
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
|
|
(initial_rate & IWM_RATE_MCS_VHT_MSK)) {
|
|
txdata->ampdu_txmcs = initial_rate &
|
|
IWM_RATE_VHT_MCS_RATE_CODE_MSK;
|
|
txdata->ampdu_txnss = ((initial_rate &
|
|
IWM_RATE_VHT_MCS_NSS_MSK) >>
|
|
IWM_RATE_VHT_MCS_NSS_POS) + 1;
|
|
txdata->ampdu_nframes = nframes;
|
|
} else if (initial_rate & IWM_RATE_MCS_HT_MSK) {
|
|
txdata->ampdu_txmcs = initial_rate &
|
|
(IWM_RATE_HT_MCS_RATE_CODE_MSK |
|
|
IWM_RATE_HT_MCS_NSS_MSK);
|
|
txdata->ampdu_nframes = nframes;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
ba = &ni->ni_tx_ba[tid];
|
|
if (ba->ba_state != IEEE80211_BA_AGREED)
|
|
return;
|
|
if (SEQ_LT(ssn, ba->ba_winstart))
|
|
return;
|
|
|
|
/* This was a final single-frame Tx attempt for frame SSN-1. */
|
|
seq = (ssn - 1) & 0xfff;
|
|
|
|
/*
|
|
* Skip rate control if our Tx rate is fixed.
|
|
* Don't report frames to MiRA which were sent at a different
|
|
* Tx rate than ni->ni_txmcs.
|
|
*/
|
|
if (ic->ic_fixed_mcs == -1) {
|
|
if (txdata->ampdu_nframes > 1) {
|
|
/*
|
|
* This frame was once part of an A-MPDU.
|
|
* Report one failed A-MPDU Tx attempt.
|
|
* The firmware might have made several such
|
|
* attempts but we don't keep track of this.
|
|
*/
|
|
if (ni->ni_flags & IEEE80211_NODE_VHT) {
|
|
ieee80211_ra_vht_add_stats(&in->in_rn_vht,
|
|
ic, ni, txdata->ampdu_txmcs,
|
|
txdata->ampdu_txnss, 1, 1);
|
|
} else {
|
|
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
|
|
txdata->ampdu_txmcs, 1, 1);
|
|
}
|
|
}
|
|
|
|
/* Report the final single-frame Tx attempt. */
|
|
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
|
|
(initial_rate & IWM_RATE_MCS_VHT_MSK)) {
|
|
int txmcs = initial_rate &
|
|
IWM_RATE_VHT_MCS_RATE_CODE_MSK;
|
|
int nss = ((initial_rate &
|
|
IWM_RATE_VHT_MCS_NSS_MSK) >>
|
|
IWM_RATE_VHT_MCS_NSS_POS) + 1;
|
|
iwm_vht_single_rate_control(sc, ni, txmcs, nss,
|
|
failure_frame, txfail);
|
|
} else if (initial_rate & IWM_RATE_MCS_HT_MSK) {
|
|
int txmcs = initial_rate &
|
|
(IWM_RATE_HT_MCS_RATE_CODE_MSK |
|
|
IWM_RATE_HT_MCS_NSS_MSK);
|
|
iwm_ht_single_rate_control(sc, ni, txmcs,
|
|
failure_frame, txfail);
|
|
}
|
|
}
|
|
|
|
if (txfail)
|
|
ieee80211_tx_compressed_bar(ic, ni, tid, ssn);
|
|
|
|
/*
|
|
* SSN corresponds to the first (perhaps not yet transmitted) frame
|
|
* in firmware's BA window. Firmware is not going to retransmit any
|
|
* frames before its BA window so mark them all as done.
|
|
*/
|
|
ieee80211_output_ba_move_window(ic, ni, tid, ssn);
|
|
iwm_txq_advance(sc, txq, IWM_AGG_SSN_TO_TXQ_IDX(ssn));
|
|
iwm_clear_oactive(sc, txq);
|
|
}
|
|
|
|
void
|
|
iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_rx_data *data)
|
|
{
|
|
struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
|
|
int idx = cmd_hdr->idx;
|
|
int qid = cmd_hdr->qid;
|
|
struct iwm_tx_ring *ring = &sc->txq[qid];
|
|
struct iwm_tx_data *txd;
|
|
struct iwm_tx_resp *tx_resp = (void *)pkt->data;
|
|
uint32_t ssn;
|
|
uint32_t len = iwm_rx_packet_len(pkt);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
/* Sanity checks. */
|
|
if (sizeof(*tx_resp) > len)
|
|
return;
|
|
if (qid < IWM_FIRST_AGG_TX_QUEUE && tx_resp->frame_count > 1)
|
|
return;
|
|
if (qid > IWM_LAST_AGG_TX_QUEUE)
|
|
return;
|
|
if (sizeof(*tx_resp) + sizeof(ssn) +
|
|
tx_resp->frame_count * sizeof(tx_resp->status) > len)
|
|
return;
|
|
|
|
sc->sc_tx_timer[qid] = 0;
|
|
|
|
txd = &ring->data[idx];
|
|
if (txd->m == NULL)
|
|
return;
|
|
|
|
memcpy(&ssn, &tx_resp->status + tx_resp->frame_count, sizeof(ssn));
|
|
ssn = le32toh(ssn) & 0xfff;
|
|
if (qid >= IWM_FIRST_AGG_TX_QUEUE) {
|
|
int status;
|
|
status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
|
|
iwm_ampdu_tx_done(sc, cmd_hdr, txd->in, ring,
|
|
le32toh(tx_resp->initial_rate), tx_resp->frame_count,
|
|
tx_resp->failure_frame, ssn, status, &tx_resp->status);
|
|
} else {
|
|
/*
|
|
* Even though this is not an agg queue, we must only free
|
|
* frames before the firmware's starting sequence number.
|
|
*/
|
|
iwm_rx_tx_cmd_single(sc, pkt, txd->in, txd->txmcs, txd->txrate);
|
|
iwm_txq_advance(sc, ring, IWM_AGG_SSN_TO_TXQ_IDX(ssn));
|
|
iwm_clear_oactive(sc, ring);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_clear_oactive(struct iwm_softc *sc, struct iwm_tx_ring *ring)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
|
|
if (ring->queued < IWM_TX_RING_LOMARK) {
|
|
sc->qfullmsk &= ~(1 << ring->qid);
|
|
if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
/*
|
|
* Well, we're in interrupt context, but then again
|
|
* I guess net80211 does all sorts of stunts in
|
|
* interrupt context, so maybe this is no biggie.
|
|
*/
|
|
(*ifp->if_start)(ifp);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_ampdu_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni,
|
|
struct iwm_tx_ring *txq, int tid, uint16_t seq, uint16_t ssn)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ni;
|
|
int idx, end_idx;
|
|
|
|
/*
|
|
* Update Tx rate statistics for A-MPDUs before firmware's BA window.
|
|
*/
|
|
idx = IWM_AGG_SSN_TO_TXQ_IDX(seq);
|
|
end_idx = IWM_AGG_SSN_TO_TXQ_IDX(ssn);
|
|
while (idx != end_idx) {
|
|
struct iwm_tx_data *txdata = &txq->data[idx];
|
|
if (txdata->m != NULL && txdata->ampdu_nframes > 1) {
|
|
/*
|
|
* We can assume that this subframe has been ACKed
|
|
* because ACK failures come as single frames and
|
|
* before failing an A-MPDU subframe the firmware
|
|
* sends it as a single frame at least once.
|
|
*/
|
|
if (ni->ni_flags & IEEE80211_NODE_VHT) {
|
|
ieee80211_ra_vht_add_stats(&in->in_rn_vht,
|
|
ic, ni, txdata->ampdu_txmcs,
|
|
txdata->ampdu_txnss, 1, 0);
|
|
} else {
|
|
ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni,
|
|
txdata->ampdu_txmcs, 1, 0);
|
|
}
|
|
/* Report this frame only once. */
|
|
txdata->ampdu_nframes = 0;
|
|
}
|
|
|
|
idx = (idx + 1) % IWM_TX_RING_COUNT;
|
|
}
|
|
|
|
iwm_ra_choose(sc, ni);
|
|
}
|
|
|
|
void
|
|
iwm_rx_compressed_ba(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
|
|
{
|
|
struct iwm_ba_notif *ban = (void *)pkt->data;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
struct iwm_node *in = (void *)ni;
|
|
struct ieee80211_tx_ba *ba;
|
|
struct iwm_tx_ring *ring;
|
|
uint16_t seq, ssn;
|
|
int qid;
|
|
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
return;
|
|
|
|
if (iwm_rx_packet_payload_len(pkt) < sizeof(*ban))
|
|
return;
|
|
|
|
if (ban->sta_id != IWM_STATION_ID ||
|
|
!IEEE80211_ADDR_EQ(in->in_macaddr, ban->sta_addr))
|
|
return;
|
|
|
|
qid = le16toh(ban->scd_flow);
|
|
if (qid < IWM_FIRST_AGG_TX_QUEUE || qid > IWM_LAST_AGG_TX_QUEUE)
|
|
return;
|
|
|
|
/* Protect against a firmware bug where the queue/TID are off. */
|
|
if (qid != IWM_FIRST_AGG_TX_QUEUE + ban->tid)
|
|
return;
|
|
|
|
sc->sc_tx_timer[qid] = 0;
|
|
|
|
ba = &ni->ni_tx_ba[ban->tid];
|
|
if (ba->ba_state != IEEE80211_BA_AGREED)
|
|
return;
|
|
|
|
ring = &sc->txq[qid];
|
|
|
|
/*
|
|
* The first bit in ban->bitmap corresponds to the sequence number
|
|
* stored in the sequence control field ban->seq_ctl.
|
|
* Multiple BA notifications in a row may be using this number, with
|
|
* additional bits being set in cba->bitmap. It is unclear how the
|
|
* firmware decides to shift this window forward.
|
|
* We rely on ba->ba_winstart instead.
|
|
*/
|
|
seq = le16toh(ban->seq_ctl) >> IEEE80211_SEQ_SEQ_SHIFT;
|
|
|
|
/*
|
|
* The firmware's new BA window starting sequence number
|
|
* corresponds to the first hole in ban->scd_ssn, implying
|
|
* that all frames between 'seq' and 'ssn' (non-inclusive)
|
|
* have been acked.
|
|
*/
|
|
ssn = le16toh(ban->scd_ssn);
|
|
|
|
if (SEQ_LT(ssn, ba->ba_winstart))
|
|
return;
|
|
|
|
/* Skip rate control if our Tx rate is fixed. */
|
|
if (ic->ic_fixed_mcs == -1)
|
|
iwm_ampdu_rate_control(sc, ni, ring, ban->tid,
|
|
ba->ba_winstart, ssn);
|
|
|
|
/*
|
|
* SSN corresponds to the first (perhaps not yet transmitted) frame
|
|
* in firmware's BA window. Firmware is not going to retransmit any
|
|
* frames before its BA window so mark them all as done.
|
|
*/
|
|
ieee80211_output_ba_move_window(ic, ni, ban->tid, ssn);
|
|
iwm_txq_advance(sc, ring, IWM_AGG_SSN_TO_TXQ_IDX(ssn));
|
|
iwm_clear_oactive(sc, ring);
|
|
}
|
|
|
|
void
|
|
iwm_rx_bmiss(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_rx_data *data)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_missed_beacons_notif *mbn = (void *)pkt->data;
|
|
uint32_t missed;
|
|
|
|
if ((ic->ic_opmode != IEEE80211_M_STA) ||
|
|
(ic->ic_state != IEEE80211_S_RUN))
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
|
|
sizeof(*mbn), BUS_DMASYNC_POSTREAD);
|
|
|
|
missed = le32toh(mbn->consec_missed_beacons_since_last_rx);
|
|
if (missed > ic->ic_bmissthres && ic->ic_mgt_timer == 0) {
|
|
if (ic->ic_if.if_flags & IFF_DEBUG)
|
|
printf("%s: receiving no beacons from %s; checking if "
|
|
"this AP is still responding to probe requests\n",
|
|
DEVNAME(sc), ether_sprintf(ic->ic_bss->ni_macaddr));
|
|
/*
|
|
* Rather than go directly to scan state, try to send a
|
|
* directed probe request first. If that fails then the
|
|
* state machine will drop us into scanning after timing
|
|
* out waiting for a probe response.
|
|
*/
|
|
IEEE80211_SEND_MGMT(ic, ic->ic_bss,
|
|
IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0);
|
|
}
|
|
|
|
}
|
|
|
|
int
|
|
iwm_binding_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action)
|
|
{
|
|
struct iwm_binding_cmd cmd;
|
|
struct iwm_phy_ctxt *phyctxt = in->in_phyctxt;
|
|
uint32_t mac_id = IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color);
|
|
int i, err, active = (sc->sc_flags & IWM_FLAG_BINDING_ACTIVE);
|
|
uint32_t status;
|
|
size_t len;
|
|
|
|
if (action == IWM_FW_CTXT_ACTION_ADD && active)
|
|
panic("binding already added");
|
|
if (action == IWM_FW_CTXT_ACTION_REMOVE && !active)
|
|
panic("binding already removed");
|
|
|
|
if (phyctxt == NULL) /* XXX race with iwm_stop() */
|
|
return EINVAL;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.id_and_color
|
|
= htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
|
|
cmd.action = htole32(action);
|
|
cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
|
|
|
|
cmd.macs[0] = htole32(mac_id);
|
|
for (i = 1; i < IWM_MAX_MACS_IN_BINDING; i++)
|
|
cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID);
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(phyctxt->channel) ||
|
|
!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_CDB_SUPPORT))
|
|
cmd.lmac_id = htole32(IWM_LMAC_24G_INDEX);
|
|
else
|
|
cmd.lmac_id = htole32(IWM_LMAC_5G_INDEX);
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_BINDING_CDB_SUPPORT))
|
|
len = sizeof(cmd);
|
|
else
|
|
len = sizeof(struct iwm_binding_cmd_v1);
|
|
status = 0;
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD, len, &cmd,
|
|
&status);
|
|
if (err == 0 && status != 0)
|
|
err = EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_phy_ctxt_cmd_hdr(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
|
|
struct iwm_phy_context_cmd *cmd, uint32_t action, uint32_t apply_time)
|
|
{
|
|
memset(cmd, 0, sizeof(struct iwm_phy_context_cmd));
|
|
|
|
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,
|
|
ctxt->color));
|
|
cmd->action = htole32(action);
|
|
cmd->apply_time = htole32(apply_time);
|
|
}
|
|
|
|
void
|
|
iwm_phy_ctxt_cmd_data(struct iwm_softc *sc, struct iwm_phy_context_cmd *cmd,
|
|
struct ieee80211_channel *chan, uint8_t chains_static,
|
|
uint8_t chains_dynamic, uint8_t sco, uint8_t vht_chan_width)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t active_cnt, idle_cnt;
|
|
|
|
cmd->ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ?
|
|
IWM_PHY_BAND_24 : IWM_PHY_BAND_5;
|
|
cmd->ci.channel = ieee80211_chan2ieee(ic, chan);
|
|
if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_80) {
|
|
cmd->ci.ctrl_pos = iwm_get_vht_ctrl_pos(ic, chan);
|
|
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE80;
|
|
} else if (chan->ic_flags & IEEE80211_CHAN_40MHZ) {
|
|
if (sco == IEEE80211_HTOP0_SCO_SCA) {
|
|
/* secondary chan above -> control chan below */
|
|
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
|
|
} else if (sco == IEEE80211_HTOP0_SCO_SCB) {
|
|
/* secondary chan below -> control chan above */
|
|
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE;
|
|
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
|
|
} else {
|
|
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
|
|
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
}
|
|
} else {
|
|
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
|
|
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
}
|
|
|
|
/* Set rx the chains */
|
|
idle_cnt = chains_static;
|
|
active_cnt = chains_dynamic;
|
|
|
|
cmd->rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<
|
|
IWM_PHY_RX_CHAIN_VALID_POS);
|
|
cmd->rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS);
|
|
cmd->rxchain_info |= htole32(active_cnt <<
|
|
IWM_PHY_RX_CHAIN_MIMO_CNT_POS);
|
|
|
|
cmd->txchain_info = htole32(iwm_fw_valid_tx_ant(sc));
|
|
}
|
|
|
|
uint8_t
|
|
iwm_get_vht_ctrl_pos(struct ieee80211com *ic, struct ieee80211_channel *chan)
|
|
{
|
|
int center_idx = ic->ic_bss->ni_vht_chan_center_freq_idx0;
|
|
int primary_idx = ic->ic_bss->ni_primary_chan;
|
|
/*
|
|
* The FW is expected to check the control channel position only
|
|
* when in HT/VHT and the channel width is not 20MHz. Return
|
|
* this value as the default one:
|
|
*/
|
|
uint8_t pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
|
|
switch (primary_idx - center_idx) {
|
|
case -6:
|
|
pos = IWM_PHY_VHT_CTRL_POS_2_BELOW;
|
|
break;
|
|
case -2:
|
|
pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
break;
|
|
case 2:
|
|
pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE;
|
|
break;
|
|
case 6:
|
|
pos = IWM_PHY_VHT_CTRL_POS_2_ABOVE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return pos;
|
|
}
|
|
|
|
int
|
|
iwm_phy_ctxt_cmd_uhb(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
|
|
uint8_t chains_static, uint8_t chains_dynamic, uint32_t action,
|
|
uint32_t apply_time, uint8_t sco, uint8_t vht_chan_width)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_phy_context_cmd_uhb cmd;
|
|
uint8_t active_cnt, idle_cnt;
|
|
struct ieee80211_channel *chan = ctxt->channel;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,
|
|
ctxt->color));
|
|
cmd.action = htole32(action);
|
|
cmd.apply_time = htole32(apply_time);
|
|
|
|
cmd.ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ?
|
|
IWM_PHY_BAND_24 : IWM_PHY_BAND_5;
|
|
cmd.ci.channel = htole32(ieee80211_chan2ieee(ic, chan));
|
|
if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_80) {
|
|
cmd.ci.ctrl_pos = iwm_get_vht_ctrl_pos(ic, chan);
|
|
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE80;
|
|
} else if (chan->ic_flags & IEEE80211_CHAN_40MHZ) {
|
|
if (sco == IEEE80211_HTOP0_SCO_SCA) {
|
|
/* secondary chan above -> control chan below */
|
|
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
|
|
} else if (sco == IEEE80211_HTOP0_SCO_SCB) {
|
|
/* secondary chan below -> control chan above */
|
|
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE;
|
|
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE40;
|
|
} else {
|
|
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
|
|
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
}
|
|
} else {
|
|
cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
|
|
cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
}
|
|
|
|
idle_cnt = chains_static;
|
|
active_cnt = chains_dynamic;
|
|
cmd.rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<
|
|
IWM_PHY_RX_CHAIN_VALID_POS);
|
|
cmd.rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS);
|
|
cmd.rxchain_info |= htole32(active_cnt <<
|
|
IWM_PHY_RX_CHAIN_MIMO_CNT_POS);
|
|
cmd.txchain_info = htole32(iwm_fw_valid_tx_ant(sc));
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_phy_ctxt_cmd(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
|
|
uint8_t chains_static, uint8_t chains_dynamic, uint32_t action,
|
|
uint32_t apply_time, uint8_t sco, uint8_t vht_chan_width)
|
|
{
|
|
struct iwm_phy_context_cmd cmd;
|
|
|
|
/*
|
|
* Intel increased the size of the fw_channel_info struct and neglected
|
|
* to bump the phy_context_cmd struct, which contains an fw_channel_info
|
|
* member in the middle.
|
|
* To keep things simple we use a separate function to handle the larger
|
|
* variant of the phy context command.
|
|
*/
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_ULTRA_HB_CHANNELS))
|
|
return iwm_phy_ctxt_cmd_uhb(sc, ctxt, chains_static,
|
|
chains_dynamic, action, apply_time, sco, vht_chan_width);
|
|
|
|
iwm_phy_ctxt_cmd_hdr(sc, ctxt, &cmd, action, apply_time);
|
|
|
|
iwm_phy_ctxt_cmd_data(sc, &cmd, ctxt->channel,
|
|
chains_static, chains_dynamic, sco, vht_chan_width);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, 0,
|
|
sizeof(struct iwm_phy_context_cmd), &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_send_cmd(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
|
|
{
|
|
struct iwm_tx_ring *ring = &sc->txq[sc->cmdqid];
|
|
struct iwm_tfd *desc;
|
|
struct iwm_tx_data *txdata;
|
|
struct iwm_device_cmd *cmd;
|
|
struct mbuf *m;
|
|
bus_addr_t paddr;
|
|
uint32_t addr_lo;
|
|
int err = 0, i, paylen, off, s;
|
|
int idx, code, async, group_id;
|
|
size_t hdrlen, datasz;
|
|
uint8_t *data;
|
|
int generation = sc->sc_generation;
|
|
|
|
code = hcmd->id;
|
|
async = hcmd->flags & IWM_CMD_ASYNC;
|
|
idx = ring->cur;
|
|
|
|
for (i = 0, paylen = 0; i < nitems(hcmd->len); i++) {
|
|
paylen += hcmd->len[i];
|
|
}
|
|
|
|
/* If this command waits for a response, allocate response buffer. */
|
|
hcmd->resp_pkt = NULL;
|
|
if (hcmd->flags & IWM_CMD_WANT_RESP) {
|
|
uint8_t *resp_buf;
|
|
KASSERT(!async);
|
|
KASSERT(hcmd->resp_pkt_len >= sizeof(struct iwm_rx_packet));
|
|
KASSERT(hcmd->resp_pkt_len <= IWM_CMD_RESP_MAX);
|
|
if (sc->sc_cmd_resp_pkt[idx] != NULL)
|
|
return ENOSPC;
|
|
resp_buf = malloc(hcmd->resp_pkt_len, M_DEVBUF,
|
|
M_NOWAIT | M_ZERO);
|
|
if (resp_buf == NULL)
|
|
return ENOMEM;
|
|
sc->sc_cmd_resp_pkt[idx] = resp_buf;
|
|
sc->sc_cmd_resp_len[idx] = hcmd->resp_pkt_len;
|
|
} else {
|
|
sc->sc_cmd_resp_pkt[idx] = NULL;
|
|
}
|
|
|
|
s = splnet();
|
|
|
|
desc = &ring->desc[idx];
|
|
txdata = &ring->data[idx];
|
|
|
|
group_id = iwm_cmd_groupid(code);
|
|
if (group_id != 0) {
|
|
hdrlen = sizeof(cmd->hdr_wide);
|
|
datasz = sizeof(cmd->data_wide);
|
|
} else {
|
|
hdrlen = sizeof(cmd->hdr);
|
|
datasz = sizeof(cmd->data);
|
|
}
|
|
|
|
if (paylen > datasz) {
|
|
/* Command is too large to fit in pre-allocated space. */
|
|
size_t totlen = hdrlen + paylen;
|
|
if (paylen > IWM_MAX_CMD_PAYLOAD_SIZE) {
|
|
printf("%s: firmware command too long (%zd bytes)\n",
|
|
DEVNAME(sc), totlen);
|
|
err = EINVAL;
|
|
goto out;
|
|
}
|
|
m = MCLGETL(NULL, M_DONTWAIT, totlen);
|
|
if (m == NULL) {
|
|
printf("%s: could not get fw cmd mbuf (%zd bytes)\n",
|
|
DEVNAME(sc), totlen);
|
|
err = ENOMEM;
|
|
goto out;
|
|
}
|
|
cmd = mtod(m, struct iwm_device_cmd *);
|
|
err = bus_dmamap_load(sc->sc_dmat, txdata->map, cmd,
|
|
totlen, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (err) {
|
|
printf("%s: could not load fw cmd mbuf (%zd bytes)\n",
|
|
DEVNAME(sc), totlen);
|
|
m_freem(m);
|
|
goto out;
|
|
}
|
|
txdata->m = m; /* mbuf will be freed in iwm_cmd_done() */
|
|
paddr = txdata->map->dm_segs[0].ds_addr;
|
|
} else {
|
|
cmd = &ring->cmd[idx];
|
|
paddr = txdata->cmd_paddr;
|
|
}
|
|
|
|
if (group_id != 0) {
|
|
cmd->hdr_wide.opcode = iwm_cmd_opcode(code);
|
|
cmd->hdr_wide.group_id = group_id;
|
|
cmd->hdr_wide.qid = ring->qid;
|
|
cmd->hdr_wide.idx = idx;
|
|
cmd->hdr_wide.length = htole16(paylen);
|
|
cmd->hdr_wide.version = iwm_cmd_version(code);
|
|
data = cmd->data_wide;
|
|
} else {
|
|
cmd->hdr.code = code;
|
|
cmd->hdr.flags = 0;
|
|
cmd->hdr.qid = ring->qid;
|
|
cmd->hdr.idx = idx;
|
|
data = cmd->data;
|
|
}
|
|
|
|
for (i = 0, off = 0; i < nitems(hcmd->data); i++) {
|
|
if (hcmd->len[i] == 0)
|
|
continue;
|
|
memcpy(data + off, hcmd->data[i], hcmd->len[i]);
|
|
off += hcmd->len[i];
|
|
}
|
|
KASSERT(off == paylen);
|
|
|
|
/* lo field is not aligned */
|
|
addr_lo = htole32((uint32_t)paddr);
|
|
memcpy(&desc->tbs[0].lo, &addr_lo, sizeof(uint32_t));
|
|
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(paddr)
|
|
| ((hdrlen + paylen) << 4));
|
|
desc->num_tbs = 1;
|
|
|
|
if (paylen > datasz) {
|
|
bus_dmamap_sync(sc->sc_dmat, txdata->map, 0,
|
|
hdrlen + paylen, BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
|
|
(char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
|
|
hdrlen + paylen, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
(char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
|
|
sizeof (*desc), BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Wake up the NIC to make sure that the firmware will see the host
|
|
* command - we will let the NIC sleep once all the host commands
|
|
* returned. This needs to be done only on 7000 family NICs.
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
if (ring->queued == 0 && !iwm_nic_lock(sc)) {
|
|
err = EBUSY;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
iwm_update_sched(sc, ring->qid, ring->cur, 0, 0);
|
|
|
|
/* Kick command ring. */
|
|
ring->queued++;
|
|
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
if (!async) {
|
|
err = tsleep_nsec(desc, PCATCH, "iwmcmd", SEC_TO_NSEC(1));
|
|
if (err == 0) {
|
|
/* if hardware is no longer up, return error */
|
|
if (generation != sc->sc_generation) {
|
|
err = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Response buffer will be freed in iwm_free_resp(). */
|
|
hcmd->resp_pkt = (void *)sc->sc_cmd_resp_pkt[idx];
|
|
sc->sc_cmd_resp_pkt[idx] = NULL;
|
|
} else if (generation == sc->sc_generation) {
|
|
free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF,
|
|
sc->sc_cmd_resp_len[idx]);
|
|
sc->sc_cmd_resp_pkt[idx] = NULL;
|
|
}
|
|
}
|
|
out:
|
|
splx(s);
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_send_cmd_pdu(struct iwm_softc *sc, uint32_t id, uint32_t flags,
|
|
uint16_t len, const void *data)
|
|
{
|
|
struct iwm_host_cmd cmd = {
|
|
.id = id,
|
|
.len = { len, },
|
|
.data = { data, },
|
|
.flags = flags,
|
|
};
|
|
|
|
return iwm_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_send_cmd_status(struct iwm_softc *sc, struct iwm_host_cmd *cmd,
|
|
uint32_t *status)
|
|
{
|
|
struct iwm_rx_packet *pkt;
|
|
struct iwm_cmd_response *resp;
|
|
int err, resp_len;
|
|
|
|
KASSERT((cmd->flags & IWM_CMD_WANT_RESP) == 0);
|
|
cmd->flags |= IWM_CMD_WANT_RESP;
|
|
cmd->resp_pkt_len = sizeof(*pkt) + sizeof(*resp);
|
|
|
|
err = iwm_send_cmd(sc, cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
pkt = cmd->resp_pkt;
|
|
if (pkt == NULL || (pkt->hdr.flags & IWM_CMD_FAILED_MSK))
|
|
return EIO;
|
|
|
|
resp_len = iwm_rx_packet_payload_len(pkt);
|
|
if (resp_len != sizeof(*resp)) {
|
|
iwm_free_resp(sc, cmd);
|
|
return EIO;
|
|
}
|
|
|
|
resp = (void *)pkt->data;
|
|
*status = le32toh(resp->status);
|
|
iwm_free_resp(sc, cmd);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_send_cmd_pdu_status(struct iwm_softc *sc, uint32_t id, uint16_t len,
|
|
const void *data, uint32_t *status)
|
|
{
|
|
struct iwm_host_cmd cmd = {
|
|
.id = id,
|
|
.len = { len, },
|
|
.data = { data, },
|
|
};
|
|
|
|
return iwm_send_cmd_status(sc, &cmd, status);
|
|
}
|
|
|
|
void
|
|
iwm_free_resp(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
|
|
{
|
|
KASSERT((hcmd->flags & (IWM_CMD_WANT_RESP)) == IWM_CMD_WANT_RESP);
|
|
free(hcmd->resp_pkt, M_DEVBUF, hcmd->resp_pkt_len);
|
|
hcmd->resp_pkt = NULL;
|
|
}
|
|
|
|
void
|
|
iwm_cmd_done(struct iwm_softc *sc, int qid, int idx, int code)
|
|
{
|
|
struct iwm_tx_ring *ring = &sc->txq[sc->cmdqid];
|
|
struct iwm_tx_data *data;
|
|
|
|
if (qid != sc->cmdqid) {
|
|
return; /* Not a command ack. */
|
|
}
|
|
|
|
data = &ring->data[idx];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
wakeup(&ring->desc[idx]);
|
|
|
|
if (ring->queued == 0) {
|
|
DPRINTF(("%s: unexpected firmware response to command 0x%x\n",
|
|
DEVNAME(sc), code));
|
|
} else if (--ring->queued == 0) {
|
|
/*
|
|
* 7000 family NICs are locked while commands are in progress.
|
|
* All commands are now done so we may unlock the NIC again.
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
|
|
uint16_t len)
|
|
{
|
|
struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
|
|
uint16_t val;
|
|
|
|
scd_bc_tbl = sc->sched_dma.vaddr;
|
|
|
|
len += IWM_TX_CRC_SIZE + IWM_TX_DELIMITER_SIZE;
|
|
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
|
|
len = roundup(len, 4) / 4;
|
|
|
|
val = htole16(sta_id << 12 | len);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
|
|
0, sc->sched_dma.size, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Update TX scheduler. */
|
|
scd_bc_tbl[qid].tfd_offset[idx] = val;
|
|
if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP)
|
|
scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = val;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
|
|
0, sc->sched_dma.size, BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
void
|
|
iwm_reset_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id)
|
|
{
|
|
struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
|
|
uint16_t val;
|
|
|
|
scd_bc_tbl = sc->sched_dma.vaddr;
|
|
|
|
val = htole16(1 | (sta_id << 12));
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
|
|
0, sc->sched_dma.size, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Update TX scheduler. */
|
|
scd_bc_tbl[qid].tfd_offset[idx] = val;
|
|
if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP)
|
|
scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = val;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
|
|
0, sc->sched_dma.size, BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
/*
|
|
* Fill in various bit for management frames, and leave them
|
|
* unfilled for data frames (firmware takes care of that).
|
|
* Return the selected legacy TX rate, or zero if HT/VHT is used.
|
|
*/
|
|
uint8_t
|
|
iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
const struct iwm_rate *rinfo;
|
|
int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
int min_ridx = iwm_rval2ridx(ieee80211_min_basic_rate(ic));
|
|
int ridx, rate_flags;
|
|
uint8_t rate = 0;
|
|
|
|
tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
|
|
tx->data_retry_limit = IWM_LOW_RETRY_LIMIT;
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
type != IEEE80211_FC0_TYPE_DATA) {
|
|
/* for non-data, use the lowest supported rate */
|
|
ridx = min_ridx;
|
|
tx->data_retry_limit = IWM_MGMT_DFAULT_RETRY_LIMIT;
|
|
} else if (ic->ic_fixed_mcs != -1) {
|
|
if (ni->ni_flags & IEEE80211_NODE_VHT)
|
|
ridx = IWM_FIRST_OFDM_RATE;
|
|
else
|
|
ridx = sc->sc_fixed_ridx;
|
|
} else if (ic->ic_fixed_rate != -1) {
|
|
ridx = sc->sc_fixed_ridx;
|
|
} else {
|
|
int i;
|
|
/* Use firmware rateset retry table. */
|
|
tx->initial_rate_index = 0;
|
|
tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
|
|
if (ni->ni_flags & IEEE80211_NODE_HT) /* VHT implies HT */
|
|
return 0;
|
|
ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
|
|
IWM_RIDX_OFDM : IWM_RIDX_CCK;
|
|
for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
|
|
if (iwm_rates[i].rate == (ni->ni_txrate &
|
|
IEEE80211_RATE_VAL)) {
|
|
ridx = i;
|
|
break;
|
|
}
|
|
}
|
|
return iwm_rates[ridx].rate & 0xff;
|
|
}
|
|
|
|
rinfo = &iwm_rates[ridx];
|
|
if ((ni->ni_flags & IEEE80211_NODE_VHT) == 0 &&
|
|
iwm_is_mimo_ht_plcp(rinfo->ht_plcp))
|
|
rate_flags = IWM_RATE_MCS_ANT_AB_MSK;
|
|
else
|
|
rate_flags = iwm_valid_siso_ant_rate_mask(sc);
|
|
if (IWM_RIDX_IS_CCK(ridx))
|
|
rate_flags |= IWM_RATE_MCS_CCK_MSK;
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
type == IEEE80211_FC0_TYPE_DATA &&
|
|
rinfo->ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) {
|
|
uint8_t sco = IEEE80211_HTOP0_SCO_SCN;
|
|
uint8_t vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT;
|
|
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
|
|
IEEE80211_CHAN_80MHZ_ALLOWED(ni->ni_chan) &&
|
|
ieee80211_node_supports_vht_chan80(ni))
|
|
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
|
|
else if (IEEE80211_CHAN_40MHZ_ALLOWED(ni->ni_chan) &&
|
|
ieee80211_node_supports_ht_chan40(ni))
|
|
sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
|
|
if (ni->ni_flags & IEEE80211_NODE_VHT)
|
|
rate_flags |= IWM_RATE_MCS_VHT_MSK;
|
|
else
|
|
rate_flags |= IWM_RATE_MCS_HT_MSK;
|
|
if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_80 &&
|
|
in->in_phyctxt != NULL &&
|
|
in->in_phyctxt->vht_chan_width == vht_chan_width) {
|
|
rate_flags |= IWM_RATE_MCS_CHAN_WIDTH_80;
|
|
if (ieee80211_node_supports_vht_sgi80(ni))
|
|
rate_flags |= IWM_RATE_MCS_SGI_MSK;
|
|
} else if ((sco == IEEE80211_HTOP0_SCO_SCA ||
|
|
sco == IEEE80211_HTOP0_SCO_SCB) &&
|
|
in->in_phyctxt != NULL && in->in_phyctxt->sco == sco) {
|
|
rate_flags |= IWM_RATE_MCS_CHAN_WIDTH_40;
|
|
if (ieee80211_node_supports_ht_sgi40(ni))
|
|
rate_flags |= IWM_RATE_MCS_SGI_MSK;
|
|
} else if (ieee80211_node_supports_ht_sgi20(ni))
|
|
rate_flags |= IWM_RATE_MCS_SGI_MSK;
|
|
if (ni->ni_flags & IEEE80211_NODE_VHT) {
|
|
/*
|
|
* ifmedia only provides an MCS index, no NSS.
|
|
* Use a fixed SISO rate.
|
|
*/
|
|
tx->rate_n_flags = htole32(rate_flags |
|
|
(ic->ic_fixed_mcs &
|
|
IWM_RATE_VHT_MCS_RATE_CODE_MSK));
|
|
} else
|
|
tx->rate_n_flags = htole32(rate_flags | rinfo->ht_plcp);
|
|
} else
|
|
tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
|
|
|
|
return rate;
|
|
}
|
|
|
|
#define TB0_SIZE 16
|
|
int
|
|
iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ni;
|
|
struct iwm_tx_ring *ring;
|
|
struct iwm_tx_data *data;
|
|
struct iwm_tfd *desc;
|
|
struct iwm_device_cmd *cmd;
|
|
struct iwm_tx_cmd *tx;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_key *k = NULL;
|
|
uint8_t rate;
|
|
uint8_t *ivp;
|
|
uint32_t flags;
|
|
u_int hdrlen;
|
|
bus_dma_segment_t *seg;
|
|
uint8_t tid, type, subtype;
|
|
int i, totlen, err, pad;
|
|
int qid, hasqos;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (type == IEEE80211_FC0_TYPE_CTL)
|
|
hdrlen = sizeof(struct ieee80211_frame_min);
|
|
else
|
|
hdrlen = ieee80211_get_hdrlen(wh);
|
|
|
|
hasqos = ieee80211_has_qos(wh);
|
|
if (type == IEEE80211_FC0_TYPE_DATA)
|
|
tid = IWM_TID_NON_QOS;
|
|
else
|
|
tid = IWM_MAX_TID_COUNT;
|
|
|
|
/*
|
|
* Map EDCA categories to Tx data queues.
|
|
*
|
|
* We use static data queue assignments even in DQA mode. We do not
|
|
* need to share Tx queues between stations because we only implement
|
|
* client mode; the firmware's station table contains only one entry
|
|
* which represents our access point.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
qid = IWM_DQA_INJECT_MONITOR_QUEUE;
|
|
else
|
|
qid = IWM_AUX_QUEUE;
|
|
} else if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
qid = IWM_DQA_MIN_MGMT_QUEUE + ac;
|
|
else
|
|
qid = ac;
|
|
|
|
/* If possible, put this frame on an aggregation queue. */
|
|
if (hasqos) {
|
|
struct ieee80211_tx_ba *ba;
|
|
uint16_t qos = ieee80211_get_qos(wh);
|
|
int qostid = qos & IEEE80211_QOS_TID;
|
|
int agg_qid = IWM_FIRST_AGG_TX_QUEUE + qostid;
|
|
|
|
ba = &ni->ni_tx_ba[qostid];
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
|
|
type == IEEE80211_FC0_TYPE_DATA &&
|
|
subtype != IEEE80211_FC0_SUBTYPE_NODATA &&
|
|
(sc->tx_ba_queue_mask & (1 << agg_qid)) &&
|
|
ba->ba_state == IEEE80211_BA_AGREED) {
|
|
qid = agg_qid;
|
|
tid = qostid;
|
|
ac = ieee80211_up_to_ac(ic, qostid);
|
|
}
|
|
}
|
|
|
|
ring = &sc->txq[qid];
|
|
desc = &ring->desc[ring->cur];
|
|
memset(desc, 0, sizeof(*desc));
|
|
data = &ring->data[ring->cur];
|
|
|
|
cmd = &ring->cmd[ring->cur];
|
|
cmd->hdr.code = IWM_TX_CMD;
|
|
cmd->hdr.flags = 0;
|
|
cmd->hdr.qid = ring->qid;
|
|
cmd->hdr.idx = ring->cur;
|
|
|
|
tx = (void *)cmd->data;
|
|
memset(tx, 0, sizeof(*tx));
|
|
|
|
rate = iwm_tx_fill_cmd(sc, in, wh, tx);
|
|
|
|
#if NBPFILTER > 0
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
uint16_t chan_flags;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
|
|
chan_flags = ni->ni_chan->ic_flags;
|
|
if (ic->ic_curmode != IEEE80211_MODE_11N &&
|
|
ic->ic_curmode != IEEE80211_MODE_11AC) {
|
|
chan_flags &= ~IEEE80211_CHAN_HT;
|
|
chan_flags &= ~IEEE80211_CHAN_40MHZ;
|
|
}
|
|
if (ic->ic_curmode != IEEE80211_MODE_11AC)
|
|
chan_flags &= ~IEEE80211_CHAN_VHT;
|
|
tap->wt_chan_flags = htole16(chan_flags);
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
|
|
type == IEEE80211_FC0_TYPE_DATA) {
|
|
tap->wt_rate = (0x80 | ni->ni_txmcs);
|
|
} else
|
|
tap->wt_rate = rate;
|
|
if ((ic->ic_flags & IEEE80211_F_WEPON) &&
|
|
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
|
|
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
|
|
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
|
|
m, BPF_DIRECTION_OUT);
|
|
}
|
|
#endif
|
|
totlen = m->m_pkthdr.len;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR &&
|
|
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) {
|
|
k = ieee80211_get_txkey(ic, wh, ni);
|
|
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
|
|
(k->k_cipher != IEEE80211_CIPHER_CCMP)) {
|
|
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
|
|
return ENOBUFS;
|
|
/* 802.11 header may have moved. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
totlen = m->m_pkthdr.len;
|
|
k = NULL; /* skip hardware crypto below */
|
|
} else {
|
|
/* HW appends CCMP MIC */
|
|
totlen += IEEE80211_CCMP_HDRLEN;
|
|
}
|
|
}
|
|
|
|
flags = 0;
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= IWM_TX_CMD_FLG_ACK;
|
|
}
|
|
|
|
if (type == IEEE80211_FC0_TYPE_DATA &&
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
|
|
(totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
|
|
(ic->ic_flags & IEEE80211_F_USEPROT)))
|
|
flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
tx->sta_id = IWM_MONITOR_STA_ID;
|
|
else
|
|
tx->sta_id = IWM_STATION_ID;
|
|
|
|
if (type == IEEE80211_FC0_TYPE_MGT) {
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
|
|
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
|
|
tx->pm_frame_timeout = htole16(3);
|
|
else
|
|
tx->pm_frame_timeout = htole16(2);
|
|
} else {
|
|
if (type == IEEE80211_FC0_TYPE_CTL &&
|
|
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
|
|
struct ieee80211_frame_min *mwh;
|
|
uint8_t *barfrm;
|
|
uint16_t ctl;
|
|
mwh = mtod(m, struct ieee80211_frame_min *);
|
|
barfrm = (uint8_t *)&mwh[1];
|
|
ctl = LE_READ_2(barfrm);
|
|
tid = (ctl & IEEE80211_BA_TID_INFO_MASK) >>
|
|
IEEE80211_BA_TID_INFO_SHIFT;
|
|
flags |= IWM_TX_CMD_FLG_ACK | IWM_TX_CMD_FLG_BAR;
|
|
tx->data_retry_limit = IWM_BAR_DFAULT_RETRY_LIMIT;
|
|
}
|
|
|
|
tx->pm_frame_timeout = htole16(0);
|
|
}
|
|
|
|
if (hdrlen & 3) {
|
|
/* First segment length must be a multiple of 4. */
|
|
flags |= IWM_TX_CMD_FLG_MH_PAD;
|
|
tx->offload_assist |= htole16(IWM_TX_CMD_OFFLD_PAD);
|
|
pad = 4 - (hdrlen & 3);
|
|
} else
|
|
pad = 0;
|
|
|
|
tx->len = htole16(totlen);
|
|
tx->tid_tspec = tid;
|
|
tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
|
|
|
|
/* Set physical address of "scratch area". */
|
|
tx->dram_lsb_ptr = htole32(data->scratch_paddr);
|
|
tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
|
|
|
|
/* Copy 802.11 header in TX command. */
|
|
memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
|
|
|
|
if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
|
|
/* Trim 802.11 header and prepend CCMP IV. */
|
|
m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
|
|
ivp = mtod(m, u_int8_t *);
|
|
k->k_tsc++; /* increment the 48-bit PN */
|
|
ivp[0] = k->k_tsc; /* PN0 */
|
|
ivp[1] = k->k_tsc >> 8; /* PN1 */
|
|
ivp[2] = 0; /* Rsvd */
|
|
ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
|
|
ivp[4] = k->k_tsc >> 16; /* PN2 */
|
|
ivp[5] = k->k_tsc >> 24; /* PN3 */
|
|
ivp[6] = k->k_tsc >> 32; /* PN4 */
|
|
ivp[7] = k->k_tsc >> 40; /* PN5 */
|
|
|
|
tx->sec_ctl = IWM_TX_CMD_SEC_CCM;
|
|
memcpy(tx->key, k->k_key, MIN(sizeof(tx->key), k->k_len));
|
|
/* TX scheduler includes CCMP MIC length. */
|
|
totlen += IEEE80211_CCMP_MICLEN;
|
|
} else {
|
|
/* Trim 802.11 header. */
|
|
m_adj(m, hdrlen);
|
|
tx->sec_ctl = 0;
|
|
}
|
|
|
|
flags |= IWM_TX_CMD_FLG_BT_DIS;
|
|
if (!hasqos)
|
|
flags |= IWM_TX_CMD_FLG_SEQ_CTL;
|
|
|
|
tx->tx_flags |= htole32(flags);
|
|
|
|
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (err && err != EFBIG) {
|
|
printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc), err);
|
|
m_freem(m);
|
|
return err;
|
|
}
|
|
if (err) {
|
|
/* Too many DMA segments, linearize mbuf. */
|
|
if (m_defrag(m, M_DONTWAIT)) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (err) {
|
|
printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc),
|
|
err);
|
|
m_freem(m);
|
|
return err;
|
|
}
|
|
}
|
|
data->m = m;
|
|
data->in = in;
|
|
data->txmcs = ni->ni_txmcs;
|
|
data->txrate = ni->ni_txrate;
|
|
data->ampdu_txmcs = ni->ni_txmcs; /* updated upon Tx interrupt */
|
|
data->ampdu_txnss = ni->ni_vht_ss; /* updated upon Tx interrupt */
|
|
|
|
/* Fill TX descriptor. */
|
|
desc->num_tbs = 2 + data->map->dm_nsegs;
|
|
|
|
desc->tbs[0].lo = htole32(data->cmd_paddr);
|
|
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) |
|
|
(TB0_SIZE << 4));
|
|
desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
|
|
desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) |
|
|
((sizeof(struct iwm_cmd_header) + sizeof(*tx)
|
|
+ hdrlen + pad - TB0_SIZE) << 4));
|
|
|
|
/* Other DMA segments are for data payload. */
|
|
seg = data->map->dm_segs;
|
|
for (i = 0; i < data->map->dm_nsegs; i++, seg++) {
|
|
desc->tbs[i+2].lo = htole32(seg->ds_addr);
|
|
desc->tbs[i+2].hi_n_len = \
|
|
htole16(iwm_get_dma_hi_addr(seg->ds_addr)
|
|
| ((seg->ds_len) << 4));
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
|
|
(char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
|
|
sizeof (*cmd), BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
(char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
|
|
sizeof (*desc), BUS_DMASYNC_PREWRITE);
|
|
|
|
iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, totlen);
|
|
|
|
/* Kick TX ring. */
|
|
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
/* Mark TX ring as full if we reach a certain threshold. */
|
|
if (++ring->queued > IWM_TX_RING_HIMARK) {
|
|
sc->qfullmsk |= 1 << ring->qid;
|
|
}
|
|
|
|
if (ic->ic_if.if_flags & IFF_UP)
|
|
sc->sc_tx_timer[ring->qid] = 15;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_flush_tx_path(struct iwm_softc *sc, int tfd_queue_msk)
|
|
{
|
|
struct iwm_tx_path_flush_cmd flush_cmd = {
|
|
.sta_id = htole32(IWM_STATION_ID),
|
|
.tid_mask = htole16(0xffff),
|
|
};
|
|
int err;
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, 0,
|
|
sizeof(flush_cmd), &flush_cmd);
|
|
if (err)
|
|
printf("%s: Flushing tx queue failed: %d\n", DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
#define IWM_FLUSH_WAIT_MS 2000
|
|
|
|
int
|
|
iwm_wait_tx_queues_empty(struct iwm_softc *sc)
|
|
{
|
|
int i, err;
|
|
|
|
for (i = 0; i < IWM_MAX_QUEUES; i++) {
|
|
struct iwm_tx_ring *ring = &sc->txq[i];
|
|
|
|
if (i == sc->cmdqid)
|
|
continue;
|
|
|
|
while (ring->queued > 0) {
|
|
err = tsleep_nsec(ring, 0, "iwmflush",
|
|
MSEC_TO_NSEC(IWM_FLUSH_WAIT_MS));
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_led_enable(struct iwm_softc *sc)
|
|
{
|
|
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_ON);
|
|
}
|
|
|
|
void
|
|
iwm_led_disable(struct iwm_softc *sc)
|
|
{
|
|
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_OFF);
|
|
}
|
|
|
|
int
|
|
iwm_led_is_enabled(struct iwm_softc *sc)
|
|
{
|
|
return (IWM_READ(sc, IWM_CSR_LED_REG) == IWM_CSR_LED_REG_TURN_ON);
|
|
}
|
|
|
|
#define IWM_LED_BLINK_TIMEOUT_MSEC 200
|
|
|
|
void
|
|
iwm_led_blink_timeout(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
|
|
if (iwm_led_is_enabled(sc))
|
|
iwm_led_disable(sc);
|
|
else
|
|
iwm_led_enable(sc);
|
|
|
|
timeout_add_msec(&sc->sc_led_blink_to, IWM_LED_BLINK_TIMEOUT_MSEC);
|
|
}
|
|
|
|
void
|
|
iwm_led_blink_start(struct iwm_softc *sc)
|
|
{
|
|
timeout_add_msec(&sc->sc_led_blink_to, IWM_LED_BLINK_TIMEOUT_MSEC);
|
|
iwm_led_enable(sc);
|
|
}
|
|
|
|
void
|
|
iwm_led_blink_stop(struct iwm_softc *sc)
|
|
{
|
|
timeout_del(&sc->sc_led_blink_to);
|
|
iwm_led_disable(sc);
|
|
}
|
|
|
|
#define IWM_POWER_KEEP_ALIVE_PERIOD_SEC 25
|
|
|
|
int
|
|
iwm_beacon_filter_send_cmd(struct iwm_softc *sc,
|
|
struct iwm_beacon_filter_cmd *cmd)
|
|
{
|
|
return iwm_send_cmd_pdu(sc, IWM_REPLY_BEACON_FILTERING_CMD,
|
|
0, sizeof(struct iwm_beacon_filter_cmd), cmd);
|
|
}
|
|
|
|
void
|
|
iwm_beacon_filter_set_cqm_params(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_beacon_filter_cmd *cmd)
|
|
{
|
|
cmd->ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled);
|
|
}
|
|
|
|
int
|
|
iwm_update_beacon_abort(struct iwm_softc *sc, struct iwm_node *in, int enable)
|
|
{
|
|
struct iwm_beacon_filter_cmd cmd = {
|
|
IWM_BF_CMD_CONFIG_DEFAULTS,
|
|
.bf_enable_beacon_filter = htole32(1),
|
|
.ba_enable_beacon_abort = htole32(enable),
|
|
};
|
|
|
|
if (!sc->sc_bf.bf_enabled)
|
|
return 0;
|
|
|
|
sc->sc_bf.ba_enabled = enable;
|
|
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
|
|
return iwm_beacon_filter_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
void
|
|
iwm_power_build_cmd(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_mac_power_cmd *cmd)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
int dtim_period, dtim_msec, keep_alive;
|
|
|
|
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
|
|
in->in_color));
|
|
if (ni->ni_dtimperiod)
|
|
dtim_period = ni->ni_dtimperiod;
|
|
else
|
|
dtim_period = 1;
|
|
|
|
/*
|
|
* Regardless of power management state the driver must set
|
|
* keep alive period. FW will use it for sending keep alive NDPs
|
|
* immediately after association. Check that keep alive period
|
|
* is at least 3 * DTIM.
|
|
*/
|
|
dtim_msec = dtim_period * ni->ni_intval;
|
|
keep_alive = MAX(3 * dtim_msec, 1000 * IWM_POWER_KEEP_ALIVE_PERIOD_SEC);
|
|
keep_alive = roundup(keep_alive, 1000) / 1000;
|
|
cmd->keep_alive_seconds = htole16(keep_alive);
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
cmd->flags = htole16(IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK);
|
|
}
|
|
|
|
int
|
|
iwm_power_mac_update_mode(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
int err;
|
|
int ba_enable;
|
|
struct iwm_mac_power_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
iwm_power_build_cmd(sc, in, &cmd);
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_MAC_PM_POWER_TABLE, 0,
|
|
sizeof(cmd), &cmd);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
ba_enable = !!(cmd.flags &
|
|
htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK));
|
|
return iwm_update_beacon_abort(sc, in, ba_enable);
|
|
}
|
|
|
|
int
|
|
iwm_power_update_device(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_device_power_cmd cmd = { };
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
cmd.flags = htole16(IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK);
|
|
|
|
return iwm_send_cmd_pdu(sc,
|
|
IWM_POWER_TABLE_CMD, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_enable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
struct iwm_beacon_filter_cmd cmd = {
|
|
IWM_BF_CMD_CONFIG_DEFAULTS,
|
|
.bf_enable_beacon_filter = htole32(1),
|
|
};
|
|
int err;
|
|
|
|
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
|
|
err = iwm_beacon_filter_send_cmd(sc, &cmd);
|
|
|
|
if (err == 0)
|
|
sc->sc_bf.bf_enabled = 1;
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_disable_beacon_filter(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_beacon_filter_cmd cmd;
|
|
int err;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
err = iwm_beacon_filter_send_cmd(sc, &cmd);
|
|
if (err == 0)
|
|
sc->sc_bf.bf_enabled = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_add_sta_cmd(struct iwm_softc *sc, struct iwm_node *in, int update)
|
|
{
|
|
struct iwm_add_sta_cmd add_sta_cmd;
|
|
int err;
|
|
uint32_t status, aggsize;
|
|
const uint32_t max_aggsize = (IWM_STA_FLG_MAX_AGG_SIZE_64K >>
|
|
IWM_STA_FLG_MAX_AGG_SIZE_SHIFT);
|
|
size_t cmdsize;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (!update && (sc->sc_flags & IWM_FLAG_STA_ACTIVE))
|
|
panic("STA already added");
|
|
|
|
memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
add_sta_cmd.sta_id = IWM_MONITOR_STA_ID;
|
|
else
|
|
add_sta_cmd.sta_id = IWM_STATION_ID;
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)) {
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
add_sta_cmd.station_type = IWM_STA_GENERAL_PURPOSE;
|
|
else
|
|
add_sta_cmd.station_type = IWM_STA_LINK;
|
|
}
|
|
add_sta_cmd.mac_id_n_color
|
|
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
int qid;
|
|
IEEE80211_ADDR_COPY(&add_sta_cmd.addr, etheranyaddr);
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
qid = IWM_DQA_INJECT_MONITOR_QUEUE;
|
|
else
|
|
qid = IWM_AUX_QUEUE;
|
|
in->tfd_queue_msk |= (1 << qid);
|
|
} else {
|
|
int ac;
|
|
for (ac = 0; ac < EDCA_NUM_AC; ac++) {
|
|
int qid = ac;
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
qid += IWM_DQA_MIN_MGMT_QUEUE;
|
|
in->tfd_queue_msk |= (1 << qid);
|
|
}
|
|
}
|
|
if (!update) {
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
IEEE80211_ADDR_COPY(&add_sta_cmd.addr,
|
|
etherbroadcastaddr);
|
|
else
|
|
IEEE80211_ADDR_COPY(&add_sta_cmd.addr,
|
|
in->in_macaddr);
|
|
}
|
|
add_sta_cmd.add_modify = update ? 1 : 0;
|
|
add_sta_cmd.station_flags_msk
|
|
|= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
|
|
if (update) {
|
|
add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_QUEUES |
|
|
IWM_STA_MODIFY_TID_DISABLE_TX);
|
|
}
|
|
add_sta_cmd.tid_disable_tx = htole16(in->tid_disable_ampdu);
|
|
add_sta_cmd.tfd_queue_msk = htole32(in->tfd_queue_msk);
|
|
|
|
if (in->in_ni.ni_flags & IEEE80211_NODE_HT) {
|
|
add_sta_cmd.station_flags_msk
|
|
|= htole32(IWM_STA_FLG_MAX_AGG_SIZE_MSK |
|
|
IWM_STA_FLG_AGG_MPDU_DENS_MSK);
|
|
|
|
if (iwm_mimo_enabled(sc)) {
|
|
if (in->in_ni.ni_flags & IEEE80211_NODE_VHT) {
|
|
uint16_t rx_mcs = (in->in_ni.ni_vht_rxmcs &
|
|
IEEE80211_VHT_MCS_FOR_SS_MASK(2)) >>
|
|
IEEE80211_VHT_MCS_FOR_SS_SHIFT(2);
|
|
if (rx_mcs != IEEE80211_VHT_MCS_SS_NOT_SUPP) {
|
|
add_sta_cmd.station_flags |=
|
|
htole32(IWM_STA_FLG_MIMO_EN_MIMO2);
|
|
}
|
|
} else {
|
|
if (in->in_ni.ni_rxmcs[1] != 0) {
|
|
add_sta_cmd.station_flags |=
|
|
htole32(IWM_STA_FLG_MIMO_EN_MIMO2);
|
|
}
|
|
if (in->in_ni.ni_rxmcs[2] != 0) {
|
|
add_sta_cmd.station_flags |=
|
|
htole32(IWM_STA_FLG_MIMO_EN_MIMO3);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IEEE80211_CHAN_40MHZ_ALLOWED(in->in_ni.ni_chan) &&
|
|
ieee80211_node_supports_ht_chan40(&in->in_ni)) {
|
|
add_sta_cmd.station_flags |= htole32(
|
|
IWM_STA_FLG_FAT_EN_40MHZ);
|
|
}
|
|
|
|
if (in->in_ni.ni_flags & IEEE80211_NODE_VHT) {
|
|
if (IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan) &&
|
|
ieee80211_node_supports_vht_chan80(&in->in_ni)) {
|
|
add_sta_cmd.station_flags |= htole32(
|
|
IWM_STA_FLG_FAT_EN_80MHZ);
|
|
}
|
|
aggsize = (in->in_ni.ni_vhtcaps &
|
|
IEEE80211_VHTCAP_MAX_AMPDU_LEN_MASK) >>
|
|
IEEE80211_VHTCAP_MAX_AMPDU_LEN_SHIFT;
|
|
} else {
|
|
aggsize = (in->in_ni.ni_ampdu_param &
|
|
IEEE80211_AMPDU_PARAM_LE);
|
|
}
|
|
if (aggsize > max_aggsize)
|
|
aggsize = max_aggsize;
|
|
add_sta_cmd.station_flags |= htole32((aggsize <<
|
|
IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) &
|
|
IWM_STA_FLG_MAX_AGG_SIZE_MSK);
|
|
|
|
switch (in->in_ni.ni_ampdu_param & IEEE80211_AMPDU_PARAM_SS) {
|
|
case IEEE80211_AMPDU_PARAM_SS_2:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_2US);
|
|
break;
|
|
case IEEE80211_AMPDU_PARAM_SS_4:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_4US);
|
|
break;
|
|
case IEEE80211_AMPDU_PARAM_SS_8:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_8US);
|
|
break;
|
|
case IEEE80211_AMPDU_PARAM_SS_16:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_16US);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
status = IWM_ADD_STA_SUCCESS;
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
|
|
cmdsize = sizeof(add_sta_cmd);
|
|
else
|
|
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize,
|
|
&add_sta_cmd, &status);
|
|
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
|
|
err = EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_add_aux_sta(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_add_sta_cmd cmd;
|
|
int err, qid;
|
|
uint32_t status;
|
|
size_t cmdsize;
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)) {
|
|
qid = IWM_DQA_AUX_QUEUE;
|
|
err = iwm_enable_txq(sc, IWM_AUX_STA_ID, qid,
|
|
IWM_TX_FIFO_MCAST, 0, IWM_MAX_TID_COUNT, 0);
|
|
} else {
|
|
qid = IWM_AUX_QUEUE;
|
|
err = iwm_enable_ac_txq(sc, qid, IWM_TX_FIFO_MCAST);
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.sta_id = IWM_AUX_STA_ID;
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
|
|
cmd.station_type = IWM_STA_AUX_ACTIVITY;
|
|
cmd.mac_id_n_color =
|
|
htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_MAC_INDEX_AUX, 0));
|
|
cmd.tfd_queue_msk = htole32(1 << qid);
|
|
cmd.tid_disable_tx = htole16(0xffff);
|
|
|
|
status = IWM_ADD_STA_SUCCESS;
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
|
|
cmdsize = sizeof(cmd);
|
|
else
|
|
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, cmdsize, &cmd,
|
|
&status);
|
|
if (!err && (status & IWM_ADD_STA_STATUS_MASK) != IWM_ADD_STA_SUCCESS)
|
|
err = EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_drain_sta(struct iwm_softc *sc, struct iwm_node* in, int drain)
|
|
{
|
|
struct iwm_add_sta_cmd cmd;
|
|
int err;
|
|
uint32_t status;
|
|
size_t cmdsize;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
|
|
in->in_color));
|
|
cmd.sta_id = IWM_STATION_ID;
|
|
cmd.add_modify = IWM_STA_MODE_MODIFY;
|
|
cmd.station_flags = drain ? htole32(IWM_STA_FLG_DRAIN_FLOW) : 0;
|
|
cmd.station_flags_msk = htole32(IWM_STA_FLG_DRAIN_FLOW);
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE))
|
|
cmdsize = sizeof(cmd);
|
|
else
|
|
cmdsize = sizeof(struct iwm_add_sta_cmd_v7);
|
|
|
|
status = IWM_ADD_STA_SUCCESS;
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA,
|
|
cmdsize, &cmd, &status);
|
|
if (err) {
|
|
printf("%s: could not update sta (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
switch (status & IWM_ADD_STA_STATUS_MASK) {
|
|
case IWM_ADD_STA_SUCCESS:
|
|
break;
|
|
default:
|
|
err = EIO;
|
|
printf("%s: Couldn't %s draining for station\n",
|
|
DEVNAME(sc), drain ? "enable" : "disable");
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_flush_sta(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
int err;
|
|
|
|
sc->sc_flags |= IWM_FLAG_TXFLUSH;
|
|
|
|
err = iwm_drain_sta(sc, in, 1);
|
|
if (err)
|
|
goto done;
|
|
|
|
err = iwm_flush_tx_path(sc, in->tfd_queue_msk);
|
|
if (err) {
|
|
printf("%s: could not flush Tx path (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Flushing Tx rings may fail if the AP has disappeared.
|
|
* We can rely on iwm_newstate_task() to reset everything and begin
|
|
* scanning again if we are left with outstanding frames on queues.
|
|
*/
|
|
err = iwm_wait_tx_queues_empty(sc);
|
|
if (err)
|
|
goto done;
|
|
|
|
err = iwm_drain_sta(sc, in, 0);
|
|
done:
|
|
sc->sc_flags &= ~IWM_FLAG_TXFLUSH;
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_rm_sta_cmd(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_rm_sta_cmd rm_sta_cmd;
|
|
int err;
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_STA_ACTIVE) == 0)
|
|
panic("sta already removed");
|
|
|
|
memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
rm_sta_cmd.sta_id = IWM_MONITOR_STA_ID;
|
|
else
|
|
rm_sta_cmd.sta_id = IWM_STATION_ID;
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_REMOVE_STA, 0, sizeof(rm_sta_cmd),
|
|
&rm_sta_cmd);
|
|
|
|
return err;
|
|
}
|
|
|
|
uint16_t
|
|
iwm_scan_rx_chain(struct iwm_softc *sc)
|
|
{
|
|
uint16_t rx_chain;
|
|
uint8_t rx_ant;
|
|
|
|
rx_ant = iwm_fw_valid_rx_ant(sc);
|
|
rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS;
|
|
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS;
|
|
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS;
|
|
rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS;
|
|
return htole16(rx_chain);
|
|
}
|
|
|
|
uint32_t
|
|
iwm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck)
|
|
{
|
|
uint32_t tx_ant;
|
|
int i, ind;
|
|
|
|
for (i = 0, ind = sc->sc_scan_last_antenna;
|
|
i < IWM_RATE_MCS_ANT_NUM; i++) {
|
|
ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM;
|
|
if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) {
|
|
sc->sc_scan_last_antenna = ind;
|
|
break;
|
|
}
|
|
}
|
|
tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS;
|
|
|
|
if ((flags & IEEE80211_CHAN_2GHZ) && !no_cck)
|
|
return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK |
|
|
tx_ant);
|
|
else
|
|
return htole32(IWM_RATE_6M_PLCP | tx_ant);
|
|
}
|
|
|
|
uint8_t
|
|
iwm_lmac_scan_fill_channels(struct iwm_softc *sc,
|
|
struct iwm_scan_channel_cfg_lmac *chan, int n_ssids, int bgscan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *c;
|
|
uint8_t nchan;
|
|
|
|
for (nchan = 0, c = &ic->ic_channels[1];
|
|
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
|
|
nchan < sc->sc_capa_n_scan_channels;
|
|
c++) {
|
|
if (c->ic_flags == 0)
|
|
continue;
|
|
|
|
chan->channel_num = htole16(ieee80211_mhz2ieee(c->ic_freq, 0));
|
|
chan->iter_count = htole16(1);
|
|
chan->iter_interval = 0;
|
|
chan->flags = htole32(IWM_UNIFIED_SCAN_CHANNEL_PARTIAL);
|
|
if (n_ssids != 0 && !bgscan)
|
|
chan->flags |= htole32(1 << 1); /* select SSID 0 */
|
|
chan++;
|
|
nchan++;
|
|
}
|
|
|
|
return nchan;
|
|
}
|
|
|
|
uint8_t
|
|
iwm_umac_scan_fill_channels(struct iwm_softc *sc,
|
|
struct iwm_scan_channel_cfg_umac *chan, int n_ssids, int bgscan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *c;
|
|
uint8_t nchan;
|
|
|
|
for (nchan = 0, c = &ic->ic_channels[1];
|
|
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
|
|
nchan < sc->sc_capa_n_scan_channels;
|
|
c++) {
|
|
if (c->ic_flags == 0)
|
|
continue;
|
|
|
|
chan->channel_num = ieee80211_mhz2ieee(c->ic_freq, 0);
|
|
chan->iter_count = 1;
|
|
chan->iter_interval = htole16(0);
|
|
if (n_ssids != 0 && !bgscan)
|
|
chan->flags = htole32(1 << 0); /* select SSID 0 */
|
|
chan++;
|
|
nchan++;
|
|
}
|
|
|
|
return nchan;
|
|
}
|
|
|
|
int
|
|
iwm_fill_probe_req_v1(struct iwm_softc *sc, struct iwm_scan_probe_req_v1 *preq1)
|
|
{
|
|
struct iwm_scan_probe_req preq2;
|
|
int err, i;
|
|
|
|
err = iwm_fill_probe_req(sc, &preq2);
|
|
if (err)
|
|
return err;
|
|
|
|
preq1->mac_header = preq2.mac_header;
|
|
for (i = 0; i < nitems(preq1->band_data); i++)
|
|
preq1->band_data[i] = preq2.band_data[i];
|
|
preq1->common_data = preq2.common_data;
|
|
memcpy(preq1->buf, preq2.buf, sizeof(preq1->buf));
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req *preq)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf;
|
|
struct ieee80211_rateset *rs;
|
|
size_t remain = sizeof(preq->buf);
|
|
uint8_t *frm, *pos;
|
|
|
|
memset(preq, 0, sizeof(*preq));
|
|
|
|
if (remain < sizeof(*wh) + 2)
|
|
return ENOBUFS;
|
|
|
|
/*
|
|
* Build a probe request frame. Most of the following code is a
|
|
* copy & paste of what is done in net80211.
|
|
*/
|
|
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
|
|
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
|
|
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
|
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
|
|
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
|
|
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
|
|
|
|
frm = (uint8_t *)(wh + 1);
|
|
|
|
*frm++ = IEEE80211_ELEMID_SSID;
|
|
*frm++ = 0;
|
|
/* hardware inserts SSID */
|
|
|
|
/* Tell firmware where the MAC header and SSID IE are. */
|
|
preq->mac_header.offset = 0;
|
|
preq->mac_header.len = htole16(frm - (uint8_t *)wh);
|
|
remain -= frm - (uint8_t *)wh;
|
|
|
|
/* Fill in 2GHz IEs and tell firmware where they are. */
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
|
|
if (remain < 4 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
} else if (remain < 2 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
preq->band_data[0].offset = htole16(frm - (uint8_t *)wh);
|
|
pos = frm;
|
|
frm = ieee80211_add_rates(frm, rs);
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
|
|
frm = ieee80211_add_xrates(frm, rs);
|
|
remain -= frm - pos;
|
|
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) {
|
|
if (remain < 3)
|
|
return ENOBUFS;
|
|
*frm++ = IEEE80211_ELEMID_DSPARMS;
|
|
*frm++ = 1;
|
|
*frm++ = 0;
|
|
remain -= 3;
|
|
}
|
|
preq->band_data[0].len = htole16(frm - pos);
|
|
|
|
if (sc->sc_nvm.sku_cap_band_52GHz_enable) {
|
|
/* Fill in 5GHz IEs. */
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
|
|
if (remain < 4 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
} else if (remain < 2 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
preq->band_data[1].offset = htole16(frm - (uint8_t *)wh);
|
|
pos = frm;
|
|
frm = ieee80211_add_rates(frm, rs);
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
|
|
frm = ieee80211_add_xrates(frm, rs);
|
|
preq->band_data[1].len = htole16(frm - pos);
|
|
remain -= frm - pos;
|
|
if (ic->ic_flags & IEEE80211_F_VHTON) {
|
|
if (remain < 14)
|
|
return ENOBUFS;
|
|
frm = ieee80211_add_vhtcaps(frm, ic);
|
|
remain -= frm - pos;
|
|
preq->band_data[1].len = htole16(frm - pos);
|
|
}
|
|
}
|
|
|
|
/* Send 11n IEs on both 2GHz and 5GHz bands. */
|
|
preq->common_data.offset = htole16(frm - (uint8_t *)wh);
|
|
pos = frm;
|
|
if (ic->ic_flags & IEEE80211_F_HTON) {
|
|
if (remain < 28)
|
|
return ENOBUFS;
|
|
frm = ieee80211_add_htcaps(frm, ic);
|
|
/* XXX add WME info? */
|
|
remain -= frm - pos;
|
|
}
|
|
|
|
preq->common_data.len = htole16(frm - pos);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_lmac_scan(struct iwm_softc *sc, int bgscan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = IWM_SCAN_OFFLOAD_REQUEST_CMD,
|
|
.len = { 0, },
|
|
.data = { NULL, },
|
|
.flags = 0,
|
|
};
|
|
struct iwm_scan_req_lmac *req;
|
|
struct iwm_scan_probe_req_v1 *preq;
|
|
size_t req_len;
|
|
int err, async = bgscan;
|
|
|
|
req_len = sizeof(struct iwm_scan_req_lmac) +
|
|
(sizeof(struct iwm_scan_channel_cfg_lmac) *
|
|
sc->sc_capa_n_scan_channels) + sizeof(struct iwm_scan_probe_req_v1);
|
|
if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
|
|
return ENOMEM;
|
|
req = malloc(req_len, M_DEVBUF,
|
|
(async ? M_NOWAIT : M_WAIT) | M_CANFAIL | M_ZERO);
|
|
if (req == NULL)
|
|
return ENOMEM;
|
|
|
|
hcmd.len[0] = (uint16_t)req_len;
|
|
hcmd.data[0] = (void *)req;
|
|
hcmd.flags |= async ? IWM_CMD_ASYNC : 0;
|
|
|
|
/* These timings correspond to iwlwifi's UNASSOC scan. */
|
|
req->active_dwell = 10;
|
|
req->passive_dwell = 110;
|
|
req->fragmented_dwell = 44;
|
|
req->extended_dwell = 90;
|
|
if (bgscan) {
|
|
req->max_out_time = htole32(120);
|
|
req->suspend_time = htole32(120);
|
|
} else {
|
|
req->max_out_time = htole32(0);
|
|
req->suspend_time = htole32(0);
|
|
}
|
|
req->scan_prio = htole32(IWM_SCAN_PRIORITY_HIGH);
|
|
req->rx_chain_select = iwm_scan_rx_chain(sc);
|
|
req->iter_num = htole32(1);
|
|
req->delay = 0;
|
|
|
|
req->scan_flags = htole32(IWM_LMAC_SCAN_FLAG_PASS_ALL |
|
|
IWM_LMAC_SCAN_FLAG_ITER_COMPLETE |
|
|
IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL);
|
|
if (ic->ic_des_esslen == 0)
|
|
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PASSIVE);
|
|
else
|
|
req->scan_flags |=
|
|
htole32(IWM_LMAC_SCAN_FLAG_PRE_CONNECTION);
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT) &&
|
|
isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT))
|
|
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAGS_RRM_ENABLED);
|
|
|
|
req->flags = htole32(IWM_PHY_BAND_24);
|
|
if (sc->sc_nvm.sku_cap_band_52GHz_enable)
|
|
req->flags |= htole32(IWM_PHY_BAND_5);
|
|
req->filter_flags =
|
|
htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON);
|
|
|
|
/* Tx flags 2 GHz. */
|
|
req->tx_cmd[0].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
|
|
IWM_TX_CMD_FLG_BT_DIS);
|
|
req->tx_cmd[0].rate_n_flags =
|
|
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_2GHZ, 1/*XXX*/);
|
|
req->tx_cmd[0].sta_id = IWM_AUX_STA_ID;
|
|
|
|
/* Tx flags 5 GHz. */
|
|
req->tx_cmd[1].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
|
|
IWM_TX_CMD_FLG_BT_DIS);
|
|
req->tx_cmd[1].rate_n_flags =
|
|
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_5GHZ, 1/*XXX*/);
|
|
req->tx_cmd[1].sta_id = IWM_AUX_STA_ID;
|
|
|
|
/* Check if we're doing an active directed scan. */
|
|
if (ic->ic_des_esslen != 0) {
|
|
req->direct_scan[0].id = IEEE80211_ELEMID_SSID;
|
|
req->direct_scan[0].len = ic->ic_des_esslen;
|
|
memcpy(req->direct_scan[0].ssid, ic->ic_des_essid,
|
|
ic->ic_des_esslen);
|
|
}
|
|
|
|
req->n_channels = iwm_lmac_scan_fill_channels(sc,
|
|
(struct iwm_scan_channel_cfg_lmac *)req->data,
|
|
ic->ic_des_esslen != 0, bgscan);
|
|
|
|
preq = (struct iwm_scan_probe_req_v1 *)(req->data +
|
|
(sizeof(struct iwm_scan_channel_cfg_lmac) *
|
|
sc->sc_capa_n_scan_channels));
|
|
err = iwm_fill_probe_req_v1(sc, preq);
|
|
if (err) {
|
|
free(req, M_DEVBUF, req_len);
|
|
return err;
|
|
}
|
|
|
|
/* Specify the scan plan: We'll do one iteration. */
|
|
req->schedule[0].iterations = 1;
|
|
req->schedule[0].full_scan_mul = 1;
|
|
|
|
/* Disable EBS. */
|
|
req->channel_opt[0].non_ebs_ratio = 1;
|
|
req->channel_opt[1].non_ebs_ratio = 1;
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
free(req, M_DEVBUF, req_len);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_config_umac_scan(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_scan_config *scan_config;
|
|
int err, nchan;
|
|
size_t cmd_size;
|
|
struct ieee80211_channel *c;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = iwm_cmd_id(IWM_SCAN_CFG_CMD, IWM_LONG_GROUP, 0),
|
|
.flags = 0,
|
|
};
|
|
static const uint32_t rates = (IWM_SCAN_CONFIG_RATE_1M |
|
|
IWM_SCAN_CONFIG_RATE_2M | IWM_SCAN_CONFIG_RATE_5M |
|
|
IWM_SCAN_CONFIG_RATE_11M | IWM_SCAN_CONFIG_RATE_6M |
|
|
IWM_SCAN_CONFIG_RATE_9M | IWM_SCAN_CONFIG_RATE_12M |
|
|
IWM_SCAN_CONFIG_RATE_18M | IWM_SCAN_CONFIG_RATE_24M |
|
|
IWM_SCAN_CONFIG_RATE_36M | IWM_SCAN_CONFIG_RATE_48M |
|
|
IWM_SCAN_CONFIG_RATE_54M);
|
|
|
|
cmd_size = sizeof(*scan_config) + sc->sc_capa_n_scan_channels;
|
|
|
|
scan_config = malloc(cmd_size, M_DEVBUF, M_WAIT | M_CANFAIL | M_ZERO);
|
|
if (scan_config == NULL)
|
|
return ENOMEM;
|
|
|
|
scan_config->tx_chains = htole32(iwm_fw_valid_tx_ant(sc));
|
|
scan_config->rx_chains = htole32(iwm_fw_valid_rx_ant(sc));
|
|
scan_config->legacy_rates = htole32(rates |
|
|
IWM_SCAN_CONFIG_SUPPORTED_RATE(rates));
|
|
|
|
/* These timings correspond to iwlwifi's UNASSOC scan. */
|
|
scan_config->dwell_active = 10;
|
|
scan_config->dwell_passive = 110;
|
|
scan_config->dwell_fragmented = 44;
|
|
scan_config->dwell_extended = 90;
|
|
scan_config->out_of_channel_time = htole32(0);
|
|
scan_config->suspend_time = htole32(0);
|
|
|
|
IEEE80211_ADDR_COPY(scan_config->mac_addr, sc->sc_ic.ic_myaddr);
|
|
|
|
scan_config->bcast_sta_id = IWM_AUX_STA_ID;
|
|
scan_config->channel_flags = 0;
|
|
|
|
for (c = &ic->ic_channels[1], nchan = 0;
|
|
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
|
|
nchan < sc->sc_capa_n_scan_channels; c++) {
|
|
if (c->ic_flags == 0)
|
|
continue;
|
|
scan_config->channel_array[nchan++] =
|
|
ieee80211_mhz2ieee(c->ic_freq, 0);
|
|
}
|
|
|
|
scan_config->flags = htole32(IWM_SCAN_CONFIG_FLAG_ACTIVATE |
|
|
IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS |
|
|
IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS |
|
|
IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS |
|
|
IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID |
|
|
IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES |
|
|
IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES |
|
|
IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR |
|
|
IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS|
|
|
IWM_SCAN_CONFIG_N_CHANNELS(nchan) |
|
|
IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED);
|
|
|
|
hcmd.data[0] = scan_config;
|
|
hcmd.len[0] = cmd_size;
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
free(scan_config, M_DEVBUF, cmd_size);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_umac_scan_size(struct iwm_softc *sc)
|
|
{
|
|
int base_size = IWM_SCAN_REQ_UMAC_SIZE_V1;
|
|
int tail_size;
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2))
|
|
base_size = IWM_SCAN_REQ_UMAC_SIZE_V8;
|
|
else if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL))
|
|
base_size = IWM_SCAN_REQ_UMAC_SIZE_V7;
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER))
|
|
tail_size = sizeof(struct iwm_scan_req_umac_tail_v2);
|
|
else
|
|
tail_size = sizeof(struct iwm_scan_req_umac_tail_v1);
|
|
|
|
return base_size + sizeof(struct iwm_scan_channel_cfg_umac) *
|
|
sc->sc_capa_n_scan_channels + tail_size;
|
|
}
|
|
|
|
struct iwm_scan_umac_chan_param *
|
|
iwm_get_scan_req_umac_chan_param(struct iwm_softc *sc,
|
|
struct iwm_scan_req_umac *req)
|
|
{
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2))
|
|
return &req->v8.channel;
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL))
|
|
return &req->v7.channel;
|
|
|
|
return &req->v1.channel;
|
|
}
|
|
|
|
void *
|
|
iwm_get_scan_req_umac_data(struct iwm_softc *sc, struct iwm_scan_req_umac *req)
|
|
{
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2))
|
|
return (void *)&req->v8.data;
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL))
|
|
return (void *)&req->v7.data;
|
|
|
|
return (void *)&req->v1.data;
|
|
|
|
}
|
|
|
|
/* adaptive dwell max budget time [TU] for full scan */
|
|
#define IWM_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN 300
|
|
/* adaptive dwell max budget time [TU] for directed scan */
|
|
#define IWM_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN 100
|
|
/* adaptive dwell default high band APs number */
|
|
#define IWM_SCAN_ADWELL_DEFAULT_HB_N_APS 8
|
|
/* adaptive dwell default low band APs number */
|
|
#define IWM_SCAN_ADWELL_DEFAULT_LB_N_APS 2
|
|
/* adaptive dwell default APs number in social channels (1, 6, 11) */
|
|
#define IWM_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL 10
|
|
|
|
int
|
|
iwm_umac_scan(struct iwm_softc *sc, int bgscan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = iwm_cmd_id(IWM_SCAN_REQ_UMAC, IWM_LONG_GROUP, 0),
|
|
.len = { 0, },
|
|
.data = { NULL, },
|
|
.flags = 0,
|
|
};
|
|
struct iwm_scan_req_umac *req;
|
|
void *cmd_data, *tail_data;
|
|
struct iwm_scan_req_umac_tail_v2 *tail;
|
|
struct iwm_scan_req_umac_tail_v1 *tailv1;
|
|
struct iwm_scan_umac_chan_param *chanparam;
|
|
size_t req_len;
|
|
int err, async = bgscan;
|
|
|
|
req_len = iwm_umac_scan_size(sc);
|
|
if ((req_len < IWM_SCAN_REQ_UMAC_SIZE_V1 +
|
|
sizeof(struct iwm_scan_req_umac_tail_v1)) ||
|
|
req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
|
|
return ERANGE;
|
|
req = malloc(req_len, M_DEVBUF,
|
|
(async ? M_NOWAIT : M_WAIT) | M_CANFAIL | M_ZERO);
|
|
if (req == NULL)
|
|
return ENOMEM;
|
|
|
|
hcmd.len[0] = (uint16_t)req_len;
|
|
hcmd.data[0] = (void *)req;
|
|
hcmd.flags |= async ? IWM_CMD_ASYNC : 0;
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) {
|
|
req->v7.adwell_default_n_aps_social =
|
|
IWM_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL;
|
|
req->v7.adwell_default_n_aps =
|
|
IWM_SCAN_ADWELL_DEFAULT_LB_N_APS;
|
|
|
|
if (ic->ic_des_esslen != 0)
|
|
req->v7.adwell_max_budget =
|
|
htole16(IWM_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN);
|
|
else
|
|
req->v7.adwell_max_budget =
|
|
htole16(IWM_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN);
|
|
|
|
req->v7.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
|
|
req->v7.max_out_time[IWM_SCAN_LB_LMAC_IDX] = 0;
|
|
req->v7.suspend_time[IWM_SCAN_LB_LMAC_IDX] = 0;
|
|
|
|
if (isset(sc->sc_ucode_api,
|
|
IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) {
|
|
req->v8.active_dwell[IWM_SCAN_LB_LMAC_IDX] = 10;
|
|
req->v8.passive_dwell[IWM_SCAN_LB_LMAC_IDX] = 110;
|
|
} else {
|
|
req->v7.active_dwell = 10;
|
|
req->v7.passive_dwell = 110;
|
|
req->v7.fragmented_dwell = 44;
|
|
}
|
|
} else {
|
|
/* These timings correspond to iwlwifi's UNASSOC scan. */
|
|
req->v1.active_dwell = 10;
|
|
req->v1.passive_dwell = 110;
|
|
req->v1.fragmented_dwell = 44;
|
|
req->v1.extended_dwell = 90;
|
|
|
|
req->v1.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
|
|
}
|
|
|
|
if (bgscan) {
|
|
const uint32_t timeout = htole32(120);
|
|
if (isset(sc->sc_ucode_api,
|
|
IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) {
|
|
req->v8.max_out_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
|
|
req->v8.suspend_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
|
|
} else if (isset(sc->sc_ucode_api,
|
|
IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) {
|
|
req->v7.max_out_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
|
|
req->v7.suspend_time[IWM_SCAN_LB_LMAC_IDX] = timeout;
|
|
} else {
|
|
req->v1.max_out_time = timeout;
|
|
req->v1.suspend_time = timeout;
|
|
}
|
|
}
|
|
|
|
req->ooc_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
|
|
|
|
cmd_data = iwm_get_scan_req_umac_data(sc, req);
|
|
chanparam = iwm_get_scan_req_umac_chan_param(sc, req);
|
|
chanparam->count = iwm_umac_scan_fill_channels(sc,
|
|
(struct iwm_scan_channel_cfg_umac *)cmd_data,
|
|
ic->ic_des_esslen != 0, bgscan);
|
|
chanparam->flags = 0;
|
|
|
|
tail_data = cmd_data + sizeof(struct iwm_scan_channel_cfg_umac) *
|
|
sc->sc_capa_n_scan_channels;
|
|
tail = tail_data;
|
|
/* tail v1 layout differs in preq and direct_scan member fields. */
|
|
tailv1 = tail_data;
|
|
|
|
req->general_flags = htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL |
|
|
IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE);
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) {
|
|
req->v8.general_flags2 =
|
|
IWM_UMAC_SCAN_GEN_FLAGS2_ALLOW_CHNL_REORDER;
|
|
}
|
|
|
|
if (ic->ic_des_esslen != 0) {
|
|
if (isset(sc->sc_ucode_api,
|
|
IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER)) {
|
|
tail->direct_scan[0].id = IEEE80211_ELEMID_SSID;
|
|
tail->direct_scan[0].len = ic->ic_des_esslen;
|
|
memcpy(tail->direct_scan[0].ssid, ic->ic_des_essid,
|
|
ic->ic_des_esslen);
|
|
} else {
|
|
tailv1->direct_scan[0].id = IEEE80211_ELEMID_SSID;
|
|
tailv1->direct_scan[0].len = ic->ic_des_esslen;
|
|
memcpy(tailv1->direct_scan[0].ssid, ic->ic_des_essid,
|
|
ic->ic_des_esslen);
|
|
}
|
|
req->general_flags |=
|
|
htole32(IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT);
|
|
} else
|
|
req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE);
|
|
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT) &&
|
|
isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT))
|
|
req->general_flags |=
|
|
htole32(IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED);
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)) {
|
|
req->general_flags |=
|
|
htole32(IWM_UMAC_SCAN_GEN_FLAGS_ADAPTIVE_DWELL);
|
|
} else {
|
|
req->general_flags |=
|
|
htole32(IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL);
|
|
}
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER))
|
|
err = iwm_fill_probe_req(sc, &tail->preq);
|
|
else
|
|
err = iwm_fill_probe_req_v1(sc, &tailv1->preq);
|
|
if (err) {
|
|
free(req, M_DEVBUF, req_len);
|
|
return err;
|
|
}
|
|
|
|
/* Specify the scan plan: We'll do one iteration. */
|
|
tail->schedule[0].interval = 0;
|
|
tail->schedule[0].iter_count = 1;
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
free(req, M_DEVBUF, req_len);
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_mcc_update(struct iwm_softc *sc, struct iwm_mcc_chub_notif *notif)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
char alpha2[3];
|
|
|
|
snprintf(alpha2, sizeof(alpha2), "%c%c",
|
|
(le16toh(notif->mcc) & 0xff00) >> 8, le16toh(notif->mcc) & 0xff);
|
|
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
printf("%s: firmware has detected regulatory domain '%s' "
|
|
"(0x%x)\n", DEVNAME(sc), alpha2, le16toh(notif->mcc));
|
|
}
|
|
|
|
/* TODO: Schedule a task to send MCC_UPDATE_CMD? */
|
|
}
|
|
|
|
uint8_t
|
|
iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx)
|
|
{
|
|
int i;
|
|
uint8_t rval;
|
|
|
|
for (i = 0; i < rs->rs_nrates; i++) {
|
|
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
|
|
if (rval == iwm_rates[ridx].rate)
|
|
return rs->rs_rates[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_rval2ridx(int rval)
|
|
{
|
|
int ridx;
|
|
|
|
for (ridx = 0; ridx < nitems(iwm_rates); ridx++) {
|
|
if (iwm_rates[ridx].plcp == IWM_RATE_INVM_PLCP)
|
|
continue;
|
|
if (rval == iwm_rates[ridx].rate)
|
|
break;
|
|
}
|
|
|
|
return ridx;
|
|
}
|
|
|
|
void
|
|
iwm_ack_rates(struct iwm_softc *sc, struct iwm_node *in, int *cck_rates,
|
|
int *ofdm_rates)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ieee80211_rateset *rs = &ni->ni_rates;
|
|
int lowest_present_ofdm = -1;
|
|
int lowest_present_cck = -1;
|
|
uint8_t cck = 0;
|
|
uint8_t ofdm = 0;
|
|
int i;
|
|
|
|
if (ni->ni_chan == IEEE80211_CHAN_ANYC ||
|
|
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
|
|
for (i = IWM_FIRST_CCK_RATE; i < IWM_FIRST_OFDM_RATE; i++) {
|
|
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
|
|
continue;
|
|
cck |= (1 << i);
|
|
if (lowest_present_cck == -1 || lowest_present_cck > i)
|
|
lowest_present_cck = i;
|
|
}
|
|
}
|
|
for (i = IWM_FIRST_OFDM_RATE; i <= IWM_LAST_NON_HT_RATE; i++) {
|
|
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
|
|
continue;
|
|
ofdm |= (1 << (i - IWM_FIRST_OFDM_RATE));
|
|
if (lowest_present_ofdm == -1 || lowest_present_ofdm > i)
|
|
lowest_present_ofdm = i;
|
|
}
|
|
|
|
/*
|
|
* Now we've got the basic rates as bitmaps in the ofdm and cck
|
|
* variables. This isn't sufficient though, as there might not
|
|
* be all the right rates in the bitmap. E.g. if the only basic
|
|
* rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps
|
|
* and 6 Mbps because the 802.11-2007 standard says in 9.6:
|
|
*
|
|
* [...] a STA responding to a received frame shall transmit
|
|
* its Control Response frame [...] at the highest rate in the
|
|
* BSSBasicRateSet parameter that is less than or equal to the
|
|
* rate of the immediately previous frame in the frame exchange
|
|
* sequence ([...]) and that is of the same modulation class
|
|
* ([...]) as the received frame. If no rate contained in the
|
|
* BSSBasicRateSet parameter meets these conditions, then the
|
|
* control frame sent in response to a received frame shall be
|
|
* transmitted at the highest mandatory rate of the PHY that is
|
|
* less than or equal to the rate of the received frame, and
|
|
* that is of the same modulation class as the received frame.
|
|
*
|
|
* As a consequence, we need to add all mandatory rates that are
|
|
* lower than all of the basic rates to these bitmaps.
|
|
*/
|
|
|
|
if (IWM_RATE_24M_INDEX < lowest_present_ofdm)
|
|
ofdm |= IWM_RATE_BIT_MSK(24) >> IWM_FIRST_OFDM_RATE;
|
|
if (IWM_RATE_12M_INDEX < lowest_present_ofdm)
|
|
ofdm |= IWM_RATE_BIT_MSK(12) >> IWM_FIRST_OFDM_RATE;
|
|
/* 6M already there or needed so always add */
|
|
ofdm |= IWM_RATE_BIT_MSK(6) >> IWM_FIRST_OFDM_RATE;
|
|
|
|
/*
|
|
* CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP.
|
|
* Note, however:
|
|
* - if no CCK rates are basic, it must be ERP since there must
|
|
* be some basic rates at all, so they're OFDM => ERP PHY
|
|
* (or we're in 5 GHz, and the cck bitmap will never be used)
|
|
* - if 11M is a basic rate, it must be ERP as well, so add 5.5M
|
|
* - if 5.5M is basic, 1M and 2M are mandatory
|
|
* - if 2M is basic, 1M is mandatory
|
|
* - if 1M is basic, that's the only valid ACK rate.
|
|
* As a consequence, it's not as complicated as it sounds, just add
|
|
* any lower rates to the ACK rate bitmap.
|
|
*/
|
|
if (IWM_RATE_11M_INDEX < lowest_present_cck)
|
|
cck |= IWM_RATE_BIT_MSK(11) >> IWM_FIRST_CCK_RATE;
|
|
if (IWM_RATE_5M_INDEX < lowest_present_cck)
|
|
cck |= IWM_RATE_BIT_MSK(5) >> IWM_FIRST_CCK_RATE;
|
|
if (IWM_RATE_2M_INDEX < lowest_present_cck)
|
|
cck |= IWM_RATE_BIT_MSK(2) >> IWM_FIRST_CCK_RATE;
|
|
/* 1M already there or needed so always add */
|
|
cck |= IWM_RATE_BIT_MSK(1) >> IWM_FIRST_CCK_RATE;
|
|
|
|
*cck_rates = cck;
|
|
*ofdm_rates = ofdm;
|
|
}
|
|
|
|
void
|
|
iwm_mac_ctxt_cmd_common(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_mac_ctx_cmd *cmd, uint32_t action)
|
|
{
|
|
#define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
int cck_ack_rates, ofdm_ack_rates;
|
|
int i;
|
|
|
|
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
|
|
in->in_color));
|
|
cmd->action = htole32(action);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
cmd->mac_type = htole32(IWM_FW_MAC_TYPE_LISTENER);
|
|
else if (ic->ic_opmode == IEEE80211_M_STA)
|
|
cmd->mac_type = htole32(IWM_FW_MAC_TYPE_BSS_STA);
|
|
else
|
|
panic("unsupported operating mode %d", ic->ic_opmode);
|
|
cmd->tsf_id = htole32(IWM_TSF_ID_A);
|
|
|
|
IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr);
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
IEEE80211_ADDR_COPY(cmd->bssid_addr, etherbroadcastaddr);
|
|
return;
|
|
}
|
|
|
|
IEEE80211_ADDR_COPY(cmd->bssid_addr, in->in_macaddr);
|
|
iwm_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates);
|
|
cmd->cck_rates = htole32(cck_ack_rates);
|
|
cmd->ofdm_rates = htole32(ofdm_ack_rates);
|
|
|
|
cmd->cck_short_preamble
|
|
= htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
? IWM_MAC_FLG_SHORT_PREAMBLE : 0);
|
|
cmd->short_slot
|
|
= htole32((ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
? IWM_MAC_FLG_SHORT_SLOT : 0);
|
|
|
|
for (i = 0; i < EDCA_NUM_AC; i++) {
|
|
struct ieee80211_edca_ac_params *ac = &ic->ic_edca_ac[i];
|
|
int txf = iwm_ac_to_tx_fifo[i];
|
|
|
|
cmd->ac[txf].cw_min = htole16(IWM_EXP2(ac->ac_ecwmin));
|
|
cmd->ac[txf].cw_max = htole16(IWM_EXP2(ac->ac_ecwmax));
|
|
cmd->ac[txf].aifsn = ac->ac_aifsn;
|
|
cmd->ac[txf].fifos_mask = (1 << txf);
|
|
cmd->ac[txf].edca_txop = htole16(ac->ac_txoplimit * 32);
|
|
}
|
|
if (ni->ni_flags & IEEE80211_NODE_QOS)
|
|
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_UPDATE_EDCA);
|
|
|
|
if (ni->ni_flags & IEEE80211_NODE_HT) {
|
|
enum ieee80211_htprot htprot =
|
|
(ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
|
|
switch (htprot) {
|
|
case IEEE80211_HTPROT_NONE:
|
|
break;
|
|
case IEEE80211_HTPROT_NONMEMBER:
|
|
case IEEE80211_HTPROT_NONHT_MIXED:
|
|
cmd->protection_flags |=
|
|
htole32(IWM_MAC_PROT_FLG_HT_PROT |
|
|
IWM_MAC_PROT_FLG_FAT_PROT);
|
|
break;
|
|
case IEEE80211_HTPROT_20MHZ:
|
|
if (in->in_phyctxt &&
|
|
(in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCA ||
|
|
in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCB)) {
|
|
cmd->protection_flags |=
|
|
htole32(IWM_MAC_PROT_FLG_HT_PROT |
|
|
IWM_MAC_PROT_FLG_FAT_PROT);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_TGN);
|
|
}
|
|
if (ic->ic_flags & IEEE80211_F_USEPROT)
|
|
cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_TGG_PROTECT);
|
|
|
|
cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP);
|
|
#undef IWM_EXP2
|
|
}
|
|
|
|
void
|
|
iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_mac_data_sta *sta, int assoc)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
uint32_t dtim_off;
|
|
uint64_t tsf;
|
|
|
|
dtim_off = ni->ni_dtimcount * ni->ni_intval * IEEE80211_DUR_TU;
|
|
memcpy(&tsf, ni->ni_tstamp, sizeof(tsf));
|
|
tsf = letoh64(tsf);
|
|
|
|
sta->is_assoc = htole32(assoc);
|
|
sta->dtim_time = htole32(ni->ni_rstamp + dtim_off);
|
|
sta->dtim_tsf = htole64(tsf + dtim_off);
|
|
sta->bi = htole32(ni->ni_intval);
|
|
sta->bi_reciprocal = htole32(iwm_reciprocal(ni->ni_intval));
|
|
sta->dtim_interval = htole32(ni->ni_intval * ni->ni_dtimperiod);
|
|
sta->dtim_reciprocal = htole32(iwm_reciprocal(sta->dtim_interval));
|
|
sta->listen_interval = htole32(10);
|
|
sta->assoc_id = htole32(ni->ni_associd);
|
|
sta->assoc_beacon_arrive_time = htole32(ni->ni_rstamp);
|
|
}
|
|
|
|
int
|
|
iwm_mac_ctxt_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action,
|
|
int assoc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct iwm_mac_ctx_cmd cmd;
|
|
int active = (sc->sc_flags & IWM_FLAG_MAC_ACTIVE);
|
|
|
|
if (action == IWM_FW_CTXT_ACTION_ADD && active)
|
|
panic("MAC already added");
|
|
if (action == IWM_FW_CTXT_ACTION_REMOVE && !active)
|
|
panic("MAC already removed");
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
iwm_mac_ctxt_cmd_common(sc, in, &cmd, action);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_PROMISC |
|
|
IWM_MAC_FILTER_IN_CONTROL_AND_MGMT |
|
|
IWM_MAC_FILTER_ACCEPT_GRP |
|
|
IWM_MAC_FILTER_IN_BEACON |
|
|
IWM_MAC_FILTER_IN_PROBE_REQUEST |
|
|
IWM_MAC_FILTER_IN_CRC32);
|
|
} else if (!assoc || !ni->ni_associd || !ni->ni_dtimperiod)
|
|
/*
|
|
* Allow beacons to pass through as long as we are not
|
|
* associated or we do not have dtim period information.
|
|
*/
|
|
cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_BEACON);
|
|
else
|
|
iwm_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, assoc);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_update_quotas(struct iwm_softc *sc, struct iwm_node *in, int running)
|
|
{
|
|
struct iwm_time_quota_cmd_v1 cmd;
|
|
int i, idx, num_active_macs, quota, quota_rem;
|
|
int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
|
|
int n_ifs[IWM_MAX_BINDINGS] = {0, };
|
|
uint16_t id;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
/* currently, PHY ID == binding ID */
|
|
if (in && in->in_phyctxt) {
|
|
id = in->in_phyctxt->id;
|
|
KASSERT(id < IWM_MAX_BINDINGS);
|
|
colors[id] = in->in_phyctxt->color;
|
|
if (running)
|
|
n_ifs[id] = 1;
|
|
}
|
|
|
|
/*
|
|
* The FW's scheduling session consists of
|
|
* IWM_MAX_QUOTA fragments. Divide these fragments
|
|
* equally between all the bindings that require quota
|
|
*/
|
|
num_active_macs = 0;
|
|
for (i = 0; i < IWM_MAX_BINDINGS; i++) {
|
|
cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
|
|
num_active_macs += n_ifs[i];
|
|
}
|
|
|
|
quota = 0;
|
|
quota_rem = 0;
|
|
if (num_active_macs) {
|
|
quota = IWM_MAX_QUOTA / num_active_macs;
|
|
quota_rem = IWM_MAX_QUOTA % num_active_macs;
|
|
}
|
|
|
|
for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
|
|
if (colors[i] < 0)
|
|
continue;
|
|
|
|
cmd.quotas[idx].id_and_color =
|
|
htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
|
|
|
|
if (n_ifs[i] <= 0) {
|
|
cmd.quotas[idx].quota = htole32(0);
|
|
cmd.quotas[idx].max_duration = htole32(0);
|
|
} else {
|
|
cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
|
|
cmd.quotas[idx].max_duration = htole32(0);
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
/* Give the remainder of the session to the first binding */
|
|
cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
|
|
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_QUOTA_LOW_LATENCY)) {
|
|
struct iwm_time_quota_cmd cmd_v2;
|
|
|
|
memset(&cmd_v2, 0, sizeof(cmd_v2));
|
|
for (i = 0; i < IWM_MAX_BINDINGS; i++) {
|
|
cmd_v2.quotas[i].id_and_color =
|
|
cmd.quotas[i].id_and_color;
|
|
cmd_v2.quotas[i].quota = cmd.quotas[i].quota;
|
|
cmd_v2.quotas[i].max_duration =
|
|
cmd.quotas[i].max_duration;
|
|
}
|
|
return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, 0,
|
|
sizeof(cmd_v2), &cmd_v2);
|
|
}
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
void
|
|
iwm_add_task(struct iwm_softc *sc, struct taskq *taskq, struct task *task)
|
|
{
|
|
int s = splnet();
|
|
|
|
if (sc->sc_flags & IWM_FLAG_SHUTDOWN) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
refcnt_take(&sc->task_refs);
|
|
if (!task_add(taskq, task))
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
iwm_del_task(struct iwm_softc *sc, struct taskq *taskq, struct task *task)
|
|
{
|
|
if (task_del(taskq, task))
|
|
refcnt_rele(&sc->task_refs);
|
|
}
|
|
|
|
int
|
|
iwm_scan(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
int err;
|
|
|
|
if (sc->sc_flags & IWM_FLAG_BGSCAN) {
|
|
err = iwm_scan_abort(sc);
|
|
if (err) {
|
|
printf("%s: could not abort background scan\n",
|
|
DEVNAME(sc));
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
|
|
err = iwm_umac_scan(sc, 0);
|
|
else
|
|
err = iwm_lmac_scan(sc, 0);
|
|
if (err) {
|
|
printf("%s: could not initiate scan\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* The current mode might have been fixed during association.
|
|
* Ensure all channels get scanned.
|
|
*/
|
|
if (IFM_SUBTYPE(ic->ic_media.ifm_cur->ifm_media) == IFM_AUTO)
|
|
ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
|
|
|
|
sc->sc_flags |= IWM_FLAG_SCANNING;
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: %s -> %s\n", ifp->if_xname,
|
|
ieee80211_state_name[ic->ic_state],
|
|
ieee80211_state_name[IEEE80211_S_SCAN]);
|
|
if ((sc->sc_flags & IWM_FLAG_BGSCAN) == 0) {
|
|
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
|
|
ieee80211_node_cleanup(ic, ic->ic_bss);
|
|
}
|
|
ic->ic_state = IEEE80211_S_SCAN;
|
|
iwm_led_blink_start(sc);
|
|
wakeup(&ic->ic_state); /* wake iwm_init() */
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_bgscan(struct ieee80211com *ic)
|
|
{
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
int err;
|
|
|
|
if (sc->sc_flags & IWM_FLAG_SCANNING)
|
|
return 0;
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
|
|
err = iwm_umac_scan(sc, 1);
|
|
else
|
|
err = iwm_lmac_scan(sc, 1);
|
|
if (err) {
|
|
printf("%s: could not initiate scan\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
sc->sc_flags |= IWM_FLAG_BGSCAN;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_bgscan_done(struct ieee80211com *ic,
|
|
struct ieee80211_node_switch_bss_arg *arg, size_t arg_size)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
|
|
free(sc->bgscan_unref_arg, M_DEVBUF, sc->bgscan_unref_arg_size);
|
|
sc->bgscan_unref_arg = arg;
|
|
sc->bgscan_unref_arg_size = arg_size;
|
|
iwm_add_task(sc, systq, &sc->bgscan_done_task);
|
|
}
|
|
|
|
void
|
|
iwm_bgscan_done_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
int tid, err = 0, s = splnet();
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) ||
|
|
(ic->ic_flags & IEEE80211_F_BGSCAN) == 0 ||
|
|
ic->ic_state != IEEE80211_S_RUN) {
|
|
err = ENXIO;
|
|
goto done;
|
|
}
|
|
|
|
for (tid = 0; tid < IWM_MAX_TID_COUNT; tid++) {
|
|
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
|
|
|
|
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
|
|
continue;
|
|
|
|
err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0);
|
|
if (err)
|
|
goto done;
|
|
err = iwm_disable_txq(sc, IWM_STATION_ID, qid, tid);
|
|
if (err)
|
|
goto done;
|
|
in->tfd_queue_msk &= ~(1 << qid);
|
|
#if 0 /* disabled for now; we are going to DEAUTH soon anyway */
|
|
IEEE80211_SEND_ACTION(ic, ni, IEEE80211_CATEG_BA,
|
|
IEEE80211_ACTION_DELBA,
|
|
IEEE80211_REASON_AUTH_LEAVE << 16 |
|
|
IEEE80211_FC1_DIR_TODS << 8 | tid);
|
|
#endif
|
|
ieee80211_node_tx_ba_clear(ni, tid);
|
|
}
|
|
|
|
err = iwm_flush_sta(sc, in);
|
|
if (err)
|
|
goto done;
|
|
|
|
/*
|
|
* Tx queues have been flushed and Tx agg has been stopped.
|
|
* Allow roaming to proceed.
|
|
*/
|
|
ni->ni_unref_arg = sc->bgscan_unref_arg;
|
|
ni->ni_unref_arg_size = sc->bgscan_unref_arg_size;
|
|
sc->bgscan_unref_arg = NULL;
|
|
sc->bgscan_unref_arg_size = 0;
|
|
ieee80211_node_tx_stopped(ic, &in->in_ni);
|
|
done:
|
|
if (err) {
|
|
free(sc->bgscan_unref_arg, M_DEVBUF, sc->bgscan_unref_arg_size);
|
|
sc->bgscan_unref_arg = NULL;
|
|
sc->bgscan_unref_arg_size = 0;
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
|
|
task_add(systq, &sc->init_task);
|
|
}
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
iwm_umac_scan_abort(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_umac_scan_abort cmd = { 0 };
|
|
|
|
return iwm_send_cmd_pdu(sc,
|
|
IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_ABORT_UMAC),
|
|
0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_lmac_scan_abort(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_SCAN_OFFLOAD_ABORT_CMD,
|
|
};
|
|
int err, status;
|
|
|
|
err = iwm_send_cmd_status(sc, &cmd, &status);
|
|
if (err)
|
|
return err;
|
|
|
|
if (status != IWM_CAN_ABORT_STATUS) {
|
|
/*
|
|
* The scan abort will return 1 for success or
|
|
* 2 for "failure". A failure condition can be
|
|
* due to simply not being in an active scan which
|
|
* can occur if we send the scan abort before the
|
|
* microcode has notified us that a scan is completed.
|
|
*/
|
|
return EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_scan_abort(struct iwm_softc *sc)
|
|
{
|
|
int err;
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
|
|
err = iwm_umac_scan_abort(sc);
|
|
else
|
|
err = iwm_lmac_scan_abort(sc);
|
|
|
|
if (err == 0)
|
|
sc->sc_flags &= ~(IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_phy_ctxt_update(struct iwm_softc *sc, struct iwm_phy_ctxt *phyctxt,
|
|
struct ieee80211_channel *chan, uint8_t chains_static,
|
|
uint8_t chains_dynamic, uint32_t apply_time, uint8_t sco,
|
|
uint8_t vht_chan_width)
|
|
{
|
|
uint16_t band_flags = (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ);
|
|
int err;
|
|
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_BINDING_CDB_SUPPORT) &&
|
|
(phyctxt->channel->ic_flags & band_flags) !=
|
|
(chan->ic_flags & band_flags)) {
|
|
err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static,
|
|
chains_dynamic, IWM_FW_CTXT_ACTION_REMOVE, apply_time, sco,
|
|
vht_chan_width);
|
|
if (err) {
|
|
printf("%s: could not remove PHY context "
|
|
"(error %d)\n", DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
phyctxt->channel = chan;
|
|
err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static,
|
|
chains_dynamic, IWM_FW_CTXT_ACTION_ADD, apply_time, sco,
|
|
vht_chan_width);
|
|
if (err) {
|
|
printf("%s: could not add PHY context "
|
|
"(error %d)\n", DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
} else {
|
|
phyctxt->channel = chan;
|
|
err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static,
|
|
chains_dynamic, IWM_FW_CTXT_ACTION_MODIFY, apply_time, sco,
|
|
vht_chan_width);
|
|
if (err) {
|
|
printf("%s: could not update PHY context (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
phyctxt->sco = sco;
|
|
phyctxt->vht_chan_width = vht_chan_width;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_auth(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
uint32_t duration;
|
|
int generation = sc->sc_generation, err;
|
|
|
|
splassert(IPL_NET);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0],
|
|
ic->ic_ibss_chan, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0],
|
|
in->in_ni.ni_chan, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
|
|
if (err)
|
|
return err;
|
|
}
|
|
in->in_phyctxt = &sc->sc_phyctxt[0];
|
|
IEEE80211_ADDR_COPY(in->in_macaddr, in->in_ni.ni_macaddr);
|
|
iwm_setrates(in, 0);
|
|
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD, 0);
|
|
if (err) {
|
|
printf("%s: could not add MAC context (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
sc->sc_flags |= IWM_FLAG_MAC_ACTIVE;
|
|
|
|
err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD);
|
|
if (err) {
|
|
printf("%s: could not add binding (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto rm_mac_ctxt;
|
|
}
|
|
sc->sc_flags |= IWM_FLAG_BINDING_ACTIVE;
|
|
|
|
in->tid_disable_ampdu = 0xffff;
|
|
err = iwm_add_sta_cmd(sc, in, 0);
|
|
if (err) {
|
|
printf("%s: could not add sta (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto rm_binding;
|
|
}
|
|
sc->sc_flags |= IWM_FLAG_STA_ACTIVE;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
return 0;
|
|
|
|
/*
|
|
* Prevent the FW from wandering off channel during association
|
|
* by "protecting" the session with a time event.
|
|
*/
|
|
if (in->in_ni.ni_intval)
|
|
duration = in->in_ni.ni_intval * 2;
|
|
else
|
|
duration = IEEE80211_DUR_TU;
|
|
iwm_protect_session(sc, in, duration, in->in_ni.ni_intval / 2);
|
|
|
|
return 0;
|
|
|
|
rm_binding:
|
|
if (generation == sc->sc_generation) {
|
|
iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE);
|
|
sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE;
|
|
}
|
|
rm_mac_ctxt:
|
|
if (generation == sc->sc_generation) {
|
|
iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE, 0);
|
|
sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_deauth(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
int err;
|
|
|
|
splassert(IPL_NET);
|
|
|
|
iwm_unprotect_session(sc, in);
|
|
|
|
if (sc->sc_flags & IWM_FLAG_STA_ACTIVE) {
|
|
err = iwm_flush_sta(sc, in);
|
|
if (err)
|
|
return err;
|
|
err = iwm_rm_sta_cmd(sc, in);
|
|
if (err) {
|
|
printf("%s: could not remove STA (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
in->tid_disable_ampdu = 0xffff;
|
|
sc->sc_flags &= ~IWM_FLAG_STA_ACTIVE;
|
|
sc->sc_rx_ba_sessions = 0;
|
|
sc->ba_rx.start_tidmask = 0;
|
|
sc->ba_rx.stop_tidmask = 0;
|
|
sc->tx_ba_queue_mask = 0;
|
|
sc->ba_tx.start_tidmask = 0;
|
|
sc->ba_tx.stop_tidmask = 0;
|
|
}
|
|
|
|
if (sc->sc_flags & IWM_FLAG_BINDING_ACTIVE) {
|
|
err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE);
|
|
if (err) {
|
|
printf("%s: could not remove binding (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE;
|
|
}
|
|
|
|
if (sc->sc_flags & IWM_FLAG_MAC_ACTIVE) {
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE, 0);
|
|
if (err) {
|
|
printf("%s: could not remove MAC context (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE;
|
|
}
|
|
|
|
/* Move unused PHY context to a default channel. */
|
|
err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0],
|
|
&ic->ic_channels[1], 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_run(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
int err;
|
|
|
|
splassert(IPL_NET);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
/* Add a MAC context and a sniffing STA. */
|
|
err = iwm_auth(sc);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Configure Rx chains for MIMO and configure 40 MHz channel. */
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
uint8_t chains = iwm_mimo_enabled(sc) ? 2 : 1;
|
|
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
|
|
in->in_phyctxt->channel, chains, chains,
|
|
0, IEEE80211_HTOP0_SCO_SCN,
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
|
|
if (err) {
|
|
printf("%s: failed to update PHY\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
} else if (ni->ni_flags & IEEE80211_NODE_HT) {
|
|
uint8_t chains = iwm_mimo_enabled(sc) ? 2 : 1;
|
|
uint8_t sco, vht_chan_width;
|
|
if (IEEE80211_CHAN_40MHZ_ALLOWED(in->in_ni.ni_chan) &&
|
|
ieee80211_node_supports_ht_chan40(ni))
|
|
sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
|
|
else
|
|
sco = IEEE80211_HTOP0_SCO_SCN;
|
|
if ((ni->ni_flags & IEEE80211_NODE_VHT) &&
|
|
IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan) &&
|
|
ieee80211_node_supports_vht_chan80(ni))
|
|
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_80;
|
|
else
|
|
vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT;
|
|
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
|
|
in->in_phyctxt->channel, chains, chains,
|
|
0, sco, vht_chan_width);
|
|
if (err) {
|
|
printf("%s: failed to update PHY\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/* Update STA again to apply HT and VHT settings. */
|
|
err = iwm_add_sta_cmd(sc, in, 1);
|
|
if (err) {
|
|
printf("%s: could not update STA (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
/* We have now been assigned an associd by the AP. */
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
|
|
if (err) {
|
|
printf("%s: failed to update MAC\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
err = iwm_sf_config(sc, IWM_SF_FULL_ON);
|
|
if (err) {
|
|
printf("%s: could not set sf full on (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
err = iwm_allow_mcast(sc);
|
|
if (err) {
|
|
printf("%s: could not allow mcast (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
err = iwm_power_update_device(sc);
|
|
if (err) {
|
|
printf("%s: could not send power command (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
#ifdef notyet
|
|
/*
|
|
* Disabled for now. Default beacon filter settings
|
|
* prevent net80211 from getting ERP and HT protection
|
|
* updates from beacons.
|
|
*/
|
|
err = iwm_enable_beacon_filter(sc, in);
|
|
if (err) {
|
|
printf("%s: could not enable beacon filter\n",
|
|
DEVNAME(sc));
|
|
return err;
|
|
}
|
|
#endif
|
|
err = iwm_power_mac_update_mode(sc, in);
|
|
if (err) {
|
|
printf("%s: could not update MAC power (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) {
|
|
err = iwm_update_quotas(sc, in, 1);
|
|
if (err) {
|
|
printf("%s: could not update quotas (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
ieee80211_amrr_node_init(&sc->sc_amrr, &in->in_amn);
|
|
ieee80211_ra_node_init(&in->in_rn);
|
|
ieee80211_ra_vht_node_init(&in->in_rn_vht);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
iwm_led_blink_start(sc);
|
|
return 0;
|
|
}
|
|
|
|
/* Start at lowest available bit-rate, AMRR will raise. */
|
|
in->in_ni.ni_txrate = 0;
|
|
in->in_ni.ni_txmcs = 0;
|
|
in->in_ni.ni_vht_ss = 1;
|
|
iwm_setrates(in, 0);
|
|
|
|
timeout_add_msec(&sc->sc_calib_to, 500);
|
|
iwm_led_enable(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_run_stop(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
int err, i, tid;
|
|
|
|
splassert(IPL_NET);
|
|
|
|
/*
|
|
* Stop Tx/Rx BA sessions now. We cannot rely on the BA task
|
|
* for this when moving out of RUN state since it runs in a
|
|
* separate thread.
|
|
* Note that in->in_ni (struct ieee80211_node) already represents
|
|
* our new access point in case we are roaming between APs.
|
|
* This means we cannot rely on struct ieee802111_node to tell
|
|
* us which BA sessions exist.
|
|
*/
|
|
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
|
|
struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i];
|
|
if (rxba->baid == IWM_RX_REORDER_DATA_INVALID_BAID)
|
|
continue;
|
|
err = iwm_sta_rx_agg(sc, ni, rxba->tid, 0, 0, 0, 0);
|
|
if (err)
|
|
return err;
|
|
iwm_clear_reorder_buffer(sc, rxba);
|
|
if (sc->sc_rx_ba_sessions > 0)
|
|
sc->sc_rx_ba_sessions--;
|
|
}
|
|
for (tid = 0; tid < IWM_MAX_TID_COUNT; tid++) {
|
|
int qid = IWM_FIRST_AGG_TX_QUEUE + tid;
|
|
if ((sc->tx_ba_queue_mask & (1 << qid)) == 0)
|
|
continue;
|
|
err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0);
|
|
if (err)
|
|
return err;
|
|
err = iwm_disable_txq(sc, IWM_STATION_ID, qid, tid);
|
|
if (err)
|
|
return err;
|
|
in->tfd_queue_msk &= ~(1 << qid);
|
|
}
|
|
ieee80211_ba_del(ni);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
iwm_led_blink_stop(sc);
|
|
|
|
err = iwm_sf_config(sc, IWM_SF_INIT_OFF);
|
|
if (err)
|
|
return err;
|
|
|
|
iwm_disable_beacon_filter(sc);
|
|
|
|
if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) {
|
|
err = iwm_update_quotas(sc, in, 0);
|
|
if (err) {
|
|
printf("%s: could not update quotas (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/* Mark station as disassociated. */
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 0);
|
|
if (err) {
|
|
printf("%s: failed to update MAC\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
/* Reset Tx chains in case MIMO or 40 MHz channels were enabled. */
|
|
if (in->in_ni.ni_flags & IEEE80211_NODE_HT) {
|
|
err = iwm_phy_ctxt_update(sc, in->in_phyctxt,
|
|
in->in_phyctxt->channel, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN,
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
|
|
if (err) {
|
|
printf("%s: failed to update PHY\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct ieee80211_node *
|
|
iwm_node_alloc(struct ieee80211com *ic)
|
|
{
|
|
return malloc(sizeof (struct iwm_node), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
}
|
|
|
|
int
|
|
iwm_set_key_v1(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
struct iwm_add_sta_key_cmd_v1 cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.common.key_flags = htole16(IWM_STA_KEY_FLG_CCM |
|
|
IWM_STA_KEY_FLG_WEP_KEY_MAP |
|
|
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
|
|
IWM_STA_KEY_FLG_KEYID_MSK));
|
|
if (k->k_flags & IEEE80211_KEY_GROUP)
|
|
cmd.common.key_flags |= htole16(IWM_STA_KEY_MULTICAST);
|
|
|
|
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
|
|
cmd.common.key_offset = 0;
|
|
cmd.common.sta_id = IWM_STATION_ID;
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC,
|
|
sizeof(cmd), &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
struct iwm_add_sta_key_cmd cmd;
|
|
|
|
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
|
|
k->k_cipher != IEEE80211_CIPHER_CCMP) {
|
|
/* Fallback to software crypto for other ciphers. */
|
|
return (ieee80211_set_key(ic, ni, k));
|
|
}
|
|
|
|
if (!isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_TKIP_MIC_KEYS))
|
|
return iwm_set_key_v1(ic, ni, k);
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.common.key_flags = htole16(IWM_STA_KEY_FLG_CCM |
|
|
IWM_STA_KEY_FLG_WEP_KEY_MAP |
|
|
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
|
|
IWM_STA_KEY_FLG_KEYID_MSK));
|
|
if (k->k_flags & IEEE80211_KEY_GROUP)
|
|
cmd.common.key_flags |= htole16(IWM_STA_KEY_MULTICAST);
|
|
|
|
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
|
|
cmd.common.key_offset = 0;
|
|
cmd.common.sta_id = IWM_STATION_ID;
|
|
|
|
cmd.transmit_seq_cnt = htole64(k->k_tsc);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC,
|
|
sizeof(cmd), &cmd);
|
|
}
|
|
|
|
void
|
|
iwm_delete_key_v1(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
struct iwm_add_sta_key_cmd_v1 cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.common.key_flags = htole16(IWM_STA_KEY_NOT_VALID |
|
|
IWM_STA_KEY_FLG_NO_ENC | IWM_STA_KEY_FLG_WEP_KEY_MAP |
|
|
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
|
|
IWM_STA_KEY_FLG_KEYID_MSK));
|
|
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
|
|
cmd.common.key_offset = 0;
|
|
cmd.common.sta_id = IWM_STATION_ID;
|
|
|
|
iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
void
|
|
iwm_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
struct ieee80211_key *k)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
struct iwm_add_sta_key_cmd cmd;
|
|
|
|
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
|
|
(k->k_cipher != IEEE80211_CIPHER_CCMP)) {
|
|
/* Fallback to software crypto for other ciphers. */
|
|
ieee80211_delete_key(ic, ni, k);
|
|
return;
|
|
}
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_STA_ACTIVE) == 0)
|
|
return;
|
|
|
|
if (!isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_TKIP_MIC_KEYS))
|
|
return iwm_delete_key_v1(ic, ni, k);
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.common.key_flags = htole16(IWM_STA_KEY_NOT_VALID |
|
|
IWM_STA_KEY_FLG_NO_ENC | IWM_STA_KEY_FLG_WEP_KEY_MAP |
|
|
((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &
|
|
IWM_STA_KEY_FLG_KEYID_MSK));
|
|
memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len));
|
|
cmd.common.key_offset = 0;
|
|
cmd.common.sta_id = IWM_STATION_ID;
|
|
|
|
iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY, IWM_CMD_ASYNC, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
void
|
|
iwm_calib_timeout(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
int s;
|
|
|
|
s = splnet();
|
|
if ((ic->ic_fixed_rate == -1 || ic->ic_fixed_mcs == -1) &&
|
|
(ni->ni_flags & IEEE80211_NODE_HT) == 0 &&
|
|
ic->ic_opmode == IEEE80211_M_STA && ic->ic_bss) {
|
|
int old_txrate = ni->ni_txrate;
|
|
ieee80211_amrr_choose(&sc->sc_amrr, &in->in_ni, &in->in_amn);
|
|
/*
|
|
* If AMRR has chosen a new TX rate we must update
|
|
* the firmware's LQ rate table.
|
|
* ni_txrate may change again before the task runs so
|
|
* cache the chosen rate in the iwm_node structure.
|
|
*/
|
|
if (ni->ni_txrate != old_txrate)
|
|
iwm_setrates(in, 1);
|
|
}
|
|
|
|
splx(s);
|
|
|
|
timeout_add_msec(&sc->sc_calib_to, 500);
|
|
}
|
|
|
|
void
|
|
iwm_set_rate_table_vht(struct iwm_node *in, struct iwm_lq_cmd *lqcmd)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
int ridx_min = iwm_rval2ridx(ieee80211_min_basic_rate(ic));
|
|
int i, tab, txmcs;
|
|
|
|
/*
|
|
* Fill the LQ rate selection table with VHT rates in descending
|
|
* order, i.e. with the node's current TX rate first. Keep reducing
|
|
* channel width during later Tx attempts, and eventually fall back
|
|
* to legacy OFDM. Do not mix SISO and MIMO rates.
|
|
*/
|
|
lqcmd->mimo_delim = 0;
|
|
txmcs = ni->ni_txmcs;
|
|
for (i = 0; i < nitems(lqcmd->rs_table); i++) {
|
|
if (txmcs >= 0) {
|
|
tab = IWM_RATE_MCS_VHT_MSK;
|
|
tab |= txmcs & IWM_RATE_VHT_MCS_RATE_CODE_MSK;
|
|
tab |= ((ni->ni_vht_ss - 1) <<
|
|
IWM_RATE_VHT_MCS_NSS_POS) &
|
|
IWM_RATE_VHT_MCS_NSS_MSK;
|
|
if (ni->ni_vht_ss > 1)
|
|
tab |= IWM_RATE_MCS_ANT_AB_MSK;
|
|
else
|
|
tab |= iwm_valid_siso_ant_rate_mask(sc);
|
|
|
|
/*
|
|
* First two Tx attempts may use 80MHz/40MHz/SGI.
|
|
* Next two Tx attempts may use 40MHz/SGI.
|
|
* Beyond that use 20 MHz and decrease the rate.
|
|
* As a special case, MCS 9 is invalid on 20 Mhz.
|
|
*/
|
|
if (txmcs == 9) {
|
|
if (i < 2 && in->in_phyctxt->vht_chan_width >=
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_80)
|
|
tab |= IWM_RATE_MCS_CHAN_WIDTH_80;
|
|
else if (in->in_phyctxt->sco ==
|
|
IEEE80211_HTOP0_SCO_SCA ||
|
|
in->in_phyctxt->sco ==
|
|
IEEE80211_HTOP0_SCO_SCB)
|
|
tab |= IWM_RATE_MCS_CHAN_WIDTH_40;
|
|
else {
|
|
/* no 40 MHz, fall back on MCS 8 */
|
|
tab &= ~IWM_RATE_VHT_MCS_RATE_CODE_MSK;
|
|
tab |= 8;
|
|
}
|
|
|
|
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
|
|
if (i < 4) {
|
|
if (ieee80211_ra_vht_use_sgi(ni))
|
|
tab |= IWM_RATE_MCS_SGI_MSK;
|
|
} else
|
|
txmcs--;
|
|
} else if (i < 2 && in->in_phyctxt->vht_chan_width >=
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_80) {
|
|
tab |= IWM_RATE_MCS_CHAN_WIDTH_80;
|
|
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
|
|
if (ieee80211_ra_vht_use_sgi(ni))
|
|
tab |= IWM_RATE_MCS_SGI_MSK;
|
|
} else if (i < 4 &&
|
|
in->in_phyctxt->vht_chan_width >=
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT &&
|
|
(in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCA ||
|
|
in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCB)) {
|
|
tab |= IWM_RATE_MCS_CHAN_WIDTH_40;
|
|
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
|
|
if (ieee80211_ra_vht_use_sgi(ni))
|
|
tab |= IWM_RATE_MCS_SGI_MSK;
|
|
} else if (txmcs >= 0)
|
|
txmcs--;
|
|
} else {
|
|
/* Fill the rest with the lowest possible rate. */
|
|
tab = iwm_rates[ridx_min].plcp;
|
|
tab |= iwm_valid_siso_ant_rate_mask(sc);
|
|
if (ni->ni_vht_ss > 1 && lqcmd->mimo_delim == 0)
|
|
lqcmd->mimo_delim = i;
|
|
}
|
|
|
|
lqcmd->rs_table[i] = htole32(tab);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_set_rate_table(struct iwm_node *in, struct iwm_lq_cmd *lqcmd)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
struct ieee80211_rateset *rs = &ni->ni_rates;
|
|
int i, ridx, ridx_min, ridx_max, j, mimo, tab = 0;
|
|
|
|
/*
|
|
* Fill the LQ rate selection table with legacy and/or HT rates
|
|
* in descending order, i.e. with the node's current TX rate first.
|
|
* In cases where throughput of an HT rate corresponds to a legacy
|
|
* rate it makes no sense to add both. We rely on the fact that
|
|
* iwm_rates is laid out such that equivalent HT/legacy rates share
|
|
* the same IWM_RATE_*_INDEX value. Also, rates not applicable to
|
|
* legacy/HT are assumed to be marked with an 'invalid' PLCP value.
|
|
*/
|
|
j = 0;
|
|
ridx_min = iwm_rval2ridx(ieee80211_min_basic_rate(ic));
|
|
mimo = iwm_is_mimo_ht_mcs(ni->ni_txmcs);
|
|
ridx_max = (mimo ? IWM_RIDX_MAX : IWM_LAST_HT_SISO_RATE);
|
|
for (ridx = ridx_max; ridx >= ridx_min; ridx--) {
|
|
uint8_t plcp = iwm_rates[ridx].plcp;
|
|
uint8_t ht_plcp = iwm_rates[ridx].ht_plcp;
|
|
|
|
if (j >= nitems(lqcmd->rs_table))
|
|
break;
|
|
tab = 0;
|
|
if (ni->ni_flags & IEEE80211_NODE_HT) {
|
|
if (ht_plcp == IWM_RATE_HT_SISO_MCS_INV_PLCP)
|
|
continue;
|
|
/* Do not mix SISO and MIMO HT rates. */
|
|
if ((mimo && !iwm_is_mimo_ht_plcp(ht_plcp)) ||
|
|
(!mimo && iwm_is_mimo_ht_plcp(ht_plcp)))
|
|
continue;
|
|
for (i = ni->ni_txmcs; i >= 0; i--) {
|
|
if (isclr(ni->ni_rxmcs, i))
|
|
continue;
|
|
if (ridx != iwm_ht_mcs2ridx[i])
|
|
continue;
|
|
tab = ht_plcp;
|
|
tab |= IWM_RATE_MCS_HT_MSK;
|
|
/* First two Tx attempts may use 40MHz/SGI. */
|
|
if (j > 1)
|
|
break;
|
|
if (in->in_phyctxt->sco ==
|
|
IEEE80211_HTOP0_SCO_SCA ||
|
|
in->in_phyctxt->sco ==
|
|
IEEE80211_HTOP0_SCO_SCB) {
|
|
tab |= IWM_RATE_MCS_CHAN_WIDTH_40;
|
|
tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK;
|
|
}
|
|
if (ieee80211_ra_use_ht_sgi(ni))
|
|
tab |= IWM_RATE_MCS_SGI_MSK;
|
|
break;
|
|
}
|
|
} else if (plcp != IWM_RATE_INVM_PLCP) {
|
|
for (i = ni->ni_txrate; i >= 0; i--) {
|
|
if (iwm_rates[ridx].rate == (rs->rs_rates[i] &
|
|
IEEE80211_RATE_VAL)) {
|
|
tab = plcp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tab == 0)
|
|
continue;
|
|
|
|
if (iwm_is_mimo_ht_plcp(ht_plcp))
|
|
tab |= IWM_RATE_MCS_ANT_AB_MSK;
|
|
else
|
|
tab |= iwm_valid_siso_ant_rate_mask(sc);
|
|
|
|
if (IWM_RIDX_IS_CCK(ridx))
|
|
tab |= IWM_RATE_MCS_CCK_MSK;
|
|
lqcmd->rs_table[j++] = htole32(tab);
|
|
}
|
|
|
|
lqcmd->mimo_delim = (mimo ? j : 0);
|
|
|
|
/* Fill the rest with the lowest possible rate */
|
|
while (j < nitems(lqcmd->rs_table)) {
|
|
tab = iwm_rates[ridx_min].plcp;
|
|
if (IWM_RIDX_IS_CCK(ridx_min))
|
|
tab |= IWM_RATE_MCS_CCK_MSK;
|
|
tab |= iwm_valid_siso_ant_rate_mask(sc);
|
|
lqcmd->rs_table[j++] = htole32(tab);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_setrates(struct iwm_node *in, int async)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
struct iwm_lq_cmd lqcmd;
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_LQ_CMD,
|
|
.len = { sizeof(lqcmd), },
|
|
};
|
|
|
|
cmd.flags = async ? IWM_CMD_ASYNC : 0;
|
|
|
|
memset(&lqcmd, 0, sizeof(lqcmd));
|
|
lqcmd.sta_id = IWM_STATION_ID;
|
|
|
|
if (ic->ic_flags & IEEE80211_F_USEPROT)
|
|
lqcmd.flags |= IWM_LQ_FLAG_USE_RTS_MSK;
|
|
|
|
if (ni->ni_flags & IEEE80211_NODE_VHT)
|
|
iwm_set_rate_table_vht(in, &lqcmd);
|
|
else
|
|
iwm_set_rate_table(in, &lqcmd);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_9000 &&
|
|
(iwm_fw_valid_tx_ant(sc) & IWM_ANT_B))
|
|
lqcmd.single_stream_ant_msk = IWM_ANT_B;
|
|
else
|
|
lqcmd.single_stream_ant_msk = IWM_ANT_A;
|
|
lqcmd.dual_stream_ant_msk = IWM_ANT_AB;
|
|
|
|
lqcmd.agg_time_limit = htole16(4000); /* 4ms */
|
|
lqcmd.agg_disable_start_th = 3;
|
|
lqcmd.agg_frame_cnt_limit = 0x3f;
|
|
|
|
cmd.data[0] = &lqcmd;
|
|
iwm_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
int
|
|
iwm_media_change(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t rate, ridx;
|
|
int err;
|
|
|
|
err = ieee80211_media_change(ifp);
|
|
if (err != ENETRESET)
|
|
return err;
|
|
|
|
if (ic->ic_fixed_mcs != -1)
|
|
sc->sc_fixed_ridx = iwm_ht_mcs2ridx[ic->ic_fixed_mcs];
|
|
else if (ic->ic_fixed_rate != -1) {
|
|
rate = ic->ic_sup_rates[ic->ic_curmode].
|
|
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
|
|
/* Map 802.11 rate to HW rate index. */
|
|
for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
|
|
if (iwm_rates[ridx].rate == rate)
|
|
break;
|
|
sc->sc_fixed_ridx = ridx;
|
|
}
|
|
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
iwm_stop(ifp);
|
|
err = iwm_init(ifp);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_newstate_task(void *psc)
|
|
{
|
|
struct iwm_softc *sc = (struct iwm_softc *)psc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
enum ieee80211_state nstate = sc->ns_nstate;
|
|
enum ieee80211_state ostate = ic->ic_state;
|
|
int arg = sc->ns_arg;
|
|
int err = 0, s = splnet();
|
|
|
|
if (sc->sc_flags & IWM_FLAG_SHUTDOWN) {
|
|
/* iwm_stop() is waiting for us. */
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
if (ostate == IEEE80211_S_SCAN) {
|
|
if (nstate == ostate) {
|
|
if (sc->sc_flags & IWM_FLAG_SCANNING) {
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
return;
|
|
}
|
|
/* Firmware is no longer scanning. Do another scan. */
|
|
goto next_scan;
|
|
} else
|
|
iwm_led_blink_stop(sc);
|
|
}
|
|
|
|
if (nstate <= ostate) {
|
|
switch (ostate) {
|
|
case IEEE80211_S_RUN:
|
|
err = iwm_run_stop(sc);
|
|
if (err)
|
|
goto out;
|
|
/* FALLTHROUGH */
|
|
case IEEE80211_S_ASSOC:
|
|
case IEEE80211_S_AUTH:
|
|
if (nstate <= IEEE80211_S_AUTH) {
|
|
err = iwm_deauth(sc);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case IEEE80211_S_SCAN:
|
|
case IEEE80211_S_INIT:
|
|
break;
|
|
}
|
|
|
|
/* Die now if iwm_stop() was called while we were sleeping. */
|
|
if (sc->sc_flags & IWM_FLAG_SHUTDOWN) {
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (nstate) {
|
|
case IEEE80211_S_INIT:
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
next_scan:
|
|
err = iwm_scan(sc);
|
|
if (err)
|
|
break;
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
return;
|
|
|
|
case IEEE80211_S_AUTH:
|
|
err = iwm_auth(sc);
|
|
break;
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
|
err = iwm_run(sc);
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0) {
|
|
if (err)
|
|
task_add(systq, &sc->init_task);
|
|
else
|
|
sc->sc_newstate(ic, nstate, arg);
|
|
}
|
|
refcnt_rele_wake(&sc->task_refs);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
iwm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* Prevent attempts to transition towards the same state, unless
|
|
* we are scanning in which case a SCAN -> SCAN transition
|
|
* triggers another scan iteration. And AUTH -> AUTH is needed
|
|
* to support band-steering.
|
|
*/
|
|
if (sc->ns_nstate == nstate && nstate != IEEE80211_S_SCAN &&
|
|
nstate != IEEE80211_S_AUTH)
|
|
return 0;
|
|
|
|
if (ic->ic_state == IEEE80211_S_RUN) {
|
|
timeout_del(&sc->sc_calib_to);
|
|
iwm_del_task(sc, systq, &sc->ba_task);
|
|
iwm_del_task(sc, systq, &sc->mac_ctxt_task);
|
|
iwm_del_task(sc, systq, &sc->phy_ctxt_task);
|
|
iwm_del_task(sc, systq, &sc->bgscan_done_task);
|
|
}
|
|
|
|
sc->ns_nstate = nstate;
|
|
sc->ns_arg = arg;
|
|
|
|
iwm_add_task(sc, sc->sc_nswq, &sc->newstate_task);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_endscan(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if ((sc->sc_flags & (IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN)) == 0)
|
|
return;
|
|
|
|
sc->sc_flags &= ~(IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN);
|
|
ieee80211_end_scan(&ic->ic_if);
|
|
}
|
|
|
|
/*
|
|
* Aging and idle timeouts for the different possible scenarios
|
|
* in default configuration
|
|
*/
|
|
static const uint32_t
|
|
iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
|
|
{
|
|
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_BA_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_BA_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Aging and idle timeouts for the different possible scenarios
|
|
* in single BSS MAC configuration.
|
|
*/
|
|
static const uint32_t
|
|
iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
|
|
{
|
|
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
|
|
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
|
|
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_MCAST_AGING_TIMER),
|
|
htole32(IWM_SF_MCAST_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_BA_AGING_TIMER),
|
|
htole32(IWM_SF_BA_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_TX_RE_AGING_TIMER),
|
|
htole32(IWM_SF_TX_RE_IDLE_TIMER)
|
|
},
|
|
};
|
|
|
|
void
|
|
iwm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
|
|
struct ieee80211_node *ni)
|
|
{
|
|
int i, j, watermark;
|
|
|
|
sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
|
|
|
|
/*
|
|
* If we are in association flow - check antenna configuration
|
|
* capabilities of the AP station, and choose the watermark accordingly.
|
|
*/
|
|
if (ni) {
|
|
if (ni->ni_flags & IEEE80211_NODE_HT) {
|
|
if (ni->ni_rxmcs[1] != 0)
|
|
watermark = IWM_SF_W_MARK_MIMO2;
|
|
else
|
|
watermark = IWM_SF_W_MARK_SISO;
|
|
} else {
|
|
watermark = IWM_SF_W_MARK_LEGACY;
|
|
}
|
|
/* default watermark value for unassociated mode. */
|
|
} else {
|
|
watermark = IWM_SF_W_MARK_MIMO2;
|
|
}
|
|
sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
|
|
|
|
for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
|
|
for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
|
|
sf_cmd->long_delay_timeouts[i][j] =
|
|
htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
|
|
}
|
|
}
|
|
|
|
if (ni) {
|
|
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
|
|
sizeof(iwm_sf_full_timeout));
|
|
} else {
|
|
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
|
|
sizeof(iwm_sf_full_timeout_def));
|
|
}
|
|
|
|
}
|
|
|
|
int
|
|
iwm_sf_config(struct iwm_softc *sc, int new_state)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_sf_cfg_cmd sf_cmd = {
|
|
.state = htole32(new_state),
|
|
};
|
|
int err = 0;
|
|
|
|
#if 0 /* only used for models with sdio interface, in iwlwifi */
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
|
|
sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
|
|
#endif
|
|
|
|
switch (new_state) {
|
|
case IWM_SF_UNINIT:
|
|
case IWM_SF_INIT_OFF:
|
|
iwm_fill_sf_command(sc, &sf_cmd, NULL);
|
|
break;
|
|
case IWM_SF_FULL_ON:
|
|
iwm_fill_sf_command(sc, &sf_cmd, ic->ic_bss);
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
|
|
sizeof(sf_cmd), &sf_cmd);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_send_bt_init_conf(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_bt_coex_cmd bt_cmd;
|
|
|
|
bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
|
|
bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
|
|
&bt_cmd);
|
|
}
|
|
|
|
int
|
|
iwm_send_soc_conf(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_soc_configuration_cmd cmd;
|
|
int err;
|
|
uint32_t cmd_id, flags = 0;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
/*
|
|
* In VER_1 of this command, the discrete value is considered
|
|
* an integer; In VER_2, it's a bitmask. Since we have only 2
|
|
* values in VER_1, this is backwards-compatible with VER_2,
|
|
* as long as we don't set any other flag bits.
|
|
*/
|
|
if (!sc->sc_integrated) { /* VER_1 */
|
|
flags = IWM_SOC_CONFIG_CMD_FLAGS_DISCRETE;
|
|
} else { /* VER_2 */
|
|
uint8_t scan_cmd_ver;
|
|
if (sc->sc_ltr_delay != IWM_SOC_FLAGS_LTR_APPLY_DELAY_NONE)
|
|
flags |= (sc->sc_ltr_delay &
|
|
IWM_SOC_FLAGS_LTR_APPLY_DELAY_MASK);
|
|
scan_cmd_ver = iwm_lookup_cmd_ver(sc, IWM_LONG_GROUP,
|
|
IWM_SCAN_REQ_UMAC);
|
|
if (scan_cmd_ver != IWM_FW_CMD_VER_UNKNOWN &&
|
|
scan_cmd_ver >= 2 && sc->sc_low_latency_xtal)
|
|
flags |= IWM_SOC_CONFIG_CMD_FLAGS_LOW_LATENCY;
|
|
}
|
|
cmd.flags = htole32(flags);
|
|
|
|
cmd.latency = htole32(sc->sc_xtal_latency);
|
|
|
|
cmd_id = iwm_cmd_id(IWM_SOC_CONFIGURATION_CMD, IWM_SYSTEM_GROUP, 0);
|
|
err = iwm_send_cmd_pdu(sc, cmd_id, 0, sizeof(cmd), &cmd);
|
|
if (err)
|
|
printf("%s: failed to set soc latency: %d\n", DEVNAME(sc), err);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
|
|
{
|
|
struct iwm_mcc_update_cmd mcc_cmd;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = IWM_MCC_UPDATE_CMD,
|
|
.flags = IWM_CMD_WANT_RESP,
|
|
.resp_pkt_len = IWM_CMD_RESP_MAX,
|
|
.data = { &mcc_cmd },
|
|
};
|
|
struct iwm_rx_packet *pkt;
|
|
size_t resp_len;
|
|
int err;
|
|
int resp_v3 = isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V3);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000 &&
|
|
!sc->sc_nvm.lar_enabled) {
|
|
return 0;
|
|
}
|
|
|
|
memset(&mcc_cmd, 0, sizeof(mcc_cmd));
|
|
mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
|
|
isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
|
|
mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
|
|
else
|
|
mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
|
|
|
|
if (resp_v3) { /* same size as resp_v2 */
|
|
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
|
|
} else {
|
|
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
|
|
}
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
if (err)
|
|
return err;
|
|
|
|
pkt = hcmd.resp_pkt;
|
|
if (!pkt || (pkt->hdr.flags & IWM_CMD_FAILED_MSK)) {
|
|
err = EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (resp_v3) {
|
|
struct iwm_mcc_update_resp_v3 *resp;
|
|
resp_len = iwm_rx_packet_payload_len(pkt);
|
|
if (resp_len < sizeof(*resp)) {
|
|
err = EIO;
|
|
goto out;
|
|
}
|
|
|
|
resp = (void *)pkt->data;
|
|
if (resp_len != sizeof(*resp) +
|
|
resp->n_channels * sizeof(resp->channels[0])) {
|
|
err = EIO;
|
|
goto out;
|
|
}
|
|
} else {
|
|
struct iwm_mcc_update_resp_v1 *resp_v1;
|
|
resp_len = iwm_rx_packet_payload_len(pkt);
|
|
if (resp_len < sizeof(*resp_v1)) {
|
|
err = EIO;
|
|
goto out;
|
|
}
|
|
|
|
resp_v1 = (void *)pkt->data;
|
|
if (resp_len != sizeof(*resp_v1) +
|
|
resp_v1->n_channels * sizeof(resp_v1->channels[0])) {
|
|
err = EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
iwm_free_resp(sc, &hcmd);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_send_temp_report_ths_cmd(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_temp_report_ths_cmd cmd;
|
|
int err;
|
|
|
|
/*
|
|
* In order to give responsibility for critical-temperature-kill
|
|
* and TX backoff to FW we need to send an empty temperature
|
|
* reporting command at init time.
|
|
*/
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
err = iwm_send_cmd_pdu(sc,
|
|
IWM_WIDE_ID(IWM_PHY_OPS_GROUP, IWM_TEMP_REPORTING_THRESHOLDS_CMD),
|
|
0, sizeof(cmd), &cmd);
|
|
if (err)
|
|
printf("%s: TEMP_REPORT_THS_CMD command failed (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
|
|
return err;
|
|
}
|
|
|
|
void
|
|
iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
|
|
{
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
|
|
.len = { sizeof(uint32_t), },
|
|
.data = { &backoff, },
|
|
};
|
|
|
|
iwm_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
void
|
|
iwm_free_fw_paging(struct iwm_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (sc->fw_paging_db[0].fw_paging_block.vaddr == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < IWM_NUM_OF_FW_PAGING_BLOCKS; i++) {
|
|
iwm_dma_contig_free(&sc->fw_paging_db[i].fw_paging_block);
|
|
}
|
|
|
|
memset(sc->fw_paging_db, 0, sizeof(sc->fw_paging_db));
|
|
}
|
|
|
|
int
|
|
iwm_fill_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *image)
|
|
{
|
|
int sec_idx, idx;
|
|
uint32_t offset = 0;
|
|
|
|
/*
|
|
* find where is the paging image start point:
|
|
* if CPU2 exist and it's in paging format, then the image looks like:
|
|
* CPU1 sections (2 or more)
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between CPU1 to CPU2
|
|
* CPU2 sections (not paged)
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between CPU2
|
|
* non paged to CPU2 paging sec
|
|
* CPU2 paging CSS
|
|
* CPU2 paging image (including instruction and data)
|
|
*/
|
|
for (sec_idx = 0; sec_idx < IWM_UCODE_SECT_MAX; sec_idx++) {
|
|
if (image->fw_sect[sec_idx].fws_devoff ==
|
|
IWM_PAGING_SEPARATOR_SECTION) {
|
|
sec_idx++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If paging is enabled there should be at least 2 more sections left
|
|
* (one for CSS and one for Paging data)
|
|
*/
|
|
if (sec_idx >= nitems(image->fw_sect) - 1) {
|
|
printf("%s: Paging: Missing CSS and/or paging sections\n",
|
|
DEVNAME(sc));
|
|
iwm_free_fw_paging(sc);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* copy the CSS block to the dram */
|
|
DPRINTF(("%s: Paging: load paging CSS to FW, sec = %d\n",
|
|
DEVNAME(sc), sec_idx));
|
|
|
|
memcpy(sc->fw_paging_db[0].fw_paging_block.vaddr,
|
|
image->fw_sect[sec_idx].fws_data,
|
|
sc->fw_paging_db[0].fw_paging_size);
|
|
|
|
DPRINTF(("%s: Paging: copied %d CSS bytes to first block\n",
|
|
DEVNAME(sc), sc->fw_paging_db[0].fw_paging_size));
|
|
|
|
sec_idx++;
|
|
|
|
/*
|
|
* copy the paging blocks to the dram
|
|
* loop index start from 1 since that CSS block already copied to dram
|
|
* and CSS index is 0.
|
|
* loop stop at num_of_paging_blk since that last block is not full.
|
|
*/
|
|
for (idx = 1; idx < sc->num_of_paging_blk; idx++) {
|
|
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
|
|
(const char *)image->fw_sect[sec_idx].fws_data + offset,
|
|
sc->fw_paging_db[idx].fw_paging_size);
|
|
|
|
DPRINTF(("%s: Paging: copied %d paging bytes to block %d\n",
|
|
DEVNAME(sc), sc->fw_paging_db[idx].fw_paging_size, idx));
|
|
|
|
offset += sc->fw_paging_db[idx].fw_paging_size;
|
|
}
|
|
|
|
/* copy the last paging block */
|
|
if (sc->num_of_pages_in_last_blk > 0) {
|
|
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
|
|
(const char *)image->fw_sect[sec_idx].fws_data + offset,
|
|
IWM_FW_PAGING_SIZE * sc->num_of_pages_in_last_blk);
|
|
|
|
DPRINTF(("%s: Paging: copied %d pages in the last block %d\n",
|
|
DEVNAME(sc), sc->num_of_pages_in_last_blk, idx));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_alloc_fw_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *image)
|
|
{
|
|
int blk_idx = 0;
|
|
int error, num_of_pages;
|
|
|
|
if (sc->fw_paging_db[0].fw_paging_block.vaddr != NULL) {
|
|
int i;
|
|
/* Device got reset, and we setup firmware paging again */
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
sc->fw_paging_db[0].fw_paging_block.map,
|
|
0, IWM_FW_PAGING_SIZE,
|
|
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
|
|
for (i = 1; i < sc->num_of_paging_blk + 1; i++) {
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
sc->fw_paging_db[i].fw_paging_block.map,
|
|
0, IWM_PAGING_BLOCK_SIZE,
|
|
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* ensure IWM_BLOCK_2_EXP_SIZE is power of 2 of IWM_PAGING_BLOCK_SIZE */
|
|
#if (1 << IWM_BLOCK_2_EXP_SIZE) != IWM_PAGING_BLOCK_SIZE
|
|
#error IWM_BLOCK_2_EXP_SIZE must be power of 2 of IWM_PAGING_BLOCK_SIZE
|
|
#endif
|
|
|
|
num_of_pages = image->paging_mem_size / IWM_FW_PAGING_SIZE;
|
|
sc->num_of_paging_blk =
|
|
((num_of_pages - 1) / IWM_NUM_OF_PAGE_PER_GROUP) + 1;
|
|
|
|
sc->num_of_pages_in_last_blk =
|
|
num_of_pages -
|
|
IWM_NUM_OF_PAGE_PER_GROUP * (sc->num_of_paging_blk - 1);
|
|
|
|
DPRINTF(("%s: Paging: allocating mem for %d paging blocks, each block"
|
|
" holds 8 pages, last block holds %d pages\n", DEVNAME(sc),
|
|
sc->num_of_paging_blk,
|
|
sc->num_of_pages_in_last_blk));
|
|
|
|
/* allocate block of 4Kbytes for paging CSS */
|
|
error = iwm_dma_contig_alloc(sc->sc_dmat,
|
|
&sc->fw_paging_db[blk_idx].fw_paging_block, IWM_FW_PAGING_SIZE,
|
|
4096);
|
|
if (error) {
|
|
/* free all the previous pages since we failed */
|
|
iwm_free_fw_paging(sc);
|
|
return ENOMEM;
|
|
}
|
|
|
|
sc->fw_paging_db[blk_idx].fw_paging_size = IWM_FW_PAGING_SIZE;
|
|
|
|
DPRINTF(("%s: Paging: allocated 4K(CSS) bytes for firmware paging.\n",
|
|
DEVNAME(sc)));
|
|
|
|
/*
|
|
* allocate blocks in dram.
|
|
* since that CSS allocated in fw_paging_db[0] loop start from index 1
|
|
*/
|
|
for (blk_idx = 1; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
|
|
/* allocate block of IWM_PAGING_BLOCK_SIZE (32K) */
|
|
/* XXX Use iwm_dma_contig_alloc for allocating */
|
|
error = iwm_dma_contig_alloc(sc->sc_dmat,
|
|
&sc->fw_paging_db[blk_idx].fw_paging_block,
|
|
IWM_PAGING_BLOCK_SIZE, 4096);
|
|
if (error) {
|
|
/* free all the previous pages since we failed */
|
|
iwm_free_fw_paging(sc);
|
|
return ENOMEM;
|
|
}
|
|
|
|
sc->fw_paging_db[blk_idx].fw_paging_size =
|
|
IWM_PAGING_BLOCK_SIZE;
|
|
|
|
DPRINTF((
|
|
"%s: Paging: allocated 32K bytes for firmware paging.\n",
|
|
DEVNAME(sc)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_save_fw_paging(struct iwm_softc *sc, const struct iwm_fw_sects *fw)
|
|
{
|
|
int ret;
|
|
|
|
ret = iwm_alloc_fw_paging_mem(sc, fw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return iwm_fill_paging_mem(sc, fw);
|
|
}
|
|
|
|
/* send paging cmd to FW in case CPU2 has paging image */
|
|
int
|
|
iwm_send_paging_cmd(struct iwm_softc *sc, const struct iwm_fw_sects *fw)
|
|
{
|
|
int blk_idx;
|
|
uint32_t dev_phy_addr;
|
|
struct iwm_fw_paging_cmd fw_paging_cmd = {
|
|
.flags =
|
|
htole32(IWM_PAGING_CMD_IS_SECURED |
|
|
IWM_PAGING_CMD_IS_ENABLED |
|
|
(sc->num_of_pages_in_last_blk <<
|
|
IWM_PAGING_CMD_NUM_OF_PAGES_IN_LAST_GRP_POS)),
|
|
.block_size = htole32(IWM_BLOCK_2_EXP_SIZE),
|
|
.block_num = htole32(sc->num_of_paging_blk),
|
|
};
|
|
|
|
/* loop for all paging blocks + CSS block */
|
|
for (blk_idx = 0; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
|
|
dev_phy_addr = htole32(
|
|
sc->fw_paging_db[blk_idx].fw_paging_block.paddr >>
|
|
IWM_PAGE_2_EXP_SIZE);
|
|
fw_paging_cmd.device_phy_addr[blk_idx] = dev_phy_addr;
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
sc->fw_paging_db[blk_idx].fw_paging_block.map, 0,
|
|
blk_idx == 0 ? IWM_FW_PAGING_SIZE : IWM_PAGING_BLOCK_SIZE,
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
}
|
|
|
|
return iwm_send_cmd_pdu(sc, iwm_cmd_id(IWM_FW_PAGING_BLOCK_CMD,
|
|
IWM_LONG_GROUP, 0),
|
|
0, sizeof(fw_paging_cmd), &fw_paging_cmd);
|
|
}
|
|
|
|
int
|
|
iwm_init_hw(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int err, i, ac, qid, s;
|
|
|
|
err = iwm_run_init_mvm_ucode(sc, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Should stop and start HW since INIT image just loaded. */
|
|
iwm_stop_device(sc);
|
|
err = iwm_start_hw(sc);
|
|
if (err) {
|
|
printf("%s: could not initialize hardware\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
/* Restart, this time with the regular firmware */
|
|
s = splnet();
|
|
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
|
|
if (err) {
|
|
printf("%s: could not load firmware\n", DEVNAME(sc));
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
if (!iwm_nic_lock(sc)) {
|
|
splx(s);
|
|
return EBUSY;
|
|
}
|
|
|
|
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
|
|
if (err) {
|
|
printf("%s: could not init tx ant config (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_send_phy_db_data(sc);
|
|
if (err) {
|
|
printf("%s: could not init phy db (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_send_phy_cfg_cmd(sc);
|
|
if (err) {
|
|
printf("%s: could not send phy config (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_send_bt_init_conf(sc);
|
|
if (err) {
|
|
printf("%s: could not init bt coex (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_SOC_LATENCY_SUPPORT)) {
|
|
err = iwm_send_soc_conf(sc);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)) {
|
|
err = iwm_send_dqa_cmd(sc);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
|
|
/* Add auxiliary station for scanning */
|
|
err = iwm_add_aux_sta(sc);
|
|
if (err) {
|
|
printf("%s: could not add aux station (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
|
|
/*
|
|
* The channel used here isn't relevant as it's
|
|
* going to be overwritten in the other flows.
|
|
* For now use the first channel we have.
|
|
*/
|
|
sc->sc_phyctxt[i].id = i;
|
|
sc->sc_phyctxt[i].channel = &ic->ic_channels[1];
|
|
err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[i], 1, 1,
|
|
IWM_FW_CTXT_ACTION_ADD, 0, IEEE80211_HTOP0_SCO_SCN,
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT);
|
|
if (err) {
|
|
printf("%s: could not add phy context %d (error %d)\n",
|
|
DEVNAME(sc), i, err);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Initialize tx backoffs to the minimum. */
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
|
|
iwm_tt_tx_backoff(sc, 0);
|
|
|
|
|
|
err = iwm_config_ltr(sc);
|
|
if (err) {
|
|
printf("%s: PCIe LTR configuration failed (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
}
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_CT_KILL_BY_FW)) {
|
|
err = iwm_send_temp_report_ths_cmd(sc);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_power_update_device(sc);
|
|
if (err) {
|
|
printf("%s: could not send power command (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
|
|
err = iwm_send_update_mcc_cmd(sc, "ZZ");
|
|
if (err) {
|
|
printf("%s: could not init LAR (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
|
|
err = iwm_config_umac_scan(sc);
|
|
if (err) {
|
|
printf("%s: could not configure scan (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
qid = IWM_DQA_INJECT_MONITOR_QUEUE;
|
|
else
|
|
qid = IWM_AUX_QUEUE;
|
|
err = iwm_enable_txq(sc, IWM_MONITOR_STA_ID, qid,
|
|
iwm_ac_to_tx_fifo[EDCA_AC_BE], 0, IWM_MAX_TID_COUNT, 0);
|
|
if (err) {
|
|
printf("%s: could not enable monitor inject Tx queue "
|
|
"(error %d)\n", DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
} else {
|
|
for (ac = 0; ac < EDCA_NUM_AC; ac++) {
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DQA_SUPPORT))
|
|
qid = ac + IWM_DQA_MIN_MGMT_QUEUE;
|
|
else
|
|
qid = ac;
|
|
err = iwm_enable_txq(sc, IWM_STATION_ID, qid,
|
|
iwm_ac_to_tx_fifo[ac], 0, IWM_TID_NON_QOS, 0);
|
|
if (err) {
|
|
printf("%s: could not enable Tx queue %d "
|
|
"(error %d)\n", DEVNAME(sc), ac, err);
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
err = iwm_disable_beacon_filter(sc);
|
|
if (err) {
|
|
printf("%s: could not disable beacon filter (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
iwm_nic_unlock(sc);
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
/* Allow multicast from our BSSID. */
|
|
int
|
|
iwm_allow_mcast(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
struct iwm_mcast_filter_cmd *cmd;
|
|
size_t size;
|
|
int err;
|
|
|
|
size = roundup(sizeof(*cmd), 4);
|
|
cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (cmd == NULL)
|
|
return ENOMEM;
|
|
cmd->filter_own = 1;
|
|
cmd->port_id = 0;
|
|
cmd->count = 0;
|
|
cmd->pass_all = 1;
|
|
IEEE80211_ADDR_COPY(cmd->bssid, in->in_macaddr);
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
|
|
0, size, cmd);
|
|
free(cmd, M_DEVBUF, size);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iwm_init(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int err, generation;
|
|
|
|
rw_assert_wrlock(&sc->ioctl_rwl);
|
|
|
|
generation = ++sc->sc_generation;
|
|
|
|
err = iwm_preinit(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_start_hw(sc);
|
|
if (err) {
|
|
printf("%s: could not initialize hardware\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
err = iwm_init_hw(sc);
|
|
if (err) {
|
|
if (generation == sc->sc_generation)
|
|
iwm_stop_device(sc);
|
|
return err;
|
|
}
|
|
|
|
if (sc->sc_nvm.sku_cap_11n_enable)
|
|
iwm_setup_ht_rates(sc);
|
|
if (sc->sc_nvm.sku_cap_11ac_enable)
|
|
iwm_setup_vht_rates(sc);
|
|
|
|
KASSERT(sc->task_refs.r_refs == 0);
|
|
refcnt_init(&sc->task_refs);
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
return 0;
|
|
}
|
|
|
|
ieee80211_begin_scan(ifp);
|
|
|
|
/*
|
|
* ieee80211_begin_scan() ends up scheduling iwm_newstate_task().
|
|
* Wait until the transition to SCAN state has completed.
|
|
*/
|
|
do {
|
|
err = tsleep_nsec(&ic->ic_state, PCATCH, "iwminit",
|
|
SEC_TO_NSEC(1));
|
|
if (generation != sc->sc_generation)
|
|
return ENXIO;
|
|
if (err) {
|
|
iwm_stop(ifp);
|
|
return err;
|
|
}
|
|
} while (ic->ic_state != IEEE80211_S_SCAN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_start(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
int ac = EDCA_AC_BE; /* XXX */
|
|
|
|
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
|
|
return;
|
|
|
|
for (;;) {
|
|
/* why isn't this done per-queue? */
|
|
if (sc->qfullmsk != 0) {
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
break;
|
|
}
|
|
|
|
/* Don't queue additional frames while flushing Tx queues. */
|
|
if (sc->sc_flags & IWM_FLAG_TXFLUSH)
|
|
break;
|
|
|
|
/* need to send management frames even if we're not RUNning */
|
|
m = mq_dequeue(&ic->ic_mgtq);
|
|
if (m) {
|
|
ni = m->m_pkthdr.ph_cookie;
|
|
goto sendit;
|
|
}
|
|
|
|
if (ic->ic_state != IEEE80211_S_RUN ||
|
|
(ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY))
|
|
break;
|
|
|
|
m = ifq_dequeue(&ifp->if_snd);
|
|
if (!m)
|
|
break;
|
|
if (m->m_len < sizeof (*eh) &&
|
|
(m = m_pullup(m, sizeof (*eh))) == NULL) {
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf != NULL)
|
|
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
|
|
#endif
|
|
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
sendit:
|
|
#if NBPFILTER > 0
|
|
if (ic->ic_rawbpf != NULL)
|
|
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
|
|
#endif
|
|
if (iwm_tx(sc, m, ni, ac) != 0) {
|
|
ieee80211_release_node(ic, ni);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
iwm_stop(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (void *)ic->ic_bss;
|
|
int i, s = splnet();
|
|
|
|
rw_assert_wrlock(&sc->ioctl_rwl);
|
|
|
|
sc->sc_flags |= IWM_FLAG_SHUTDOWN; /* Disallow new tasks. */
|
|
|
|
/* Cancel scheduled tasks and let any stale tasks finish up. */
|
|
task_del(systq, &sc->init_task);
|
|
iwm_del_task(sc, sc->sc_nswq, &sc->newstate_task);
|
|
iwm_del_task(sc, systq, &sc->ba_task);
|
|
iwm_del_task(sc, systq, &sc->mac_ctxt_task);
|
|
iwm_del_task(sc, systq, &sc->phy_ctxt_task);
|
|
iwm_del_task(sc, systq, &sc->bgscan_done_task);
|
|
KASSERT(sc->task_refs.r_refs >= 1);
|
|
refcnt_finalize(&sc->task_refs, "iwmstop");
|
|
|
|
iwm_stop_device(sc);
|
|
|
|
free(sc->bgscan_unref_arg, M_DEVBUF, sc->bgscan_unref_arg_size);
|
|
sc->bgscan_unref_arg = NULL;
|
|
sc->bgscan_unref_arg_size = 0;
|
|
|
|
/* Reset soft state. */
|
|
|
|
sc->sc_generation++;
|
|
for (i = 0; i < nitems(sc->sc_cmd_resp_pkt); i++) {
|
|
free(sc->sc_cmd_resp_pkt[i], M_DEVBUF, sc->sc_cmd_resp_len[i]);
|
|
sc->sc_cmd_resp_pkt[i] = NULL;
|
|
sc->sc_cmd_resp_len[i] = 0;
|
|
}
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
in->in_phyctxt = NULL;
|
|
in->tid_disable_ampdu = 0xffff;
|
|
in->tfd_queue_msk = 0;
|
|
IEEE80211_ADDR_COPY(in->in_macaddr, etheranyaddr);
|
|
|
|
sc->sc_flags &= ~(IWM_FLAG_SCANNING | IWM_FLAG_BGSCAN);
|
|
sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE;
|
|
sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE;
|
|
sc->sc_flags &= ~IWM_FLAG_STA_ACTIVE;
|
|
sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
|
|
sc->sc_flags &= ~IWM_FLAG_HW_ERR;
|
|
sc->sc_flags &= ~IWM_FLAG_SHUTDOWN;
|
|
sc->sc_flags &= ~IWM_FLAG_TXFLUSH;
|
|
|
|
sc->sc_rx_ba_sessions = 0;
|
|
sc->ba_rx.start_tidmask = 0;
|
|
sc->ba_rx.stop_tidmask = 0;
|
|
sc->tx_ba_queue_mask = 0;
|
|
sc->ba_tx.start_tidmask = 0;
|
|
sc->ba_tx.stop_tidmask = 0;
|
|
|
|
sc->sc_newstate(ic, IEEE80211_S_INIT, -1);
|
|
sc->ns_nstate = IEEE80211_S_INIT;
|
|
|
|
timeout_del(&sc->sc_calib_to); /* XXX refcount? */
|
|
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
|
|
struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i];
|
|
iwm_clear_reorder_buffer(sc, rxba);
|
|
}
|
|
iwm_led_blink_stop(sc);
|
|
memset(sc->sc_tx_timer, 0, sizeof(sc->sc_tx_timer));
|
|
ifp->if_timer = 0;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
iwm_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
int i;
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* We maintain a separate timer for each Tx queue because
|
|
* Tx aggregation queues can get "stuck" while other queues
|
|
* keep working. The Linux driver uses a similar workaround.
|
|
*/
|
|
for (i = 0; i < nitems(sc->sc_tx_timer); i++) {
|
|
if (sc->sc_tx_timer[i] > 0) {
|
|
if (--sc->sc_tx_timer[i] == 0) {
|
|
printf("%s: device timeout\n", DEVNAME(sc));
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
iwm_nic_error(sc);
|
|
iwm_dump_driver_status(sc);
|
|
}
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
|
|
task_add(systq, &sc->init_task);
|
|
ifp->if_oerrors++;
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
ieee80211_watchdog(ifp);
|
|
}
|
|
|
|
int
|
|
iwm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
int s, err = 0, generation = sc->sc_generation;
|
|
|
|
/*
|
|
* Prevent processes from entering this function while another
|
|
* process is tsleep'ing in it.
|
|
*/
|
|
err = rw_enter(&sc->ioctl_rwl, RW_WRITE | RW_INTR);
|
|
if (err == 0 && generation != sc->sc_generation) {
|
|
rw_exit(&sc->ioctl_rwl);
|
|
return ENXIO;
|
|
}
|
|
if (err)
|
|
return err;
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (!(ifp->if_flags & IFF_RUNNING)) {
|
|
/* Force reload of firmware image from disk. */
|
|
sc->sc_fw.fw_status = IWM_FW_STATUS_NONE;
|
|
err = iwm_init(ifp);
|
|
}
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
iwm_stop(ifp);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
err = ieee80211_ioctl(ifp, cmd, data);
|
|
}
|
|
|
|
if (err == ENETRESET) {
|
|
err = 0;
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
iwm_stop(ifp);
|
|
err = iwm_init(ifp);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
rw_exit(&sc->ioctl_rwl);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Note: This structure is read from the device with IO accesses,
|
|
* and the reading already does the endian conversion. As it is
|
|
* read with uint32_t-sized accesses, any members with a different size
|
|
* need to be ordered correctly though!
|
|
*/
|
|
struct iwm_error_event_table {
|
|
uint32_t valid; /* (nonzero) valid, (0) log is empty */
|
|
uint32_t error_id; /* type of error */
|
|
uint32_t trm_hw_status0; /* TRM HW status */
|
|
uint32_t trm_hw_status1; /* TRM HW status */
|
|
uint32_t blink2; /* branch link */
|
|
uint32_t ilink1; /* interrupt link */
|
|
uint32_t ilink2; /* interrupt link */
|
|
uint32_t data1; /* error-specific data */
|
|
uint32_t data2; /* error-specific data */
|
|
uint32_t data3; /* error-specific data */
|
|
uint32_t bcon_time; /* beacon timer */
|
|
uint32_t tsf_low; /* network timestamp function timer */
|
|
uint32_t tsf_hi; /* network timestamp function timer */
|
|
uint32_t gp1; /* GP1 timer register */
|
|
uint32_t gp2; /* GP2 timer register */
|
|
uint32_t fw_rev_type; /* firmware revision type */
|
|
uint32_t major; /* uCode version major */
|
|
uint32_t minor; /* uCode version minor */
|
|
uint32_t hw_ver; /* HW Silicon version */
|
|
uint32_t brd_ver; /* HW board version */
|
|
uint32_t log_pc; /* log program counter */
|
|
uint32_t frame_ptr; /* frame pointer */
|
|
uint32_t stack_ptr; /* stack pointer */
|
|
uint32_t hcmd; /* last host command header */
|
|
uint32_t isr0; /* isr status register LMPM_NIC_ISR0:
|
|
* rxtx_flag */
|
|
uint32_t isr1; /* isr status register LMPM_NIC_ISR1:
|
|
* host_flag */
|
|
uint32_t isr2; /* isr status register LMPM_NIC_ISR2:
|
|
* enc_flag */
|
|
uint32_t isr3; /* isr status register LMPM_NIC_ISR3:
|
|
* time_flag */
|
|
uint32_t isr4; /* isr status register LMPM_NIC_ISR4:
|
|
* wico interrupt */
|
|
uint32_t last_cmd_id; /* last HCMD id handled by the firmware */
|
|
uint32_t wait_event; /* wait event() caller address */
|
|
uint32_t l2p_control; /* L2pControlField */
|
|
uint32_t l2p_duration; /* L2pDurationField */
|
|
uint32_t l2p_mhvalid; /* L2pMhValidBits */
|
|
uint32_t l2p_addr_match; /* L2pAddrMatchStat */
|
|
uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on
|
|
* (LMPM_PMG_SEL) */
|
|
uint32_t u_timestamp; /* indicate when the date and time of the
|
|
* compilation */
|
|
uint32_t flow_handler; /* FH read/write pointers, RX credit */
|
|
} __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
|
|
|
|
/*
|
|
* UMAC error struct - relevant starting from family 8000 chip.
|
|
* Note: This structure is read from the device with IO accesses,
|
|
* and the reading already does the endian conversion. As it is
|
|
* read with u32-sized accesses, any members with a different size
|
|
* need to be ordered correctly though!
|
|
*/
|
|
struct iwm_umac_error_event_table {
|
|
uint32_t valid; /* (nonzero) valid, (0) log is empty */
|
|
uint32_t error_id; /* type of error */
|
|
uint32_t blink1; /* branch link */
|
|
uint32_t blink2; /* branch link */
|
|
uint32_t ilink1; /* interrupt link */
|
|
uint32_t ilink2; /* interrupt link */
|
|
uint32_t data1; /* error-specific data */
|
|
uint32_t data2; /* error-specific data */
|
|
uint32_t data3; /* error-specific data */
|
|
uint32_t umac_major;
|
|
uint32_t umac_minor;
|
|
uint32_t frame_pointer; /* core register 27*/
|
|
uint32_t stack_pointer; /* core register 28 */
|
|
uint32_t cmd_header; /* latest host cmd sent to UMAC */
|
|
uint32_t nic_isr_pref; /* ISR status register */
|
|
} __packed;
|
|
|
|
#define ERROR_START_OFFSET (1 * sizeof(uint32_t))
|
|
#define ERROR_ELEM_SIZE (7 * sizeof(uint32_t))
|
|
|
|
void
|
|
iwm_nic_umac_error(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_umac_error_event_table table;
|
|
uint32_t base;
|
|
|
|
base = sc->sc_uc.uc_umac_error_event_table;
|
|
|
|
if (base < 0x800000) {
|
|
printf("%s: Invalid error log pointer 0x%08x\n",
|
|
DEVNAME(sc), base);
|
|
return;
|
|
}
|
|
|
|
if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
|
|
printf("%s: reading errlog failed\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
|
|
printf("%s: Start UMAC Error Log Dump:\n", DEVNAME(sc));
|
|
printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc),
|
|
sc->sc_flags, table.valid);
|
|
}
|
|
|
|
printf("%s: 0x%08X | %s\n", DEVNAME(sc), table.error_id,
|
|
iwm_desc_lookup(table.error_id));
|
|
printf("%s: 0x%08X | umac branchlink1\n", DEVNAME(sc), table.blink1);
|
|
printf("%s: 0x%08X | umac branchlink2\n", DEVNAME(sc), table.blink2);
|
|
printf("%s: 0x%08X | umac interruptlink1\n", DEVNAME(sc), table.ilink1);
|
|
printf("%s: 0x%08X | umac interruptlink2\n", DEVNAME(sc), table.ilink2);
|
|
printf("%s: 0x%08X | umac data1\n", DEVNAME(sc), table.data1);
|
|
printf("%s: 0x%08X | umac data2\n", DEVNAME(sc), table.data2);
|
|
printf("%s: 0x%08X | umac data3\n", DEVNAME(sc), table.data3);
|
|
printf("%s: 0x%08X | umac major\n", DEVNAME(sc), table.umac_major);
|
|
printf("%s: 0x%08X | umac minor\n", DEVNAME(sc), table.umac_minor);
|
|
printf("%s: 0x%08X | frame pointer\n", DEVNAME(sc),
|
|
table.frame_pointer);
|
|
printf("%s: 0x%08X | stack pointer\n", DEVNAME(sc),
|
|
table.stack_pointer);
|
|
printf("%s: 0x%08X | last host cmd\n", DEVNAME(sc), table.cmd_header);
|
|
printf("%s: 0x%08X | isr status reg\n", DEVNAME(sc),
|
|
table.nic_isr_pref);
|
|
}
|
|
|
|
#define IWM_FW_SYSASSERT_CPU_MASK 0xf0000000
|
|
static struct {
|
|
const char *name;
|
|
uint8_t num;
|
|
} advanced_lookup[] = {
|
|
{ "NMI_INTERRUPT_WDG", 0x34 },
|
|
{ "SYSASSERT", 0x35 },
|
|
{ "UCODE_VERSION_MISMATCH", 0x37 },
|
|
{ "BAD_COMMAND", 0x38 },
|
|
{ "BAD_COMMAND", 0x39 },
|
|
{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
|
|
{ "FATAL_ERROR", 0x3D },
|
|
{ "NMI_TRM_HW_ERR", 0x46 },
|
|
{ "NMI_INTERRUPT_TRM", 0x4C },
|
|
{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
|
|
{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
|
|
{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
|
|
{ "NMI_INTERRUPT_HOST", 0x66 },
|
|
{ "NMI_INTERRUPT_LMAC_FATAL", 0x70 },
|
|
{ "NMI_INTERRUPT_UMAC_FATAL", 0x71 },
|
|
{ "NMI_INTERRUPT_OTHER_LMAC_FATAL", 0x73 },
|
|
{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
|
|
{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
|
|
{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
|
|
{ "ADVANCED_SYSASSERT", 0 },
|
|
};
|
|
|
|
const char *
|
|
iwm_desc_lookup(uint32_t num)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nitems(advanced_lookup) - 1; i++)
|
|
if (advanced_lookup[i].num ==
|
|
(num & ~IWM_FW_SYSASSERT_CPU_MASK))
|
|
return advanced_lookup[i].name;
|
|
|
|
/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
|
|
return advanced_lookup[i].name;
|
|
}
|
|
|
|
/*
|
|
* Support for dumping the error log seemed like a good idea ...
|
|
* but it's mostly hex junk and the only sensible thing is the
|
|
* hw/ucode revision (which we know anyway). Since it's here,
|
|
* I'll just leave it in, just in case e.g. the Intel guys want to
|
|
* help us decipher some "ADVANCED_SYSASSERT" later.
|
|
*/
|
|
void
|
|
iwm_nic_error(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_error_event_table table;
|
|
uint32_t base;
|
|
|
|
printf("%s: dumping device error log\n", DEVNAME(sc));
|
|
base = sc->sc_uc.uc_error_event_table;
|
|
if (base < 0x800000) {
|
|
printf("%s: Invalid error log pointer 0x%08x\n",
|
|
DEVNAME(sc), base);
|
|
return;
|
|
}
|
|
|
|
if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
|
|
printf("%s: reading errlog failed\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
if (!table.valid) {
|
|
printf("%s: errlog not found, skipping\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
|
|
printf("%s: Start Error Log Dump:\n", DEVNAME(sc));
|
|
printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc),
|
|
sc->sc_flags, table.valid);
|
|
}
|
|
|
|
printf("%s: 0x%08X | %-28s\n", DEVNAME(sc), table.error_id,
|
|
iwm_desc_lookup(table.error_id));
|
|
printf("%s: %08X | trm_hw_status0\n", DEVNAME(sc),
|
|
table.trm_hw_status0);
|
|
printf("%s: %08X | trm_hw_status1\n", DEVNAME(sc),
|
|
table.trm_hw_status1);
|
|
printf("%s: %08X | branchlink2\n", DEVNAME(sc), table.blink2);
|
|
printf("%s: %08X | interruptlink1\n", DEVNAME(sc), table.ilink1);
|
|
printf("%s: %08X | interruptlink2\n", DEVNAME(sc), table.ilink2);
|
|
printf("%s: %08X | data1\n", DEVNAME(sc), table.data1);
|
|
printf("%s: %08X | data2\n", DEVNAME(sc), table.data2);
|
|
printf("%s: %08X | data3\n", DEVNAME(sc), table.data3);
|
|
printf("%s: %08X | beacon time\n", DEVNAME(sc), table.bcon_time);
|
|
printf("%s: %08X | tsf low\n", DEVNAME(sc), table.tsf_low);
|
|
printf("%s: %08X | tsf hi\n", DEVNAME(sc), table.tsf_hi);
|
|
printf("%s: %08X | time gp1\n", DEVNAME(sc), table.gp1);
|
|
printf("%s: %08X | time gp2\n", DEVNAME(sc), table.gp2);
|
|
printf("%s: %08X | uCode revision type\n", DEVNAME(sc),
|
|
table.fw_rev_type);
|
|
printf("%s: %08X | uCode version major\n", DEVNAME(sc),
|
|
table.major);
|
|
printf("%s: %08X | uCode version minor\n", DEVNAME(sc),
|
|
table.minor);
|
|
printf("%s: %08X | hw version\n", DEVNAME(sc), table.hw_ver);
|
|
printf("%s: %08X | board version\n", DEVNAME(sc), table.brd_ver);
|
|
printf("%s: %08X | hcmd\n", DEVNAME(sc), table.hcmd);
|
|
printf("%s: %08X | isr0\n", DEVNAME(sc), table.isr0);
|
|
printf("%s: %08X | isr1\n", DEVNAME(sc), table.isr1);
|
|
printf("%s: %08X | isr2\n", DEVNAME(sc), table.isr2);
|
|
printf("%s: %08X | isr3\n", DEVNAME(sc), table.isr3);
|
|
printf("%s: %08X | isr4\n", DEVNAME(sc), table.isr4);
|
|
printf("%s: %08X | last cmd Id\n", DEVNAME(sc), table.last_cmd_id);
|
|
printf("%s: %08X | wait_event\n", DEVNAME(sc), table.wait_event);
|
|
printf("%s: %08X | l2p_control\n", DEVNAME(sc), table.l2p_control);
|
|
printf("%s: %08X | l2p_duration\n", DEVNAME(sc), table.l2p_duration);
|
|
printf("%s: %08X | l2p_mhvalid\n", DEVNAME(sc), table.l2p_mhvalid);
|
|
printf("%s: %08X | l2p_addr_match\n", DEVNAME(sc), table.l2p_addr_match);
|
|
printf("%s: %08X | lmpm_pmg_sel\n", DEVNAME(sc), table.lmpm_pmg_sel);
|
|
printf("%s: %08X | timestamp\n", DEVNAME(sc), table.u_timestamp);
|
|
printf("%s: %08X | flow_handler\n", DEVNAME(sc), table.flow_handler);
|
|
|
|
if (sc->sc_uc.uc_umac_error_event_table)
|
|
iwm_nic_umac_error(sc);
|
|
}
|
|
|
|
void
|
|
iwm_dump_driver_status(struct iwm_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
printf("driver status:\n");
|
|
for (i = 0; i < IWM_MAX_QUEUES; i++) {
|
|
struct iwm_tx_ring *ring = &sc->txq[i];
|
|
printf(" tx ring %2d: qid=%-2d cur=%-3d "
|
|
"queued=%-3d\n",
|
|
i, ring->qid, ring->cur, ring->queued);
|
|
}
|
|
printf(" rx ring: cur=%d\n", sc->rxq.cur);
|
|
printf(" 802.11 state %s\n",
|
|
ieee80211_state_name[sc->sc_ic.ic_state]);
|
|
}
|
|
|
|
#define SYNC_RESP_STRUCT(_var_, _pkt_) \
|
|
do { \
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
|
|
sizeof(*(_var_)), BUS_DMASYNC_POSTREAD); \
|
|
_var_ = (void *)((_pkt_)+1); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \
|
|
do { \
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
|
|
sizeof(len), BUS_DMASYNC_POSTREAD); \
|
|
_ptr_ = (void *)((_pkt_)+1); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % count);
|
|
|
|
int
|
|
iwm_rx_pkt_valid(struct iwm_rx_packet *pkt)
|
|
{
|
|
int qid, idx, code;
|
|
|
|
qid = pkt->hdr.qid & ~0x80;
|
|
idx = pkt->hdr.idx;
|
|
code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
|
|
|
|
return (!(qid == 0 && idx == 0 && code == 0) &&
|
|
pkt->len_n_flags != htole32(IWM_FH_RSCSR_FRAME_INVALID));
|
|
}
|
|
|
|
void
|
|
iwm_rx_pkt(struct iwm_softc *sc, struct iwm_rx_data *data, struct mbuf_list *ml)
|
|
{
|
|
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
|
|
struct iwm_rx_packet *pkt, *nextpkt;
|
|
uint32_t offset = 0, nextoff = 0, nmpdu = 0, len;
|
|
struct mbuf *m0, *m;
|
|
const size_t minsz = sizeof(pkt->len_n_flags) + sizeof(pkt->hdr);
|
|
int qid, idx, code, handled = 1;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
m0 = data->m;
|
|
while (m0 && offset + minsz < IWM_RBUF_SIZE) {
|
|
pkt = (struct iwm_rx_packet *)(m0->m_data + offset);
|
|
qid = pkt->hdr.qid;
|
|
idx = pkt->hdr.idx;
|
|
|
|
code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
|
|
|
|
if (!iwm_rx_pkt_valid(pkt))
|
|
break;
|
|
|
|
len = sizeof(pkt->len_n_flags) + iwm_rx_packet_len(pkt);
|
|
if (len < minsz || len > (IWM_RBUF_SIZE - offset))
|
|
break;
|
|
|
|
if (code == IWM_REPLY_RX_MPDU_CMD && ++nmpdu == 1) {
|
|
/* Take mbuf m0 off the RX ring. */
|
|
if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur)) {
|
|
ifp->if_ierrors++;
|
|
break;
|
|
}
|
|
KASSERT(data->m != m0);
|
|
}
|
|
|
|
switch (code) {
|
|
case IWM_REPLY_RX_PHY_CMD:
|
|
iwm_rx_rx_phy_cmd(sc, pkt, data);
|
|
break;
|
|
|
|
case IWM_REPLY_RX_MPDU_CMD: {
|
|
size_t maxlen = IWM_RBUF_SIZE - offset - minsz;
|
|
nextoff = offset +
|
|
roundup(len, IWM_FH_RSCSR_FRAME_ALIGN);
|
|
nextpkt = (struct iwm_rx_packet *)
|
|
(m0->m_data + nextoff);
|
|
if (nextoff + minsz >= IWM_RBUF_SIZE ||
|
|
!iwm_rx_pkt_valid(nextpkt)) {
|
|
/* No need to copy last frame in buffer. */
|
|
if (offset > 0)
|
|
m_adj(m0, offset);
|
|
if (sc->sc_mqrx_supported)
|
|
iwm_rx_mpdu_mq(sc, m0, pkt->data,
|
|
maxlen, ml);
|
|
else
|
|
iwm_rx_mpdu(sc, m0, pkt->data,
|
|
maxlen, ml);
|
|
m0 = NULL; /* stack owns m0 now; abort loop */
|
|
} else {
|
|
/*
|
|
* Create an mbuf which points to the current
|
|
* packet. Always copy from offset zero to
|
|
* preserve m_pkthdr.
|
|
*/
|
|
m = m_copym(m0, 0, M_COPYALL, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
ifp->if_ierrors++;
|
|
m_freem(m0);
|
|
m0 = NULL;
|
|
break;
|
|
}
|
|
m_adj(m, offset);
|
|
if (sc->sc_mqrx_supported)
|
|
iwm_rx_mpdu_mq(sc, m, pkt->data,
|
|
maxlen, ml);
|
|
else
|
|
iwm_rx_mpdu(sc, m, pkt->data,
|
|
maxlen, ml);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_TX_CMD:
|
|
iwm_rx_tx_cmd(sc, pkt, data);
|
|
break;
|
|
|
|
case IWM_BA_NOTIF:
|
|
iwm_rx_compressed_ba(sc, pkt);
|
|
break;
|
|
|
|
case IWM_MISSED_BEACONS_NOTIFICATION:
|
|
iwm_rx_bmiss(sc, pkt, data);
|
|
break;
|
|
|
|
case IWM_MFUART_LOAD_NOTIFICATION:
|
|
break;
|
|
|
|
case IWM_ALIVE: {
|
|
struct iwm_alive_resp_v1 *resp1;
|
|
struct iwm_alive_resp_v2 *resp2;
|
|
struct iwm_alive_resp_v3 *resp3;
|
|
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
|
|
SYNC_RESP_STRUCT(resp1, pkt);
|
|
sc->sc_uc.uc_error_event_table
|
|
= le32toh(resp1->error_event_table_ptr);
|
|
sc->sc_uc.uc_log_event_table
|
|
= le32toh(resp1->log_event_table_ptr);
|
|
sc->sched_base = le32toh(resp1->scd_base_ptr);
|
|
if (resp1->status == IWM_ALIVE_STATUS_OK)
|
|
sc->sc_uc.uc_ok = 1;
|
|
else
|
|
sc->sc_uc.uc_ok = 0;
|
|
}
|
|
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
|
|
SYNC_RESP_STRUCT(resp2, pkt);
|
|
sc->sc_uc.uc_error_event_table
|
|
= le32toh(resp2->error_event_table_ptr);
|
|
sc->sc_uc.uc_log_event_table
|
|
= le32toh(resp2->log_event_table_ptr);
|
|
sc->sched_base = le32toh(resp2->scd_base_ptr);
|
|
sc->sc_uc.uc_umac_error_event_table
|
|
= le32toh(resp2->error_info_addr);
|
|
if (resp2->status == IWM_ALIVE_STATUS_OK)
|
|
sc->sc_uc.uc_ok = 1;
|
|
else
|
|
sc->sc_uc.uc_ok = 0;
|
|
}
|
|
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
|
|
SYNC_RESP_STRUCT(resp3, pkt);
|
|
sc->sc_uc.uc_error_event_table
|
|
= le32toh(resp3->error_event_table_ptr);
|
|
sc->sc_uc.uc_log_event_table
|
|
= le32toh(resp3->log_event_table_ptr);
|
|
sc->sched_base = le32toh(resp3->scd_base_ptr);
|
|
sc->sc_uc.uc_umac_error_event_table
|
|
= le32toh(resp3->error_info_addr);
|
|
if (resp3->status == IWM_ALIVE_STATUS_OK)
|
|
sc->sc_uc.uc_ok = 1;
|
|
else
|
|
sc->sc_uc.uc_ok = 0;
|
|
}
|
|
|
|
sc->sc_uc.uc_intr = 1;
|
|
wakeup(&sc->sc_uc);
|
|
break;
|
|
}
|
|
|
|
case IWM_CALIB_RES_NOTIF_PHY_DB: {
|
|
struct iwm_calib_res_notif_phy_db *phy_db_notif;
|
|
SYNC_RESP_STRUCT(phy_db_notif, pkt);
|
|
iwm_phy_db_set_section(sc, phy_db_notif);
|
|
sc->sc_init_complete |= IWM_CALIB_COMPLETE;
|
|
wakeup(&sc->sc_init_complete);
|
|
break;
|
|
}
|
|
|
|
case IWM_STATISTICS_NOTIFICATION: {
|
|
struct iwm_notif_statistics *stats;
|
|
SYNC_RESP_STRUCT(stats, pkt);
|
|
memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
|
|
sc->sc_noise = iwm_get_noise(&stats->rx.general);
|
|
break;
|
|
}
|
|
|
|
case IWM_MCC_CHUB_UPDATE_CMD: {
|
|
struct iwm_mcc_chub_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
iwm_mcc_update(sc, notif);
|
|
break;
|
|
}
|
|
|
|
case IWM_DTS_MEASUREMENT_NOTIFICATION:
|
|
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
|
|
IWM_DTS_MEASUREMENT_NOTIF_WIDE):
|
|
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
|
|
IWM_TEMP_REPORTING_THRESHOLDS_CMD):
|
|
break;
|
|
|
|
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
|
|
IWM_CT_KILL_NOTIFICATION): {
|
|
struct iwm_ct_kill_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
printf("%s: device at critical temperature (%u degC), "
|
|
"stopping device\n",
|
|
DEVNAME(sc), le16toh(notif->temperature));
|
|
sc->sc_flags |= IWM_FLAG_HW_ERR;
|
|
task_add(systq, &sc->init_task);
|
|
break;
|
|
}
|
|
|
|
case IWM_ADD_STA_KEY:
|
|
case IWM_PHY_CONFIGURATION_CMD:
|
|
case IWM_TX_ANT_CONFIGURATION_CMD:
|
|
case IWM_ADD_STA:
|
|
case IWM_MAC_CONTEXT_CMD:
|
|
case IWM_REPLY_SF_CFG_CMD:
|
|
case IWM_POWER_TABLE_CMD:
|
|
case IWM_LTR_CONFIG:
|
|
case IWM_PHY_CONTEXT_CMD:
|
|
case IWM_BINDING_CONTEXT_CMD:
|
|
case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_CFG_CMD):
|
|
case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_REQ_UMAC):
|
|
case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_ABORT_UMAC):
|
|
case IWM_SCAN_OFFLOAD_REQUEST_CMD:
|
|
case IWM_SCAN_OFFLOAD_ABORT_CMD:
|
|
case IWM_REPLY_BEACON_FILTERING_CMD:
|
|
case IWM_MAC_PM_POWER_TABLE:
|
|
case IWM_TIME_QUOTA_CMD:
|
|
case IWM_REMOVE_STA:
|
|
case IWM_TXPATH_FLUSH:
|
|
case IWM_LQ_CMD:
|
|
case IWM_WIDE_ID(IWM_LONG_GROUP,
|
|
IWM_FW_PAGING_BLOCK_CMD):
|
|
case IWM_BT_CONFIG:
|
|
case IWM_REPLY_THERMAL_MNG_BACKOFF:
|
|
case IWM_NVM_ACCESS_CMD:
|
|
case IWM_MCC_UPDATE_CMD:
|
|
case IWM_TIME_EVENT_CMD: {
|
|
size_t pkt_len;
|
|
|
|
if (sc->sc_cmd_resp_pkt[idx] == NULL)
|
|
break;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
sizeof(*pkt), BUS_DMASYNC_POSTREAD);
|
|
|
|
pkt_len = sizeof(pkt->len_n_flags) +
|
|
iwm_rx_packet_len(pkt);
|
|
|
|
if ((pkt->hdr.flags & IWM_CMD_FAILED_MSK) ||
|
|
pkt_len < sizeof(*pkt) ||
|
|
pkt_len > sc->sc_cmd_resp_len[idx]) {
|
|
free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF,
|
|
sc->sc_cmd_resp_len[idx]);
|
|
sc->sc_cmd_resp_pkt[idx] = NULL;
|
|
break;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
|
|
pkt_len - sizeof(*pkt), BUS_DMASYNC_POSTREAD);
|
|
memcpy(sc->sc_cmd_resp_pkt[idx], pkt, pkt_len);
|
|
break;
|
|
}
|
|
|
|
/* ignore */
|
|
case IWM_PHY_DB_CMD:
|
|
break;
|
|
|
|
case IWM_INIT_COMPLETE_NOTIF:
|
|
sc->sc_init_complete |= IWM_INIT_COMPLETE;
|
|
wakeup(&sc->sc_init_complete);
|
|
break;
|
|
|
|
case IWM_SCAN_OFFLOAD_COMPLETE: {
|
|
struct iwm_periodic_scan_complete *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
break;
|
|
}
|
|
|
|
case IWM_SCAN_ITERATION_COMPLETE: {
|
|
struct iwm_lmac_scan_complete_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
iwm_endscan(sc);
|
|
break;
|
|
}
|
|
|
|
case IWM_SCAN_COMPLETE_UMAC: {
|
|
struct iwm_umac_scan_complete *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
iwm_endscan(sc);
|
|
break;
|
|
}
|
|
|
|
case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
|
|
struct iwm_umac_scan_iter_complete_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
iwm_endscan(sc);
|
|
break;
|
|
}
|
|
|
|
case IWM_REPLY_ERROR: {
|
|
struct iwm_error_resp *resp;
|
|
SYNC_RESP_STRUCT(resp, pkt);
|
|
printf("%s: firmware error 0x%x, cmd 0x%x\n",
|
|
DEVNAME(sc), le32toh(resp->error_type),
|
|
resp->cmd_id);
|
|
break;
|
|
}
|
|
|
|
case IWM_TIME_EVENT_NOTIFICATION: {
|
|
struct iwm_time_event_notif *notif;
|
|
uint32_t action;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
|
|
if (sc->sc_time_event_uid != le32toh(notif->unique_id))
|
|
break;
|
|
action = le32toh(notif->action);
|
|
if (action & IWM_TE_V2_NOTIF_HOST_EVENT_END)
|
|
sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
|
|
break;
|
|
}
|
|
|
|
case IWM_WIDE_ID(IWM_SYSTEM_GROUP,
|
|
IWM_FSEQ_VER_MISMATCH_NOTIFICATION):
|
|
break;
|
|
|
|
/*
|
|
* Firmware versions 21 and 22 generate some DEBUG_LOG_MSG
|
|
* messages. Just ignore them for now.
|
|
*/
|
|
case IWM_DEBUG_LOG_MSG:
|
|
break;
|
|
|
|
case IWM_MCAST_FILTER_CMD:
|
|
break;
|
|
|
|
case IWM_SCD_QUEUE_CFG: {
|
|
struct iwm_scd_txq_cfg_rsp *rsp;
|
|
SYNC_RESP_STRUCT(rsp, pkt);
|
|
|
|
break;
|
|
}
|
|
|
|
case IWM_WIDE_ID(IWM_DATA_PATH_GROUP, IWM_DQA_ENABLE_CMD):
|
|
break;
|
|
|
|
case IWM_WIDE_ID(IWM_SYSTEM_GROUP, IWM_SOC_CONFIGURATION_CMD):
|
|
break;
|
|
|
|
default:
|
|
handled = 0;
|
|
printf("%s: unhandled firmware response 0x%x/0x%x "
|
|
"rx ring %d[%d]\n",
|
|
DEVNAME(sc), code, pkt->len_n_flags,
|
|
(qid & ~0x80), idx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* uCode sets bit 0x80 when it originates the notification,
|
|
* i.e. when the notification is not a direct response to a
|
|
* command sent by the driver.
|
|
* For example, uCode issues IWM_REPLY_RX when it sends a
|
|
* received frame to the driver.
|
|
*/
|
|
if (handled && !(qid & (1 << 7))) {
|
|
iwm_cmd_done(sc, qid, idx, code);
|
|
}
|
|
|
|
offset += roundup(len, IWM_FH_RSCSR_FRAME_ALIGN);
|
|
}
|
|
|
|
if (m0 && m0 != data->m)
|
|
m_freem(m0);
|
|
}
|
|
|
|
void
|
|
iwm_notif_intr(struct iwm_softc *sc)
|
|
{
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
uint32_t wreg;
|
|
uint16_t hw;
|
|
int count;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
|
|
0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
|
|
|
|
if (sc->sc_mqrx_supported) {
|
|
count = IWM_RX_MQ_RING_COUNT;
|
|
wreg = IWM_RFH_Q0_FRBDCB_WIDX_TRG;
|
|
} else {
|
|
count = IWM_RX_RING_COUNT;
|
|
wreg = IWM_FH_RSCSR_CHNL0_WPTR;
|
|
}
|
|
|
|
hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
|
|
hw &= (count - 1);
|
|
while (sc->rxq.cur != hw) {
|
|
struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
|
|
iwm_rx_pkt(sc, data, &ml);
|
|
ADVANCE_RXQ(sc);
|
|
}
|
|
if_input(&sc->sc_ic.ic_if, &ml);
|
|
|
|
/*
|
|
* Tell the firmware what we have processed.
|
|
* Seems like the hardware gets upset unless we align the write by 8??
|
|
*/
|
|
hw = (hw == 0) ? count - 1 : hw - 1;
|
|
IWM_WRITE(sc, wreg, hw & ~7);
|
|
}
|
|
|
|
int
|
|
iwm_intr(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
int handled = 0;
|
|
int rv = 0;
|
|
uint32_t r1, r2;
|
|
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
|
|
|
|
if (sc->sc_flags & IWM_FLAG_USE_ICT) {
|
|
uint32_t *ict = sc->ict_dma.vaddr;
|
|
int tmp;
|
|
|
|
tmp = htole32(ict[sc->ict_cur]);
|
|
if (!tmp)
|
|
goto out_ena;
|
|
|
|
/*
|
|
* ok, there was something. keep plowing until we have all.
|
|
*/
|
|
r1 = r2 = 0;
|
|
while (tmp) {
|
|
r1 |= tmp;
|
|
ict[sc->ict_cur] = 0;
|
|
sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
|
|
tmp = htole32(ict[sc->ict_cur]);
|
|
}
|
|
|
|
/* this is where the fun begins. don't ask */
|
|
if (r1 == 0xffffffff)
|
|
r1 = 0;
|
|
|
|
/*
|
|
* Workaround for hardware bug where bits are falsely cleared
|
|
* when using interrupt coalescing. Bit 15 should be set if
|
|
* bits 18 and 19 are set.
|
|
*/
|
|
if (r1 & 0xc0000)
|
|
r1 |= 0x8000;
|
|
|
|
r1 = (0xff & r1) | ((0xff00 & r1) << 16);
|
|
} else {
|
|
r1 = IWM_READ(sc, IWM_CSR_INT);
|
|
r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
|
|
}
|
|
if (r1 == 0 && r2 == 0) {
|
|
goto out_ena;
|
|
}
|
|
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
|
|
goto out;
|
|
|
|
IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
|
|
|
|
/* ignored */
|
|
handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
|
|
|
|
if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
|
|
handled |= IWM_CSR_INT_BIT_RF_KILL;
|
|
iwm_check_rfkill(sc);
|
|
task_add(systq, &sc->init_task);
|
|
rv = 1;
|
|
goto out_ena;
|
|
}
|
|
|
|
if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
iwm_nic_error(sc);
|
|
iwm_dump_driver_status(sc);
|
|
}
|
|
printf("%s: fatal firmware error\n", DEVNAME(sc));
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
|
|
task_add(systq, &sc->init_task);
|
|
rv = 1;
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
|
|
handled |= IWM_CSR_INT_BIT_HW_ERR;
|
|
printf("%s: hardware error, stopping device \n", DEVNAME(sc));
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0) {
|
|
sc->sc_flags |= IWM_FLAG_HW_ERR;
|
|
task_add(systq, &sc->init_task);
|
|
}
|
|
rv = 1;
|
|
goto out;
|
|
}
|
|
|
|
/* firmware chunk loaded */
|
|
if (r1 & IWM_CSR_INT_BIT_FH_TX) {
|
|
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
|
|
handled |= IWM_CSR_INT_BIT_FH_TX;
|
|
|
|
sc->sc_fw_chunk_done = 1;
|
|
wakeup(&sc->sc_fw);
|
|
}
|
|
|
|
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX |
|
|
IWM_CSR_INT_BIT_RX_PERIODIC)) {
|
|
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) {
|
|
handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
|
|
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
|
|
}
|
|
if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
|
|
handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
|
|
IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
|
|
}
|
|
|
|
/* Disable periodic interrupt; we use it as just a one-shot. */
|
|
IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
|
|
|
|
/*
|
|
* Enable periodic interrupt in 8 msec only if we received
|
|
* real RX interrupt (instead of just periodic int), to catch
|
|
* any dangling Rx interrupt. If it was just the periodic
|
|
* interrupt, there was no dangling Rx activity, and no need
|
|
* to extend the periodic interrupt; one-shot is enough.
|
|
*/
|
|
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX))
|
|
IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
|
|
IWM_CSR_INT_PERIODIC_ENA);
|
|
|
|
iwm_notif_intr(sc);
|
|
}
|
|
|
|
rv = 1;
|
|
|
|
out_ena:
|
|
iwm_restore_interrupts(sc);
|
|
out:
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
iwm_intr_msix(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
uint32_t inta_fh, inta_hw;
|
|
int vector = 0;
|
|
|
|
inta_fh = IWM_READ(sc, IWM_CSR_MSIX_FH_INT_CAUSES_AD);
|
|
inta_hw = IWM_READ(sc, IWM_CSR_MSIX_HW_INT_CAUSES_AD);
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
|
|
inta_fh &= sc->sc_fh_mask;
|
|
inta_hw &= sc->sc_hw_mask;
|
|
|
|
if (inta_fh & IWM_MSIX_FH_INT_CAUSES_Q0 ||
|
|
inta_fh & IWM_MSIX_FH_INT_CAUSES_Q1) {
|
|
iwm_notif_intr(sc);
|
|
}
|
|
|
|
/* firmware chunk loaded */
|
|
if (inta_fh & IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
|
|
sc->sc_fw_chunk_done = 1;
|
|
wakeup(&sc->sc_fw);
|
|
}
|
|
|
|
if ((inta_fh & IWM_MSIX_FH_INT_CAUSES_FH_ERR) ||
|
|
(inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
|
|
(inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
iwm_nic_error(sc);
|
|
iwm_dump_driver_status(sc);
|
|
}
|
|
printf("%s: fatal firmware error\n", DEVNAME(sc));
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0)
|
|
task_add(systq, &sc->init_task);
|
|
return 1;
|
|
}
|
|
|
|
if (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL) {
|
|
iwm_check_rfkill(sc);
|
|
task_add(systq, &sc->init_task);
|
|
}
|
|
|
|
if (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR) {
|
|
printf("%s: hardware error, stopping device \n", DEVNAME(sc));
|
|
if ((sc->sc_flags & IWM_FLAG_SHUTDOWN) == 0) {
|
|
sc->sc_flags |= IWM_FLAG_HW_ERR;
|
|
task_add(systq, &sc->init_task);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Before sending the interrupt the HW disables it to prevent
|
|
* a nested interrupt. This is done by writing 1 to the corresponding
|
|
* bit in the mask register. After handling the interrupt, it should be
|
|
* re-enabled by clearing this bit. This register is defined as
|
|
* write 1 clear (W1C) register, meaning that it's being clear
|
|
* by writing 1 to the bit.
|
|
*/
|
|
IWM_WRITE(sc, IWM_CSR_MSIX_AUTOMASK_ST_AD, 1 << vector);
|
|
return 1;
|
|
}
|
|
|
|
typedef void *iwm_match_t;
|
|
|
|
static const struct pci_matchid iwm_devices[] = {
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3160_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3160_2 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3165_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3165_2 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_3168_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7260_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7260_2 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7265_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7265_2 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_8260_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_8260_2 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_8265_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9260_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9560_1 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9560_2 },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_9560_3 },
|
|
};
|
|
|
|
int
|
|
iwm_match(struct device *parent, iwm_match_t match __unused, void *aux)
|
|
{
|
|
return pci_matchbyid((struct pci_attach_args *)aux, iwm_devices,
|
|
nitems(iwm_devices));
|
|
}
|
|
|
|
int
|
|
iwm_preinit(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
int err;
|
|
|
|
err = iwm_prepare_card_hw(sc);
|
|
if (err) {
|
|
printf("%s: could not initialize hardware\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
if (sc->attached) {
|
|
/* Update MAC in case the upper layers changed it. */
|
|
IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr,
|
|
((struct arpcom *)ifp)->ac_enaddr);
|
|
return 0;
|
|
}
|
|
|
|
err = iwm_start_hw(sc);
|
|
if (err) {
|
|
printf("%s: could not initialize hardware\n", DEVNAME(sc));
|
|
return err;
|
|
}
|
|
|
|
err = iwm_run_init_mvm_ucode(sc, 1);
|
|
iwm_stop_device(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Print version info and MAC address on first successful fw load. */
|
|
sc->attached = 1;
|
|
printf("%s: hw rev 0x%x, fw ver %s, address %s\n",
|
|
DEVNAME(sc), sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
|
|
sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
|
|
|
|
if (sc->sc_nvm.sku_cap_11n_enable)
|
|
iwm_setup_ht_rates(sc);
|
|
|
|
/* not all hardware can do 5GHz band */
|
|
if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
|
|
memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
|
|
sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
|
|
|
|
/* Configure channel information obtained from firmware. */
|
|
ieee80211_channel_init(ifp);
|
|
|
|
/* Configure MAC address. */
|
|
err = if_setlladdr(ifp, ic->ic_myaddr);
|
|
if (err)
|
|
printf("%s: could not set MAC address (error %d)\n",
|
|
DEVNAME(sc), err);
|
|
|
|
ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwm_attach_hook(struct device *self)
|
|
{
|
|
struct iwm_softc *sc = (void *)self;
|
|
|
|
KASSERT(!cold);
|
|
|
|
iwm_preinit(sc);
|
|
}
|
|
|
|
void
|
|
iwm_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct iwm_softc *sc = (void *)self;
|
|
struct pci_attach_args *pa = aux;
|
|
pci_intr_handle_t ih;
|
|
pcireg_t reg, memtype;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
const char *intrstr;
|
|
int err;
|
|
int txq_i, i, j;
|
|
|
|
sc->sc_pct = pa->pa_pc;
|
|
sc->sc_pcitag = pa->pa_tag;
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
rw_init(&sc->ioctl_rwl, "iwmioctl");
|
|
|
|
err = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
|
|
PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
|
|
if (err == 0) {
|
|
printf("%s: PCIe capability structure not found!\n",
|
|
DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We disable the RETRY_TIMEOUT register (0x41) to keep
|
|
* PCI Tx retries from interfering with C3 CPU state.
|
|
*/
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
|
|
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
|
|
err = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0,
|
|
&sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz, 0);
|
|
if (err) {
|
|
printf("%s: can't map mem space\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
if (pci_intr_map_msix(pa, 0, &ih) == 0) {
|
|
sc->sc_msix = 1;
|
|
} else if (pci_intr_map_msi(pa, &ih)) {
|
|
if (pci_intr_map(pa, &ih)) {
|
|
printf("%s: can't map interrupt\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
/* Hardware bug workaround. */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
|
|
PCI_COMMAND_STATUS_REG);
|
|
if (reg & PCI_COMMAND_INTERRUPT_DISABLE)
|
|
reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
|
|
PCI_COMMAND_STATUS_REG, reg);
|
|
}
|
|
|
|
intrstr = pci_intr_string(sc->sc_pct, ih);
|
|
if (sc->sc_msix)
|
|
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
|
|
iwm_intr_msix, sc, DEVNAME(sc));
|
|
else
|
|
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
|
|
iwm_intr, sc, DEVNAME(sc));
|
|
|
|
if (sc->sc_ih == NULL) {
|
|
printf("\n");
|
|
printf("%s: can't establish interrupt", DEVNAME(sc));
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
return;
|
|
}
|
|
printf(", %s\n", intrstr);
|
|
|
|
sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
|
|
switch (PCI_PRODUCT(pa->pa_id)) {
|
|
case PCI_PRODUCT_INTEL_WL_3160_1:
|
|
case PCI_PRODUCT_INTEL_WL_3160_2:
|
|
sc->sc_fwname = "iwm-3160-17";
|
|
sc->host_interrupt_operation_mode = 1;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
sc->sc_nvm_max_section_size = 16384;
|
|
sc->nvm_type = IWM_NVM;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_3165_1:
|
|
case PCI_PRODUCT_INTEL_WL_3165_2:
|
|
sc->sc_fwname = "iwm-7265D-29";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
sc->sc_nvm_max_section_size = 16384;
|
|
sc->nvm_type = IWM_NVM;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_3168_1:
|
|
sc->sc_fwname = "iwm-3168-29";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
sc->sc_nvm_max_section_size = 16384;
|
|
sc->nvm_type = IWM_NVM_SDP;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_7260_1:
|
|
case PCI_PRODUCT_INTEL_WL_7260_2:
|
|
sc->sc_fwname = "iwm-7260-17";
|
|
sc->host_interrupt_operation_mode = 1;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
sc->sc_nvm_max_section_size = 16384;
|
|
sc->nvm_type = IWM_NVM;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_7265_1:
|
|
case PCI_PRODUCT_INTEL_WL_7265_2:
|
|
sc->sc_fwname = "iwm-7265-17";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
sc->sc_nvm_max_section_size = 16384;
|
|
sc->nvm_type = IWM_NVM;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_8260_1:
|
|
case PCI_PRODUCT_INTEL_WL_8260_2:
|
|
sc->sc_fwname = "iwm-8000C-36";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
|
|
sc->sc_nvm_max_section_size = 32768;
|
|
sc->nvm_type = IWM_NVM_EXT;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_8265_1:
|
|
sc->sc_fwname = "iwm-8265-36";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
|
|
sc->sc_nvm_max_section_size = 32768;
|
|
sc->nvm_type = IWM_NVM_EXT;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_9260_1:
|
|
sc->sc_fwname = "iwm-9260-46";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_9000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
|
|
sc->sc_nvm_max_section_size = 32768;
|
|
sc->sc_mqrx_supported = 1;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WL_9560_1:
|
|
case PCI_PRODUCT_INTEL_WL_9560_2:
|
|
case PCI_PRODUCT_INTEL_WL_9560_3:
|
|
sc->sc_fwname = "iwm-9000-46";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_9000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
|
|
sc->sc_nvm_max_section_size = 32768;
|
|
sc->sc_mqrx_supported = 1;
|
|
sc->sc_integrated = 1;
|
|
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_WL_9560_3) {
|
|
sc->sc_xtal_latency = 670;
|
|
sc->sc_extra_phy_config = IWM_FW_PHY_CFG_SHARED_CLK;
|
|
} else
|
|
sc->sc_xtal_latency = 650;
|
|
break;
|
|
default:
|
|
printf("%s: unknown adapter type\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
|
|
* changed, and now the revision step also includes bit 0-1 (no more
|
|
* "dash" value). To keep hw_rev backwards compatible - we'll store it
|
|
* in the old format.
|
|
*/
|
|
if (sc->sc_device_family >= IWM_DEVICE_FAMILY_8000) {
|
|
uint32_t hw_step;
|
|
|
|
sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
|
|
(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
|
|
|
|
if (iwm_prepare_card_hw(sc) != 0) {
|
|
printf("%s: could not initialize hardware\n",
|
|
DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In order to recognize C step the driver should read the
|
|
* chip version id located at the AUX bus MISC address.
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
DELAY(2);
|
|
|
|
err = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (!err) {
|
|
printf("%s: Failed to wake up the nic\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
|
|
hw_step |= IWM_ENABLE_WFPM;
|
|
iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
|
|
hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
|
|
hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
|
|
if (hw_step == 0x3)
|
|
sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
|
|
(IWM_SILICON_C_STEP << 2);
|
|
iwm_nic_unlock(sc);
|
|
} else {
|
|
printf("%s: Failed to lock the nic\n", DEVNAME(sc));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA memory for firmware transfers.
|
|
* Must be aligned on a 16-byte boundary.
|
|
*/
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
|
|
sc->sc_fwdmasegsz, 16);
|
|
if (err) {
|
|
printf("%s: could not allocate memory for firmware\n",
|
|
DEVNAME(sc));
|
|
return;
|
|
}
|
|
|
|
/* Allocate "Keep Warm" page, used internally by the card. */
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
|
|
if (err) {
|
|
printf("%s: could not allocate keep warm page\n", DEVNAME(sc));
|
|
goto fail1;
|
|
}
|
|
|
|
/* Allocate interrupt cause table (ICT).*/
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
|
|
IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
|
|
if (err) {
|
|
printf("%s: could not allocate ICT table\n", DEVNAME(sc));
|
|
goto fail2;
|
|
}
|
|
|
|
/* TX scheduler rings must be aligned on a 1KB boundary. */
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
|
|
nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
|
|
if (err) {
|
|
printf("%s: could not allocate TX scheduler rings\n",
|
|
DEVNAME(sc));
|
|
goto fail3;
|
|
}
|
|
|
|
for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
|
|
err = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i);
|
|
if (err) {
|
|
printf("%s: could not allocate TX ring %d\n",
|
|
DEVNAME(sc), txq_i);
|
|
goto fail4;
|
|
}
|
|
}
|
|
|
|
err = iwm_alloc_rx_ring(sc, &sc->rxq);
|
|
if (err) {
|
|
printf("%s: could not allocate RX ring\n", DEVNAME(sc));
|
|
goto fail4;
|
|
}
|
|
|
|
sc->sc_nswq = taskq_create("iwmns", 1, IPL_NET, 0);
|
|
if (sc->sc_nswq == NULL)
|
|
goto fail4;
|
|
|
|
/* Clear pending interrupts. */
|
|
IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
|
|
|
|
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
|
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/* Set device capabilities. */
|
|
ic->ic_caps =
|
|
IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU | /* A-MPDU */
|
|
IEEE80211_C_WEP | /* WEP */
|
|
IEEE80211_C_RSN | /* WPA/RSN */
|
|
IEEE80211_C_SCANALL | /* device scans all channels at once */
|
|
IEEE80211_C_SCANALLBAND | /* device scans all bands at once */
|
|
IEEE80211_C_MONITOR | /* monitor mode supported */
|
|
IEEE80211_C_SHSLOT | /* short slot time supported */
|
|
IEEE80211_C_SHPREAMBLE; /* short preamble supported */
|
|
|
|
ic->ic_htcaps = IEEE80211_HTCAP_SGI20 | IEEE80211_HTCAP_SGI40;
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_40;
|
|
ic->ic_htcaps |=
|
|
(IEEE80211_HTCAP_SMPS_DIS << IEEE80211_HTCAP_SMPS_SHIFT);
|
|
ic->ic_htxcaps = 0;
|
|
ic->ic_txbfcaps = 0;
|
|
ic->ic_aselcaps = 0;
|
|
ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
|
|
|
|
ic->ic_vhtcaps = IEEE80211_VHTCAP_MAX_MPDU_LENGTH_3895 |
|
|
(IEEE80211_VHTCAP_MAX_AMPDU_LEN_64K <<
|
|
IEEE80211_VHTCAP_MAX_AMPDU_LEN_SHIFT) |
|
|
(IEEE80211_VHTCAP_CHAN_WIDTH_80 <<
|
|
IEEE80211_VHTCAP_CHAN_WIDTH_SHIFT) | IEEE80211_VHTCAP_SGI80 |
|
|
IEEE80211_VHTCAP_RX_ANT_PATTERN | IEEE80211_VHTCAP_TX_ANT_PATTERN;
|
|
|
|
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
|
|
|
|
for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
|
|
sc->sc_phyctxt[i].id = i;
|
|
sc->sc_phyctxt[i].sco = IEEE80211_HTOP0_SCO_SCN;
|
|
sc->sc_phyctxt[i].vht_chan_width =
|
|
IEEE80211_VHTOP0_CHAN_WIDTH_HT;
|
|
}
|
|
|
|
sc->sc_amrr.amrr_min_success_threshold = 1;
|
|
sc->sc_amrr.amrr_max_success_threshold = 15;
|
|
|
|
/* IBSS channel undefined for now. */
|
|
ic->ic_ibss_chan = &ic->ic_channels[1];
|
|
|
|
ic->ic_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = iwm_ioctl;
|
|
ifp->if_start = iwm_start;
|
|
ifp->if_watchdog = iwm_watchdog;
|
|
memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
|
|
|
|
if_attach(ifp);
|
|
ieee80211_ifattach(ifp);
|
|
ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status);
|
|
|
|
#if NBPFILTER > 0
|
|
iwm_radiotap_attach(sc);
|
|
#endif
|
|
timeout_set(&sc->sc_calib_to, iwm_calib_timeout, sc);
|
|
timeout_set(&sc->sc_led_blink_to, iwm_led_blink_timeout, sc);
|
|
for (i = 0; i < nitems(sc->sc_rxba_data); i++) {
|
|
struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i];
|
|
rxba->baid = IWM_RX_REORDER_DATA_INVALID_BAID;
|
|
rxba->sc = sc;
|
|
timeout_set(&rxba->session_timer, iwm_rx_ba_session_expired,
|
|
rxba);
|
|
timeout_set(&rxba->reorder_buf.reorder_timer,
|
|
iwm_reorder_timer_expired, &rxba->reorder_buf);
|
|
for (j = 0; j < nitems(rxba->entries); j++)
|
|
ml_init(&rxba->entries[j].frames);
|
|
}
|
|
task_set(&sc->init_task, iwm_init_task, sc);
|
|
task_set(&sc->newstate_task, iwm_newstate_task, sc);
|
|
task_set(&sc->ba_task, iwm_ba_task, sc);
|
|
task_set(&sc->mac_ctxt_task, iwm_mac_ctxt_task, sc);
|
|
task_set(&sc->phy_ctxt_task, iwm_phy_ctxt_task, sc);
|
|
task_set(&sc->bgscan_done_task, iwm_bgscan_done_task, sc);
|
|
|
|
ic->ic_node_alloc = iwm_node_alloc;
|
|
ic->ic_bgscan_start = iwm_bgscan;
|
|
ic->ic_bgscan_done = iwm_bgscan_done;
|
|
ic->ic_set_key = iwm_set_key;
|
|
ic->ic_delete_key = iwm_delete_key;
|
|
|
|
/* Override 802.11 state transition machine. */
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = iwm_newstate;
|
|
ic->ic_updateprot = iwm_updateprot;
|
|
ic->ic_updateslot = iwm_updateslot;
|
|
ic->ic_updateedca = iwm_updateedca;
|
|
ic->ic_updatechan = iwm_updatechan;
|
|
ic->ic_updatedtim = iwm_updatedtim;
|
|
ic->ic_ampdu_rx_start = iwm_ampdu_rx_start;
|
|
ic->ic_ampdu_rx_stop = iwm_ampdu_rx_stop;
|
|
ic->ic_ampdu_tx_start = iwm_ampdu_tx_start;
|
|
ic->ic_ampdu_tx_stop = iwm_ampdu_tx_stop;
|
|
/*
|
|
* We cannot read the MAC address without loading the
|
|
* firmware from disk. Postpone until mountroot is done.
|
|
*/
|
|
config_mountroot(self, iwm_attach_hook);
|
|
|
|
return;
|
|
|
|
fail4: while (--txq_i >= 0)
|
|
iwm_free_tx_ring(sc, &sc->txq[txq_i]);
|
|
iwm_free_rx_ring(sc, &sc->rxq);
|
|
iwm_dma_contig_free(&sc->sched_dma);
|
|
fail3: if (sc->ict_dma.vaddr != NULL)
|
|
iwm_dma_contig_free(&sc->ict_dma);
|
|
|
|
fail2: iwm_dma_contig_free(&sc->kw_dma);
|
|
fail1: iwm_dma_contig_free(&sc->fw_dma);
|
|
return;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
void
|
|
iwm_radiotap_attach(struct iwm_softc *sc)
|
|
{
|
|
bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
|
|
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
|
|
|
|
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
|
|
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWM_RX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_txtap_len = sizeof sc->sc_txtapu;
|
|
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_present = htole32(IWM_TX_RADIOTAP_PRESENT);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
iwm_init_task(void *arg1)
|
|
{
|
|
struct iwm_softc *sc = arg1;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int s = splnet();
|
|
int generation = sc->sc_generation;
|
|
int fatal = (sc->sc_flags & (IWM_FLAG_HW_ERR | IWM_FLAG_RFKILL));
|
|
|
|
rw_enter_write(&sc->ioctl_rwl);
|
|
if (generation != sc->sc_generation) {
|
|
rw_exit(&sc->ioctl_rwl);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
iwm_stop(ifp);
|
|
else
|
|
sc->sc_flags &= ~IWM_FLAG_HW_ERR;
|
|
|
|
if (!fatal && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
|
|
iwm_init(ifp);
|
|
|
|
rw_exit(&sc->ioctl_rwl);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
iwm_resume(struct iwm_softc *sc)
|
|
{
|
|
pcireg_t reg;
|
|
|
|
/*
|
|
* We disable the RETRY_TIMEOUT register (0x41) to keep
|
|
* PCI Tx retries from interfering with C3 CPU state.
|
|
*/
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
|
|
|
|
if (!sc->sc_msix) {
|
|
/* Hardware bug workaround. */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
|
|
PCI_COMMAND_STATUS_REG);
|
|
if (reg & PCI_COMMAND_INTERRUPT_DISABLE)
|
|
reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
|
|
PCI_COMMAND_STATUS_REG, reg);
|
|
}
|
|
|
|
iwm_disable_interrupts(sc);
|
|
}
|
|
|
|
int
|
|
iwm_wakeup(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int err;
|
|
|
|
err = iwm_start_hw(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_init_hw(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
refcnt_init(&sc->task_refs);
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
else
|
|
ieee80211_begin_scan(ifp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwm_activate(struct device *self, int act)
|
|
{
|
|
struct iwm_softc *sc = (struct iwm_softc *)self;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int err = 0;
|
|
|
|
switch (act) {
|
|
case DVACT_QUIESCE:
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
rw_enter_write(&sc->ioctl_rwl);
|
|
iwm_stop(ifp);
|
|
rw_exit(&sc->ioctl_rwl);
|
|
}
|
|
break;
|
|
case DVACT_RESUME:
|
|
iwm_resume(sc);
|
|
break;
|
|
case DVACT_WAKEUP:
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) {
|
|
err = iwm_wakeup(sc);
|
|
if (err)
|
|
printf("%s: could not initialize hardware\n",
|
|
DEVNAME(sc));
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct cfdriver iwm_cd = {
|
|
NULL, "iwm", DV_IFNET
|
|
};
|
|
|
|
const struct cfattach iwm_ca = {
|
|
sizeof(struct iwm_softc), iwm_match, iwm_attach,
|
|
NULL, iwm_activate
|
|
};
|