src/sys/dev/pci/pci.c

1765 lines
43 KiB
C

/* $OpenBSD: pci.c,v 1.127 2023/04/13 15:36:28 miod Exp $ */
/* $NetBSD: pci.c,v 1.31 1997/06/06 23:48:04 thorpej Exp $ */
/*
* Copyright (c) 1995, 1996 Christopher G. Demetriou. All rights reserved.
* Copyright (c) 1994 Charles Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* PCI bus autoconfiguration.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/ppbreg.h>
int pcimatch(struct device *, void *, void *);
void pciattach(struct device *, struct device *, void *);
int pcidetach(struct device *, int);
int pciactivate(struct device *, int);
void pci_suspend(struct pci_softc *);
void pci_powerdown(struct pci_softc *);
void pci_resume(struct pci_softc *);
struct msix_vector {
uint32_t mv_ma;
uint32_t mv_mau32;
uint32_t mv_md;
uint32_t mv_vc;
};
#define NMAPREG ((PCI_MAPREG_END - PCI_MAPREG_START) / \
sizeof(pcireg_t))
struct pci_dev {
struct device *pd_dev;
LIST_ENTRY(pci_dev) pd_next;
pcitag_t pd_tag; /* pci register tag */
pcireg_t pd_csr;
pcireg_t pd_bhlc;
pcireg_t pd_int;
pcireg_t pd_map[NMAPREG];
pcireg_t pd_mask[NMAPREG];
pcireg_t pd_msi_mc;
pcireg_t pd_msi_ma;
pcireg_t pd_msi_mau32;
pcireg_t pd_msi_md;
pcireg_t pd_msix_mc;
struct msix_vector *pd_msix_table;
int pd_pmcsr_state;
int pd_vga_decode;
};
#ifdef APERTURE
extern int allowaperture;
#endif
const struct cfattach pci_ca = {
sizeof(struct pci_softc), pcimatch, pciattach, pcidetach, pciactivate
};
struct cfdriver pci_cd = {
NULL, "pci", DV_DULL
};
int pci_ndomains;
struct proc *pci_vga_proc;
struct pci_softc *pci_vga_pci;
pcitag_t pci_vga_tag;
int pci_dopm;
int pciprint(void *, const char *);
int pcisubmatch(struct device *, void *, void *);
#ifdef PCI_MACHDEP_ENUMERATE_BUS
#define pci_enumerate_bus PCI_MACHDEP_ENUMERATE_BUS
#else
int pci_enumerate_bus(struct pci_softc *,
int (*)(struct pci_attach_args *), struct pci_attach_args *);
#endif
int pci_reserve_resources(struct pci_attach_args *);
int pci_primary_vga(struct pci_attach_args *);
/*
* Important note about PCI-ISA bridges:
*
* Callbacks are used to configure these devices so that ISA/EISA bridges
* can attach their child busses after PCI configuration is done.
*
* This works because:
* (1) there can be at most one ISA/EISA bridge per PCI bus, and
* (2) any ISA/EISA bridges must be attached to primary PCI
* busses (i.e. bus zero).
*
* That boils down to: there can only be one of these outstanding
* at a time, it is cleared when configuring PCI bus 0 before any
* subdevices have been found, and it is run after all subdevices
* of PCI bus 0 have been found.
*
* This is needed because there are some (legacy) PCI devices which
* can show up as ISA/EISA devices as well (the prime example of which
* are VGA controllers). If you attach ISA from a PCI-ISA/EISA bridge,
* and the bridge is seen before the video board is, the board can show
* up as an ISA device, and that can (bogusly) complicate the PCI device's
* attach code, or make the PCI device not be properly attached at all.
*
* We use the generic config_defer() facility to achieve this.
*/
int
pcimatch(struct device *parent, void *match, void *aux)
{
struct cfdata *cf = match;
struct pcibus_attach_args *pba = aux;
if (strcmp(pba->pba_busname, cf->cf_driver->cd_name))
return (0);
/* Check the locators */
if (cf->pcibuscf_bus != PCIBUS_UNK_BUS &&
cf->pcibuscf_bus != pba->pba_bus)
return (0);
/* sanity */
if (pba->pba_bus < 0 || pba->pba_bus > 255)
return (0);
/*
* XXX check other (hardware?) indicators
*/
return (1);
}
void
pciattach(struct device *parent, struct device *self, void *aux)
{
struct pcibus_attach_args *pba = aux;
struct pci_softc *sc = (struct pci_softc *)self;
pci_attach_hook(parent, self, pba);
printf("\n");
LIST_INIT(&sc->sc_devs);
sc->sc_iot = pba->pba_iot;
sc->sc_memt = pba->pba_memt;
sc->sc_dmat = pba->pba_dmat;
sc->sc_pc = pba->pba_pc;
sc->sc_flags = pba->pba_flags;
sc->sc_ioex = pba->pba_ioex;
sc->sc_memex = pba->pba_memex;
sc->sc_pmemex = pba->pba_pmemex;
sc->sc_busex = pba->pba_busex;
sc->sc_domain = pba->pba_domain;
sc->sc_bus = pba->pba_bus;
sc->sc_bridgetag = pba->pba_bridgetag;
sc->sc_bridgeih = pba->pba_bridgeih;
sc->sc_maxndevs = pci_bus_maxdevs(pba->pba_pc, pba->pba_bus);
sc->sc_intrswiz = pba->pba_intrswiz;
sc->sc_intrtag = pba->pba_intrtag;
/* Reserve our own bus number. */
if (sc->sc_busex)
extent_alloc_region(sc->sc_busex, sc->sc_bus, 1, EX_NOWAIT);
pci_enumerate_bus(sc, pci_reserve_resources, NULL);
/* Find the VGA device that's currently active. */
if (pci_enumerate_bus(sc, pci_primary_vga, NULL))
pci_vga_pci = sc;
pci_enumerate_bus(sc, NULL, NULL);
}
int
pcidetach(struct device *self, int flags)
{
return pci_detach_devices((struct pci_softc *)self, flags);
}
int
pciactivate(struct device *self, int act)
{
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
rv = config_activate_children(self, act);
pci_suspend((struct pci_softc *)self);
break;
case DVACT_RESUME:
pci_resume((struct pci_softc *)self);
rv = config_activate_children(self, act);
break;
case DVACT_POWERDOWN:
rv = config_activate_children(self, act);
pci_powerdown((struct pci_softc *)self);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
void
pci_suspend(struct pci_softc *sc)
{
struct pci_dev *pd;
pcireg_t bhlc, reg;
int off, i;
LIST_FOREACH(pd, &sc->sc_devs, pd_next) {
/*
* Only handle header type 0 here; PCI-PCI bridges and
* CardBus bridges need special handling, which will
* be done in their specific drivers.
*/
bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlc) != 0)
continue;
/* Save registers that may get lost. */
for (i = 0; i < NMAPREG; i++)
pd->pd_map[i] = pci_conf_read(sc->sc_pc, pd->pd_tag,
PCI_MAPREG_START + (i * 4));
pd->pd_csr = pci_conf_read(sc->sc_pc, pd->pd_tag,
PCI_COMMAND_STATUS_REG);
pd->pd_bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag,
PCI_BHLC_REG);
pd->pd_int = pci_conf_read(sc->sc_pc, pd->pd_tag,
PCI_INTERRUPT_REG);
if (pci_get_capability(sc->sc_pc, pd->pd_tag,
PCI_CAP_MSI, &off, &reg)) {
pd->pd_msi_ma = pci_conf_read(sc->sc_pc, pd->pd_tag,
off + PCI_MSI_MA);
if (reg & PCI_MSI_MC_C64) {
pd->pd_msi_mau32 = pci_conf_read(sc->sc_pc,
pd->pd_tag, off + PCI_MSI_MAU32);
pd->pd_msi_md = pci_conf_read(sc->sc_pc,
pd->pd_tag, off + PCI_MSI_MD64);
} else {
pd->pd_msi_md = pci_conf_read(sc->sc_pc,
pd->pd_tag, off + PCI_MSI_MD32);
}
pd->pd_msi_mc = reg;
}
pci_suspend_msix(sc->sc_pc, pd->pd_tag, sc->sc_memt,
&pd->pd_msix_mc, pd->pd_msix_table);
}
}
void
pci_powerdown(struct pci_softc *sc)
{
struct pci_dev *pd;
pcireg_t bhlc;
LIST_FOREACH(pd, &sc->sc_devs, pd_next) {
/*
* Only handle header type 0 here; PCI-PCI bridges and
* CardBus bridges need special handling, which will
* be done in their specific drivers.
*/
bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlc) != 0)
continue;
if (pci_dopm) {
/*
* Place the device into the lowest possible
* power state.
*/
pd->pd_pmcsr_state = pci_get_powerstate(sc->sc_pc,
pd->pd_tag);
pci_set_powerstate(sc->sc_pc, pd->pd_tag,
pci_min_powerstate(sc->sc_pc, pd->pd_tag));
}
}
}
void
pci_resume(struct pci_softc *sc)
{
struct pci_dev *pd;
pcireg_t bhlc, reg;
int off, i;
LIST_FOREACH(pd, &sc->sc_devs, pd_next) {
/*
* Only handle header type 0 here; PCI-PCI bridges and
* CardBus bridges need special handling, which will
* be done in their specific drivers.
*/
bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlc) != 0)
continue;
/* Restore power. */
if (pci_dopm)
pci_set_powerstate(sc->sc_pc, pd->pd_tag,
pd->pd_pmcsr_state);
/* Restore the registers saved above. */
for (i = 0; i < NMAPREG; i++)
pci_conf_write(sc->sc_pc, pd->pd_tag,
PCI_MAPREG_START + (i * 4), pd->pd_map[i]);
reg = pci_conf_read(sc->sc_pc, pd->pd_tag,
PCI_COMMAND_STATUS_REG);
pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG,
(reg & 0xffff0000) | (pd->pd_csr & 0x0000ffff));
pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG,
pd->pd_bhlc);
pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_INTERRUPT_REG,
pd->pd_int);
if (pci_get_capability(sc->sc_pc, pd->pd_tag,
PCI_CAP_MSI, &off, &reg)) {
pci_conf_write(sc->sc_pc, pd->pd_tag,
off + PCI_MSI_MA, pd->pd_msi_ma);
if (reg & PCI_MSI_MC_C64) {
pci_conf_write(sc->sc_pc, pd->pd_tag,
off + PCI_MSI_MAU32, pd->pd_msi_mau32);
pci_conf_write(sc->sc_pc, pd->pd_tag,
off + PCI_MSI_MD64, pd->pd_msi_md);
} else {
pci_conf_write(sc->sc_pc, pd->pd_tag,
off + PCI_MSI_MD32, pd->pd_msi_md);
}
pci_conf_write(sc->sc_pc, pd->pd_tag,
off + PCI_MSI_MC, pd->pd_msi_mc);
}
pci_resume_msix(sc->sc_pc, pd->pd_tag, sc->sc_memt,
pd->pd_msix_mc, pd->pd_msix_table);
}
}
int
pciprint(void *aux, const char *pnp)
{
struct pci_attach_args *pa = aux;
char devinfo[256];
if (pnp) {
pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo,
sizeof devinfo);
printf("%s at %s", devinfo, pnp);
}
printf(" dev %d function %d", pa->pa_device, pa->pa_function);
if (!pnp) {
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo,
sizeof devinfo);
printf(" %s", devinfo);
}
return (UNCONF);
}
int
pcisubmatch(struct device *parent, void *match, void *aux)
{
struct cfdata *cf = match;
struct pci_attach_args *pa = aux;
if (cf->pcicf_dev != PCI_UNK_DEV &&
cf->pcicf_dev != pa->pa_device)
return (0);
if (cf->pcicf_function != PCI_UNK_FUNCTION &&
cf->pcicf_function != pa->pa_function)
return (0);
return ((*cf->cf_attach->ca_match)(parent, match, aux));
}
int
pci_probe_device(struct pci_softc *sc, pcitag_t tag,
int (*match)(struct pci_attach_args *), struct pci_attach_args *pap)
{
pci_chipset_tag_t pc = sc->sc_pc;
struct pci_attach_args pa;
struct pci_dev *pd;
pcireg_t id, class, intr, bhlcr, cap;
int pin, bus, device, function;
int off, ret = 0;
uint64_t addr;
pci_decompose_tag(pc, tag, &bus, &device, &function);
bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlcr) > 2)
return (0);
id = pci_conf_read(pc, tag, PCI_ID_REG);
class = pci_conf_read(pc, tag, PCI_CLASS_REG);
/* Invalid vendor ID value? */
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
return (0);
/* XXX Not invalid, but we've done this ~forever. */
if (PCI_VENDOR(id) == 0)
return (0);
pa.pa_iot = sc->sc_iot;
pa.pa_memt = sc->sc_memt;
pa.pa_dmat = sc->sc_dmat;
pa.pa_pc = pc;
pa.pa_ioex = sc->sc_ioex;
pa.pa_memex = sc->sc_memex;
pa.pa_pmemex = sc->sc_pmemex;
pa.pa_busex = sc->sc_busex;
pa.pa_domain = sc->sc_domain;
pa.pa_bus = bus;
pa.pa_device = device;
pa.pa_function = function;
pa.pa_tag = tag;
pa.pa_id = id;
pa.pa_class = class;
pa.pa_bridgetag = sc->sc_bridgetag;
pa.pa_bridgeih = sc->sc_bridgeih;
/* This is a simplification of the NetBSD code.
We don't support turning off I/O or memory
on broken hardware. <csapuntz@stanford.edu> */
pa.pa_flags = sc->sc_flags;
pa.pa_flags |= PCI_FLAGS_IO_ENABLED | PCI_FLAGS_MEM_ENABLED;
if (sc->sc_bridgetag == NULL) {
pa.pa_intrswiz = 0;
pa.pa_intrtag = tag;
} else {
pa.pa_intrswiz = sc->sc_intrswiz + device;
pa.pa_intrtag = sc->sc_intrtag;
}
intr = pci_conf_read(pc, tag, PCI_INTERRUPT_REG);
pin = PCI_INTERRUPT_PIN(intr);
pa.pa_rawintrpin = pin;
if (pin == PCI_INTERRUPT_PIN_NONE) {
/* no interrupt */
pa.pa_intrpin = 0;
} else {
/*
* swizzle it based on the number of busses we're
* behind and our device number.
*/
pa.pa_intrpin = /* XXX */
((pin + pa.pa_intrswiz - 1) % 4) + 1;
}
pa.pa_intrline = PCI_INTERRUPT_LINE(intr);
if (pci_get_ht_capability(pc, tag, PCI_HT_CAP_MSI, &off, &cap)) {
/*
* XXX Should we enable MSI mapping ourselves on
* systems that have it disabled?
*/
if (cap & PCI_HT_MSI_ENABLED) {
if ((cap & PCI_HT_MSI_FIXED) == 0) {
addr = pci_conf_read(pc, tag,
off + PCI_HT_MSI_ADDR);
addr |= (uint64_t)pci_conf_read(pc, tag,
off + PCI_HT_MSI_ADDR_HI32) << 32;
} else
addr = PCI_HT_MSI_FIXED_ADDR;
/*
* XXX This will fail to enable MSI on systems
* that don't use the canonical address.
*/
if (addr == PCI_HT_MSI_FIXED_ADDR)
pa.pa_flags |= PCI_FLAGS_MSI_ENABLED;
}
}
/*
* Give the MD code a chance to alter pci_attach_args and/or
* skip devices.
*/
if (pci_probe_device_hook(pc, &pa) != 0)
return (0);
if (match != NULL) {
ret = (*match)(&pa);
if (ret != 0 && pap != NULL)
*pap = pa;
} else {
pcireg_t address, csr;
int i, reg, reg_start, reg_end;
int s;
pd = malloc(sizeof *pd, M_DEVBUF, M_ZERO | M_WAITOK);
pd->pd_tag = tag;
LIST_INSERT_HEAD(&sc->sc_devs, pd, pd_next);
switch (PCI_HDRTYPE_TYPE(bhlcr)) {
case 0:
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_END;
break;
case 1: /* PCI-PCI bridge */
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_PPB_END;
break;
case 2: /* PCI-CardBus bridge */
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_PCB_END;
break;
default:
return (0);
}
pd->pd_msix_table = pci_alloc_msix_table(sc->sc_pc, pd->pd_tag);
s = splhigh();
csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
if (csr & (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE))
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr &
~(PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE));
for (reg = reg_start, i = 0; reg < reg_end; reg += 4, i++) {
address = pci_conf_read(pc, tag, reg);
pci_conf_write(pc, tag, reg, 0xffffffff);
pd->pd_mask[i] = pci_conf_read(pc, tag, reg);
pci_conf_write(pc, tag, reg, address);
}
if (csr & (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE))
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr);
splx(s);
if ((PCI_CLASS(class) == PCI_CLASS_DISPLAY &&
PCI_SUBCLASS(class) == PCI_SUBCLASS_DISPLAY_VGA) ||
(PCI_CLASS(class) == PCI_CLASS_PREHISTORIC &&
PCI_SUBCLASS(class) == PCI_SUBCLASS_PREHISTORIC_VGA))
pd->pd_vga_decode = 1;
pd->pd_dev = config_found_sm(&sc->sc_dev, &pa, pciprint,
pcisubmatch);
if (pd->pd_dev)
pci_dev_postattach(pd->pd_dev, &pa);
}
return (ret);
}
int
pci_detach_devices(struct pci_softc *sc, int flags)
{
struct pci_dev *pd, *next;
int ret;
ret = config_detach_children(&sc->sc_dev, flags);
if (ret != 0)
return (ret);
for (pd = LIST_FIRST(&sc->sc_devs); pd != NULL; pd = next) {
pci_free_msix_table(sc->sc_pc, pd->pd_tag, pd->pd_msix_table);
next = LIST_NEXT(pd, pd_next);
free(pd, M_DEVBUF, sizeof *pd);
}
LIST_INIT(&sc->sc_devs);
return (0);
}
int
pci_get_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid,
int *offset, pcireg_t *value)
{
pcireg_t reg;
unsigned int ofs;
reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
if (!(reg & PCI_STATUS_CAPLIST_SUPPORT))
return (0);
/* Determine the Capability List Pointer register to start with. */
reg = pci_conf_read(pc, tag, PCI_BHLC_REG);
switch (PCI_HDRTYPE_TYPE(reg)) {
case 0: /* standard device header */
case 1: /* PCI-PCI bridge header */
ofs = PCI_CAPLISTPTR_REG;
break;
case 2: /* PCI-CardBus bridge header */
ofs = PCI_CARDBUS_CAPLISTPTR_REG;
break;
default:
return (0);
}
ofs = PCI_CAPLIST_PTR(pci_conf_read(pc, tag, ofs));
while (ofs != 0) {
/*
* Some devices, like parts of the NVIDIA C51 chipset,
* have a broken Capabilities List. So we need to do
* a sanity check here.
*/
if ((ofs & 3) || (ofs < 0x40))
return (0);
reg = pci_conf_read(pc, tag, ofs);
if (PCI_CAPLIST_CAP(reg) == capid) {
if (offset)
*offset = ofs;
if (value)
*value = reg;
return (1);
}
ofs = PCI_CAPLIST_NEXT(reg);
}
return (0);
}
int
pci_get_ht_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid,
int *offset, pcireg_t *value)
{
pcireg_t reg;
unsigned int ofs;
if (pci_get_capability(pc, tag, PCI_CAP_HT, &ofs, NULL) == 0)
return (0);
while (ofs != 0) {
#ifdef DIAGNOSTIC
if ((ofs & 3) || (ofs < 0x40))
panic("pci_get_ht_capability");
#endif
reg = pci_conf_read(pc, tag, ofs);
if (PCI_HT_CAP(reg) == capid) {
if (offset)
*offset = ofs;
if (value)
*value = reg;
return (1);
}
ofs = PCI_CAPLIST_NEXT(reg);
}
return (0);
}
int
pci_get_ext_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid,
int *offset, pcireg_t *value)
{
pcireg_t reg;
unsigned int ofs;
/* Make sure this is a PCI Express device. */
if (pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, NULL, NULL) == 0)
return (0);
/* Scan PCI Express extended capabilities. */
ofs = PCI_PCIE_ECAP;
while (ofs != 0) {
#ifdef DIAGNOSTIC
if ((ofs & 3) || (ofs < PCI_PCIE_ECAP))
panic("pci_get_ext_capability");
#endif
reg = pci_conf_read(pc, tag, ofs);
if (PCI_PCIE_ECAP_ID(reg) == capid) {
if (offset)
*offset = ofs;
if (value)
*value = reg;
return (1);
}
ofs = PCI_PCIE_ECAP_NEXT(reg);
}
return (0);
}
uint16_t
pci_requester_id(pci_chipset_tag_t pc, pcitag_t tag)
{
int bus, dev, func;
pci_decompose_tag(pc, tag, &bus, &dev, &func);
return ((bus << 8) | (dev << 3) | func);
}
int
pci_find_device(struct pci_attach_args *pa,
int (*match)(struct pci_attach_args *))
{
extern struct cfdriver pci_cd;
struct device *pcidev;
int i;
for (i = 0; i < pci_cd.cd_ndevs; i++) {
pcidev = pci_cd.cd_devs[i];
if (pcidev != NULL &&
pci_enumerate_bus((struct pci_softc *)pcidev,
match, pa) != 0)
return (1);
}
return (0);
}
int
pci_get_powerstate(pci_chipset_tag_t pc, pcitag_t tag)
{
pcireg_t reg;
int offset;
if (pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, 0)) {
reg = pci_conf_read(pc, tag, offset + PCI_PMCSR);
return (reg & PCI_PMCSR_STATE_MASK);
}
return (PCI_PMCSR_STATE_D0);
}
int
pci_set_powerstate(pci_chipset_tag_t pc, pcitag_t tag, int state)
{
pcireg_t reg;
int offset, ostate = state;
/*
* Warn the firmware that we are going to put the device
* into the given state.
*/
pci_set_powerstate_md(pc, tag, state, 1);
if (pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, 0)) {
if (state == PCI_PMCSR_STATE_D3) {
/*
* The PCI Power Management spec says we
* should disable I/O and memory space as well
* as bus mastering before we place the device
* into D3.
*/
reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
reg &= ~PCI_COMMAND_IO_ENABLE;
reg &= ~PCI_COMMAND_MEM_ENABLE;
reg &= ~PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, reg);
}
reg = pci_conf_read(pc, tag, offset + PCI_PMCSR);
if ((reg & PCI_PMCSR_STATE_MASK) != state) {
ostate = reg & PCI_PMCSR_STATE_MASK;
pci_conf_write(pc, tag, offset + PCI_PMCSR,
(reg & ~PCI_PMCSR_STATE_MASK) | state);
if (state == PCI_PMCSR_STATE_D3 ||
ostate == PCI_PMCSR_STATE_D3)
delay(10 * 1000);
}
}
/*
* Warn the firmware that the device is now in the given
* state.
*/
pci_set_powerstate_md(pc, tag, state, 0);
return (ostate);
}
#ifndef PCI_MACHDEP_ENUMERATE_BUS
/*
* Generic PCI bus enumeration routine. Used unless machine-dependent
* code needs to provide something else.
*/
int
pci_enumerate_bus(struct pci_softc *sc,
int (*match)(struct pci_attach_args *), struct pci_attach_args *pap)
{
pci_chipset_tag_t pc = sc->sc_pc;
int device, function, nfunctions, ret;
int maxndevs = sc->sc_maxndevs;
const struct pci_quirkdata *qd;
pcireg_t id, bhlcr, cap;
pcitag_t tag;
/*
* PCIe downstream ports and root ports should only forward
* configuration requests for device number 0. However, not
* all hardware implements this correctly, and some devices
* will respond to other device numbers making the device show
* up 32 times. Prevent this by only scanning a single
* device.
*/
if (sc->sc_bridgetag && pci_get_capability(pc, *sc->sc_bridgetag,
PCI_CAP_PCIEXPRESS, NULL, &cap)) {
switch (PCI_PCIE_XCAP_TYPE(cap)) {
case PCI_PCIE_XCAP_TYPE_RP:
case PCI_PCIE_XCAP_TYPE_DOWN:
case PCI_PCIE_XCAP_TYPE_PCI2PCIE:
maxndevs = 1;
break;
}
}
for (device = 0; device < maxndevs; device++) {
tag = pci_make_tag(pc, sc->sc_bus, device, 0);
bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlcr) > 2)
continue;
id = pci_conf_read(pc, tag, PCI_ID_REG);
/* Invalid vendor ID value? */
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
continue;
/* XXX Not invalid, but we've done this ~forever. */
if (PCI_VENDOR(id) == 0)
continue;
qd = pci_lookup_quirkdata(PCI_VENDOR(id), PCI_PRODUCT(id));
if (qd != NULL &&
(qd->quirks & PCI_QUIRK_MULTIFUNCTION) != 0)
nfunctions = 8;
else if (qd != NULL &&
(qd->quirks & PCI_QUIRK_MONOFUNCTION) != 0)
nfunctions = 1;
else
nfunctions = PCI_HDRTYPE_MULTIFN(bhlcr) ? 8 : 1;
for (function = 0; function < nfunctions; function++) {
tag = pci_make_tag(pc, sc->sc_bus, device, function);
ret = pci_probe_device(sc, tag, match, pap);
if (match != NULL && ret != 0)
return (ret);
}
}
return (0);
}
#endif /* PCI_MACHDEP_ENUMERATE_BUS */
int
pci_reserve_resources(struct pci_attach_args *pa)
{
pci_chipset_tag_t pc = pa->pa_pc;
pcitag_t tag = pa->pa_tag;
pcireg_t bhlc, blr, type, bir;
pcireg_t addr, mask;
bus_addr_t base, limit;
bus_size_t size;
int reg, reg_start, reg_end, reg_rom;
int bus, dev, func;
int sec, sub;
int flags;
int s;
pci_decompose_tag(pc, tag, &bus, &dev, &func);
bhlc = pci_conf_read(pc, tag, PCI_BHLC_REG);
switch (PCI_HDRTYPE_TYPE(bhlc)) {
case 0:
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_END;
reg_rom = PCI_ROM_REG;
break;
case 1: /* PCI-PCI bridge */
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_PPB_END;
reg_rom = 0; /* 0x38 */
break;
case 2: /* PCI-CardBus bridge */
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_PCB_END;
reg_rom = 0;
break;
default:
return (0);
}
for (reg = reg_start; reg < reg_end; reg += 4) {
if (!pci_mapreg_probe(pc, tag, reg, &type))
continue;
if (pci_mapreg_info(pc, tag, reg, type, &base, &size, &flags))
continue;
if (base == 0)
continue;
switch (type) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (ISSET(flags, BUS_SPACE_MAP_PREFETCHABLE) &&
pa->pa_pmemex && extent_alloc_region(pa->pa_pmemex,
base, size, EX_NOWAIT) == 0) {
break;
}
#ifdef __sparc64__
/*
* Certain SPARC T5 systems assign
* non-prefetchable 64-bit BARs of their onboard
* mpii(4) controllers addresses in the
* prefetchable memory range. This is
* (probably) safe, as reads from the device
* registers mapped by these BARs are
* side-effect free. So assume the firmware
* knows what it is doing.
*/
if (base >= 0x100000000 &&
pa->pa_pmemex && extent_alloc_region(pa->pa_pmemex,
base, size, EX_NOWAIT) == 0) {
break;
}
#endif
if (pa->pa_memex && extent_alloc_region(pa->pa_memex,
base, size, EX_NOWAIT)) {
printf("%d:%d:%d: mem address conflict 0x%lx/0x%lx\n",
bus, dev, func, base, size);
pci_conf_write(pc, tag, reg, 0);
if (type & PCI_MAPREG_MEM_TYPE_64BIT)
pci_conf_write(pc, tag, reg + 4, 0);
}
break;
case PCI_MAPREG_TYPE_IO:
if (pa->pa_ioex && extent_alloc_region(pa->pa_ioex,
base, size, EX_NOWAIT)) {
printf("%d:%d:%d: io address conflict 0x%lx/0x%lx\n",
bus, dev, func, base, size);
pci_conf_write(pc, tag, reg, 0);
}
break;
}
if (type & PCI_MAPREG_MEM_TYPE_64BIT)
reg += 4;
}
if (reg_rom != 0) {
s = splhigh();
addr = pci_conf_read(pc, tag, PCI_ROM_REG);
pci_conf_write(pc, tag, PCI_ROM_REG, ~PCI_ROM_ENABLE);
mask = pci_conf_read(pc, tag, PCI_ROM_REG);
pci_conf_write(pc, tag, PCI_ROM_REG, addr);
splx(s);
base = PCI_ROM_ADDR(addr);
size = PCI_ROM_SIZE(mask);
if (base != 0 && size != 0) {
if (pa->pa_pmemex && extent_alloc_region(pa->pa_pmemex,
base, size, EX_NOWAIT) &&
pa->pa_memex && extent_alloc_region(pa->pa_memex,
base, size, EX_NOWAIT)) {
printf("%d:%d:%d: rom address conflict 0x%lx/0x%lx\n",
bus, dev, func, base, size);
pci_conf_write(pc, tag, PCI_ROM_REG, 0);
}
}
}
if (PCI_HDRTYPE_TYPE(bhlc) != 1)
return (0);
/* Figure out the I/O address range of the bridge. */
blr = pci_conf_read(pc, tag, PPB_REG_IOSTATUS);
base = (blr & 0x000000f0) << 8;
limit = (blr & 0x000f000) | 0x00000fff;
blr = pci_conf_read(pc, tag, PPB_REG_IO_HI);
base |= (blr & 0x0000ffff) << 16;
limit |= (blr & 0xffff0000);
if (limit > base)
size = (limit - base + 1);
else
size = 0;
if (pa->pa_ioex && base > 0 && size > 0) {
if (extent_alloc_region(pa->pa_ioex, base, size, EX_NOWAIT)) {
printf("%d:%d:%d: bridge io address conflict 0x%lx/0x%lx\n",
bus, dev, func, base, size);
blr &= 0xffff0000;
blr |= 0x000000f0;
pci_conf_write(pc, tag, PPB_REG_IOSTATUS, blr);
}
}
/* Figure out the memory mapped I/O address range of the bridge. */
blr = pci_conf_read(pc, tag, PPB_REG_MEM);
base = (blr & 0x0000fff0) << 16;
limit = (blr & 0xfff00000) | 0x000fffff;
if (limit > base)
size = (limit - base + 1);
else
size = 0;
if (pa->pa_memex && base > 0 && size > 0) {
if (extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) {
printf("%d:%d:%d: bridge mem address conflict 0x%lx/0x%lx\n",
bus, dev, func, base, size);
pci_conf_write(pc, tag, PPB_REG_MEM, 0x0000fff0);
}
}
/* Figure out the prefetchable memory address range of the bridge. */
blr = pci_conf_read(pc, tag, PPB_REG_PREFMEM);
base = (blr & 0x0000fff0) << 16;
limit = (blr & 0xfff00000) | 0x000fffff;
#ifdef __LP64__
blr = pci_conf_read(pc, pa->pa_tag, PPB_REG_PREFBASE_HI32);
base |= ((uint64_t)blr) << 32;
blr = pci_conf_read(pc, pa->pa_tag, PPB_REG_PREFLIM_HI32);
limit |= ((uint64_t)blr) << 32;
#endif
if (limit > base)
size = (limit - base + 1);
else
size = 0;
if (pa->pa_pmemex && base > 0 && size > 0) {
if (extent_alloc_region(pa->pa_pmemex, base, size, EX_NOWAIT)) {
printf("%d:%d:%d: bridge mem address conflict 0x%lx/0x%lx\n",
bus, dev, func, base, size);
pci_conf_write(pc, tag, PPB_REG_PREFMEM, 0x0000fff0);
}
} else if (pa->pa_memex && base > 0 && size > 0) {
if (extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) {
printf("%d:%d:%d: bridge mem address conflict 0x%lx/0x%lx\n",
bus, dev, func, base, size);
pci_conf_write(pc, tag, PPB_REG_PREFMEM, 0x0000fff0);
}
}
/* Figure out the bus range handled by the bridge. */
bir = pci_conf_read(pc, tag, PPB_REG_BUSINFO);
sec = PPB_BUSINFO_SECONDARY(bir);
sub = PPB_BUSINFO_SUBORDINATE(bir);
if (pa->pa_busex && sub >= sec && sub > 0) {
if (extent_alloc_region(pa->pa_busex, sec, sub - sec + 1,
EX_NOWAIT)) {
printf("%d:%d:%d: bridge bus conflict %d-%d\n",
bus, dev, func, sec, sub);
}
}
return (0);
}
/*
* Vital Product Data (PCI 2.2)
*/
int
pci_vpd_read(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count,
pcireg_t *data)
{
uint32_t reg;
int ofs, i, j;
KASSERT(data != NULL);
if ((offset + count) >= PCI_VPD_ADDRESS_MASK)
return (EINVAL);
if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, &reg) == 0)
return (ENXIO);
for (i = 0; i < count; offset += sizeof(*data), i++) {
reg &= 0x0000ffff;
reg &= ~PCI_VPD_OPFLAG;
reg |= PCI_VPD_ADDRESS(offset);
pci_conf_write(pc, tag, ofs, reg);
/*
* PCI 2.2 does not specify how long we should poll
* for completion nor whether the operation can fail.
*/
j = 0;
do {
if (j++ == 20)
return (EIO);
delay(4);
reg = pci_conf_read(pc, tag, ofs);
} while ((reg & PCI_VPD_OPFLAG) == 0);
data[i] = pci_conf_read(pc, tag, PCI_VPD_DATAREG(ofs));
}
return (0);
}
int
pci_vpd_write(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count,
pcireg_t *data)
{
pcireg_t reg;
int ofs, i, j;
KASSERT(data != NULL);
KASSERT((offset + count) < 0x7fff);
if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, &reg) == 0)
return (1);
for (i = 0; i < count; offset += sizeof(*data), i++) {
pci_conf_write(pc, tag, PCI_VPD_DATAREG(ofs), data[i]);
reg &= 0x0000ffff;
reg |= PCI_VPD_OPFLAG;
reg |= PCI_VPD_ADDRESS(offset);
pci_conf_write(pc, tag, ofs, reg);
/*
* PCI 2.2 does not specify how long we should poll
* for completion nor whether the operation can fail.
*/
j = 0;
do {
if (j++ == 20)
return (1);
delay(1);
reg = pci_conf_read(pc, tag, ofs);
} while (reg & PCI_VPD_OPFLAG);
}
return (0);
}
int
pci_matchbyid(struct pci_attach_args *pa, const struct pci_matchid *ids,
int nent)
{
const struct pci_matchid *pm;
int i;
for (i = 0, pm = ids; i < nent; i++, pm++)
if (PCI_VENDOR(pa->pa_id) == pm->pm_vid &&
PCI_PRODUCT(pa->pa_id) == pm->pm_pid)
return (1);
return (0);
}
void
pci_disable_legacy_vga(struct device *dev)
{
struct pci_softc *pci;
struct pci_dev *pd;
/* XXX Until we attach the drm drivers directly to pci. */
while (dev->dv_parent->dv_cfdata->cf_driver != &pci_cd)
dev = dev->dv_parent;
pci = (struct pci_softc *)dev->dv_parent;
LIST_FOREACH(pd, &pci->sc_devs, pd_next) {
if (pd->pd_dev == dev) {
pd->pd_vga_decode = 0;
break;
}
}
}
#ifdef USER_PCICONF
/*
* This is the user interface to PCI configuration space.
*/
#include <sys/pciio.h>
#include <sys/fcntl.h>
#ifdef DEBUG
#define PCIDEBUG(x) printf x
#else
#define PCIDEBUG(x)
#endif
void pci_disable_vga(pci_chipset_tag_t, pcitag_t);
void pci_enable_vga(pci_chipset_tag_t, pcitag_t);
void pci_route_vga(struct pci_softc *);
void pci_unroute_vga(struct pci_softc *);
int pciopen(dev_t dev, int oflags, int devtype, struct proc *p);
int pciclose(dev_t dev, int flag, int devtype, struct proc *p);
int pciioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p);
int
pciopen(dev_t dev, int oflags, int devtype, struct proc *p)
{
PCIDEBUG(("pciopen ndevs: %d\n" , pci_cd.cd_ndevs));
if (minor(dev) >= pci_ndomains) {
return ENXIO;
}
#ifndef APERTURE
if ((oflags & FWRITE) && securelevel > 0) {
return EPERM;
}
#else
if ((oflags & FWRITE) && securelevel > 0 && allowaperture == 0) {
return EPERM;
}
#endif
return (0);
}
int
pciclose(dev_t dev, int flag, int devtype, struct proc *p)
{
PCIDEBUG(("pciclose\n"));
pci_vga_proc = NULL;
return (0);
}
int
pciioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
struct pcisel *sel = (struct pcisel *)data;
struct pci_io *io;
struct pci_dev *pd;
struct pci_rom *rom;
int i, error;
pcitag_t tag;
struct pci_softc *pci;
pci_chipset_tag_t pc;
switch (cmd) {
case PCIOCREAD:
case PCIOCREADMASK:
break;
case PCIOCWRITE:
if (!(flag & FWRITE))
return EPERM;
break;
case PCIOCGETROMLEN:
case PCIOCGETROM:
case PCIOCGETVPD:
break;
case PCIOCGETVGA:
case PCIOCSETVGA:
if (pci_vga_pci == NULL)
return EINVAL;
break;
default:
return ENOTTY;
}
for (i = 0; i < pci_cd.cd_ndevs; i++) {
pci = pci_cd.cd_devs[i];
if (pci != NULL && pci->sc_domain == minor(dev) &&
pci->sc_bus == sel->pc_bus)
break;
}
if (i >= pci_cd.cd_ndevs)
return ENXIO;
/* Check bounds */
if (pci->sc_bus >= 256 ||
sel->pc_dev >= pci_bus_maxdevs(pci->sc_pc, pci->sc_bus) ||
sel->pc_func >= 8)
return EINVAL;
pc = pci->sc_pc;
LIST_FOREACH(pd, &pci->sc_devs, pd_next) {
int bus, dev, func;
pci_decompose_tag(pc, pd->pd_tag, &bus, &dev, &func);
if (bus == sel->pc_bus && dev == sel->pc_dev &&
func == sel->pc_func)
break;
}
if (pd == NULL)
return ENXIO;
tag = pci_make_tag(pc, sel->pc_bus, sel->pc_dev, sel->pc_func);
switch (cmd) {
case PCIOCREAD:
io = (struct pci_io *)data;
switch (io->pi_width) {
case 4:
/* Configuration space bounds check */
if (io->pi_reg < 0 ||
io->pi_reg >= pci_conf_size(pc, tag))
return EINVAL;
/* Make sure the register is properly aligned */
if (io->pi_reg & 0x3)
return EINVAL;
io->pi_data = pci_conf_read(pc, tag, io->pi_reg);
error = 0;
break;
default:
error = EINVAL;
break;
}
break;
case PCIOCWRITE:
io = (struct pci_io *)data;
switch (io->pi_width) {
case 4:
/* Configuration space bounds check */
if (io->pi_reg < 0 ||
io->pi_reg >= pci_conf_size(pc, tag))
return EINVAL;
/* Make sure the register is properly aligned */
if (io->pi_reg & 0x3)
return EINVAL;
pci_conf_write(pc, tag, io->pi_reg, io->pi_data);
error = 0;
break;
default:
error = EINVAL;
break;
}
break;
case PCIOCREADMASK:
io = (struct pci_io *)data;
if (io->pi_width != 4 || io->pi_reg & 0x3 ||
io->pi_reg < PCI_MAPREG_START ||
io->pi_reg >= PCI_MAPREG_END)
return (EINVAL);
i = (io->pi_reg - PCI_MAPREG_START) / 4;
io->pi_data = pd->pd_mask[i];
error = 0;
break;
case PCIOCGETROMLEN:
case PCIOCGETROM:
{
pcireg_t addr, mask, bhlc;
bus_space_handle_t h;
bus_size_t len, off;
char buf[256];
int s;
rom = (struct pci_rom *)data;
bhlc = pci_conf_read(pc, tag, PCI_BHLC_REG);
if (PCI_HDRTYPE_TYPE(bhlc) != 0)
return (ENODEV);
s = splhigh();
addr = pci_conf_read(pc, tag, PCI_ROM_REG);
pci_conf_write(pc, tag, PCI_ROM_REG, ~PCI_ROM_ENABLE);
mask = pci_conf_read(pc, tag, PCI_ROM_REG);
pci_conf_write(pc, tag, PCI_ROM_REG, addr);
splx(s);
/*
* Section 6.2.5.2 `Expansion ROM Base Address Register',
*
* tells us that only the upper 21 bits are writable.
* This means that the size of a ROM must be a
* multiple of 2 KB. So reading the ROM in chunks of
* 256 bytes should work just fine.
*/
if ((PCI_ROM_ADDR(addr) == 0 ||
PCI_ROM_SIZE(mask) % sizeof(buf)) != 0)
return (ENODEV);
/* If we're just after the size, skip reading the ROM. */
if (cmd == PCIOCGETROMLEN) {
error = 0;
goto fail;
}
if (rom->pr_romlen < PCI_ROM_SIZE(mask)) {
error = ENOMEM;
goto fail;
}
error = bus_space_map(pci->sc_memt, PCI_ROM_ADDR(addr),
PCI_ROM_SIZE(mask), 0, &h);
if (error)
goto fail;
off = 0;
len = PCI_ROM_SIZE(mask);
while (len > 0 && error == 0) {
s = splhigh();
pci_conf_write(pc, tag, PCI_ROM_REG,
addr | PCI_ROM_ENABLE);
bus_space_read_region_1(pci->sc_memt, h, off,
buf, sizeof(buf));
pci_conf_write(pc, tag, PCI_ROM_REG, addr);
splx(s);
error = copyout(buf, rom->pr_rom + off, sizeof(buf));
off += sizeof(buf);
len -= sizeof(buf);
}
bus_space_unmap(pci->sc_memt, h, PCI_ROM_SIZE(mask));
fail:
rom->pr_romlen = PCI_ROM_SIZE(mask);
break;
}
case PCIOCGETVPD: {
struct pci_vpd_req *pv = (struct pci_vpd_req *)data;
pcireg_t *data;
size_t len;
unsigned int i;
int s;
CTASSERT(sizeof(*data) == sizeof(*pv->pv_data));
data = mallocarray(pv->pv_count, sizeof(*data), M_TEMP,
M_WAITOK|M_CANFAIL);
if (data == NULL) {
error = ENOMEM;
break;
}
s = splhigh();
error = pci_vpd_read(pc, tag, pv->pv_offset, pv->pv_count,
data);
splx(s);
len = pv->pv_count * sizeof(*pv->pv_data);
if (error == 0) {
for (i = 0; i < pv->pv_count; i++)
data[i] = letoh32(data[i]);
error = copyout(data, pv->pv_data, len);
}
free(data, M_TEMP, len);
break;
}
case PCIOCGETVGA:
{
struct pci_vga *vga = (struct pci_vga *)data;
struct pci_dev *pd;
int bus, dev, func;
vga->pv_decode = 0;
LIST_FOREACH(pd, &pci->sc_devs, pd_next) {
pci_decompose_tag(pc, pd->pd_tag, NULL, &dev, &func);
if (dev == sel->pc_dev && func == sel->pc_func) {
if (pd->pd_vga_decode)
vga->pv_decode = PCI_VGA_IO_ENABLE |
PCI_VGA_MEM_ENABLE;
break;
}
}
pci_decompose_tag(pci_vga_pci->sc_pc,
pci_vga_tag, &bus, &dev, &func);
vga->pv_sel.pc_bus = bus;
vga->pv_sel.pc_dev = dev;
vga->pv_sel.pc_func = func;
error = 0;
break;
}
case PCIOCSETVGA:
{
struct pci_vga *vga = (struct pci_vga *)data;
int bus, dev, func;
switch (vga->pv_lock) {
case PCI_VGA_UNLOCK:
case PCI_VGA_LOCK:
case PCI_VGA_TRYLOCK:
break;
default:
return (EINVAL);
}
if (vga->pv_lock == PCI_VGA_UNLOCK) {
if (pci_vga_proc != p)
return (EINVAL);
pci_vga_proc = NULL;
wakeup(&pci_vga_proc);
return (0);
}
while (pci_vga_proc != p && pci_vga_proc != NULL) {
if (vga->pv_lock == PCI_VGA_TRYLOCK)
return (EBUSY);
error = tsleep_nsec(&pci_vga_proc, PLOCK | PCATCH,
"vgalk", INFSLP);
if (error)
return (error);
}
pci_vga_proc = p;
pci_decompose_tag(pci_vga_pci->sc_pc,
pci_vga_tag, &bus, &dev, &func);
if (bus != vga->pv_sel.pc_bus || dev != vga->pv_sel.pc_dev ||
func != vga->pv_sel.pc_func) {
pci_disable_vga(pci_vga_pci->sc_pc, pci_vga_tag);
if (pci != pci_vga_pci) {
pci_unroute_vga(pci_vga_pci);
pci_route_vga(pci);
pci_vga_pci = pci;
}
pci_enable_vga(pc, tag);
pci_vga_tag = tag;
}
error = 0;
break;
}
default:
error = ENOTTY;
break;
}
return (error);
}
void
pci_disable_vga(pci_chipset_tag_t pc, pcitag_t tag)
{
pcireg_t csr;
csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
csr &= ~(PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr);
}
void
pci_enable_vga(pci_chipset_tag_t pc, pcitag_t tag)
{
pcireg_t csr;
csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
csr |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE;
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr);
}
void
pci_route_vga(struct pci_softc *sc)
{
pci_chipset_tag_t pc = sc->sc_pc;
pcireg_t bc;
if (sc->sc_bridgetag == NULL)
return;
bc = pci_conf_read(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL);
bc |= PPB_BC_VGA_ENABLE;
pci_conf_write(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL, bc);
pci_route_vga((struct pci_softc *)sc->sc_dev.dv_parent->dv_parent);
}
void
pci_unroute_vga(struct pci_softc *sc)
{
pci_chipset_tag_t pc = sc->sc_pc;
pcireg_t bc;
if (sc->sc_bridgetag == NULL)
return;
bc = pci_conf_read(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL);
bc &= ~PPB_BC_VGA_ENABLE;
pci_conf_write(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL, bc);
pci_unroute_vga((struct pci_softc *)sc->sc_dev.dv_parent->dv_parent);
}
#endif /* USER_PCICONF */
int
pci_primary_vga(struct pci_attach_args *pa)
{
/* XXX For now, only handle the first PCI domain. */
if (pa->pa_domain != 0)
return (0);
if ((PCI_CLASS(pa->pa_class) != PCI_CLASS_DISPLAY ||
PCI_SUBCLASS(pa->pa_class) != PCI_SUBCLASS_DISPLAY_VGA) &&
(PCI_CLASS(pa->pa_class) != PCI_CLASS_PREHISTORIC ||
PCI_SUBCLASS(pa->pa_class) != PCI_SUBCLASS_PREHISTORIC_VGA))
return (0);
if ((pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG)
& (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE))
!= (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE))
return (0);
pci_vga_tag = pa->pa_tag;
return (1);
}
#ifdef __HAVE_PCI_MSIX
struct msix_vector *
pci_alloc_msix_table(pci_chipset_tag_t pc, pcitag_t tag)
{
struct msix_vector *table;
pcireg_t reg;
int tblsz;
if (pci_get_capability(pc, tag, PCI_CAP_MSIX, NULL, &reg) == 0)
return NULL;
tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1;
table = mallocarray(tblsz, sizeof(*table), M_DEVBUF, M_WAITOK);
return table;
}
void
pci_free_msix_table(pci_chipset_tag_t pc, pcitag_t tag,
struct msix_vector *table)
{
pcireg_t reg;
int tblsz;
if (pci_get_capability(pc, tag, PCI_CAP_MSIX, NULL, &reg) == 0)
return;
tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1;
free(table, M_DEVBUF, tblsz * sizeof(*table));
}
void
pci_suspend_msix(pci_chipset_tag_t pc, pcitag_t tag,
bus_space_tag_t memt, pcireg_t *mc, struct msix_vector *table)
{
bus_space_handle_t memh;
pcireg_t reg;
int tblsz, i;
if (pci_get_capability(pc, tag, PCI_CAP_MSIX, NULL, &reg) == 0)
return;
KASSERT(table != NULL);
if (pci_msix_table_map(pc, tag, memt, &memh))
return;
tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1;
for (i = 0; i < tblsz; i++) {
table[i].mv_ma = bus_space_read_4(memt, memh, PCI_MSIX_MA(i));
table[i].mv_mau32 = bus_space_read_4(memt, memh,
PCI_MSIX_MAU32(i));
table[i].mv_md = bus_space_read_4(memt, memh, PCI_MSIX_MD(i));
table[i].mv_vc = bus_space_read_4(memt, memh, PCI_MSIX_VC(i));
}
pci_msix_table_unmap(pc, tag, memt, memh);
*mc = reg;
}
void
pci_resume_msix(pci_chipset_tag_t pc, pcitag_t tag,
bus_space_tag_t memt, pcireg_t mc, struct msix_vector *table)
{
bus_space_handle_t memh;
pcireg_t reg;
int tblsz, i;
int off;
if (pci_get_capability(pc, tag, PCI_CAP_MSIX, &off, &reg) == 0)
return;
KASSERT(table != NULL);
if (pci_msix_table_map(pc, tag, memt, &memh))
return;
tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1;
for (i = 0; i < tblsz; i++) {
bus_space_write_4(memt, memh, PCI_MSIX_MA(i), table[i].mv_ma);
bus_space_write_4(memt, memh, PCI_MSIX_MAU32(i),
table[i].mv_mau32);
bus_space_write_4(memt, memh, PCI_MSIX_MD(i), table[i].mv_md);
bus_space_barrier(memt, memh, PCI_MSIX_MA(i), 16,
BUS_SPACE_BARRIER_WRITE);
bus_space_write_4(memt, memh, PCI_MSIX_VC(i), table[i].mv_vc);
bus_space_barrier(memt, memh, PCI_MSIX_VC(i), 4,
BUS_SPACE_BARRIER_WRITE);
}
pci_msix_table_unmap(pc, tag, memt, memh);
pci_conf_write(pc, tag, off, mc);
}
int
pci_intr_msix_count(struct pci_attach_args *pa)
{
pcireg_t reg;
if ((pa->pa_flags & PCI_FLAGS_MSI_ENABLED) == 0)
return (0);
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, NULL,
&reg) == 0)
return (0);
return (PCI_MSIX_MC_TBLSZ(reg) + 1);
}
#else /* __HAVE_PCI_MSIX */
struct msix_vector *
pci_alloc_msix_table(pci_chipset_tag_t pc, pcitag_t tag)
{
return NULL;
}
void
pci_free_msix_table(pci_chipset_tag_t pc, pcitag_t tag,
struct msix_vector *table)
{
}
void
pci_suspend_msix(pci_chipset_tag_t pc, pcitag_t tag,
bus_space_tag_t memt, pcireg_t *mc, struct msix_vector *table)
{
}
void
pci_resume_msix(pci_chipset_tag_t pc, pcitag_t tag,
bus_space_tag_t memt, pcireg_t mc, struct msix_vector *table)
{
}
int
pci_intr_msix_count(struct pci_attach_args *pa)
{
return (0);
}
#endif /* __HAVE_PCI_MSIX */