src/sys/dev/pci/if_tl.c

2030 lines
53 KiB
C

/* $OpenBSD: if_tl.c,v 1.78 2023/11/10 15:51:24 bluhm Exp $ */
/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/pci/if_tl.c,v 1.64 2001/02/06 10:11:48 phk Exp $
*/
/*
* Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
* Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
* the National Semiconductor DP83840A physical interface and the
* Microchip Technology 24Cxx series serial EEPROM.
*
* Written using the following four documents:
*
* Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
* National Semiconductor DP83840A data sheet (www.national.com)
* Microchip Technology 24C02C data sheet (www.microchip.com)
* Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* Some notes about the ThunderLAN:
*
* The ThunderLAN controller is a single chip containing PCI controller
* logic, approximately 3K of on-board SRAM, a LAN controller, and media
* independent interface (MII) bus. The MII allows the ThunderLAN chip to
* control up to 32 different physical interfaces (PHYs). The ThunderLAN
* also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
* to act as a complete ethernet interface.
*
* Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
* use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
* in full or half duplex. Some of the Compaq Deskpro machines use a
* Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
* use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
* concert with the ThunderLAN's internal PHY to provide full 10/100
* support. This is cheaper than using a standalone external PHY for both
* 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
* A serial EEPROM is also attached to the ThunderLAN chip to provide
* power-up default register settings and for storing the adapter's
* station address. Although not supported by this driver, the ThunderLAN
* chip can also be connected to token ring PHYs.
*
* The ThunderLAN has a set of registers which can be used to issue
* commands, acknowledge interrupts, and to manipulate other internal
* registers on its DIO bus. The primary registers can be accessed
* using either programmed I/O (inb/outb) or via PCI memory mapping,
* depending on how the card is configured during the PCI probing
* phase. It is even possible to have both PIO and memory mapped
* access turned on at the same time.
*
* Frame reception and transmission with the ThunderLAN chip is done
* using frame 'lists.' A list structure looks more or less like this:
*
* struct tl_frag {
* u_int32_t fragment_address;
* u_int32_t fragment_size;
* };
* struct tl_list {
* u_int32_t forward_pointer;
* u_int16_t cstat;
* u_int16_t frame_size;
* struct tl_frag fragments[10];
* };
*
* The forward pointer in the list header can be either a 0 or the address
* of another list, which allows several lists to be linked together. Each
* list contains up to 10 fragment descriptors. This means the chip allows
* ethernet frames to be broken up into up to 10 chunks for transfer to
* and from the SRAM. Note that the forward pointer and fragment buffer
* addresses are physical memory addresses, not virtual. Note also that
* a single ethernet frame can not span lists: if the host wants to
* transmit a frame and the frame data is split up over more than 10
* buffers, the frame has to collapsed before it can be transmitted.
*
* To receive frames, the driver sets up a number of lists and populates
* the fragment descriptors, then it sends an RX GO command to the chip.
* When a frame is received, the chip will DMA it into the memory regions
* specified by the fragment descriptors and then trigger an RX 'end of
* frame interrupt' when done. The driver may choose to use only one
* fragment per list; this may result in slightly less efficient use
* of memory in exchange for improving performance.
*
* To transmit frames, the driver again sets up lists and fragment
* descriptors, only this time the buffers contain frame data that
* is to be DMA'ed into the chip instead of out of it. Once the chip
* has transferred the data into its on-board SRAM, it will trigger a
* TX 'end of frame' interrupt. It will also generate an 'end of channel'
* interrupt when it reaches the end of the list.
*/
/*
* Some notes about this driver:
*
* The ThunderLAN chip provides a couple of different ways to organize
* reception, transmission and interrupt handling. The simplest approach
* is to use one list each for transmission and reception. In this mode,
* the ThunderLAN will generate two interrupts for every received frame
* (one RX EOF and one RX EOC) and two for each transmitted frame (one
* TX EOF and one TX EOC). This may make the driver simpler but it hurts
* performance to have to handle so many interrupts.
*
* Initially I wanted to create a circular list of receive buffers so
* that the ThunderLAN chip would think there was an infinitely long
* receive channel and never deliver an RXEOC interrupt. However this
* doesn't work correctly under heavy load: while the manual says the
* chip will trigger an RXEOF interrupt each time a frame is copied into
* memory, you can't count on the chip waiting around for you to acknowledge
* the interrupt before it starts trying to DMA the next frame. The result
* is that the chip might traverse the entire circular list and then wrap
* around before you have a chance to do anything about it. Consequently,
* the receive list is terminated (with a 0 in the forward pointer in the
* last element). Each time an RXEOF interrupt arrives, the used list
* is shifted to the end of the list. This gives the appearance of an
* infinitely large RX chain so long as the driver doesn't fall behind
* the chip and allow all of the lists to be filled up.
*
* If all the lists are filled, the adapter will deliver an RX 'end of
* channel' interrupt when it hits the 0 forward pointer at the end of
* the chain. The RXEOC handler then cleans out the RX chain and resets
* the list head pointer in the ch_parm register and restarts the receiver.
*
* For frame transmission, it is possible to program the ThunderLAN's
* transmit interrupt threshold so that the chip can acknowledge multiple
* lists with only a single TX EOF interrupt. This allows the driver to
* queue several frames in one shot, and only have to handle a total
* two interrupts (one TX EOF and one TX EOC) no matter how many frames
* are transmitted. Frame transmission is done directly out of the
* mbufs passed to the tl_start() routine via the interface send queue.
* The driver simply sets up the fragment descriptors in the transmit
* lists to point to the mbuf data regions and sends a TX GO command.
*
* Note that since the RX and TX lists themselves are always used
* only by the driver, the are malloc()ed once at driver initialization
* time and never free()ed.
*
* Also, in order to remain as platform independent as possible, this
* driver uses memory mapped register access to manipulate the card
* as opposed to programmed I/O. This avoids the use of the inb/outb
* (and related) instructions which are specific to the i386 platform.
*
* Using these techniques, this driver achieves very high performance
* by minimizing the amount of interrupts generated during large
* transfers and by completely avoiding buffer copies. Frame transfer
* to and from the ThunderLAN chip is performed entirely by the chip
* itself thereby reducing the load on the host CPU.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/timeout.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <uvm/uvm_extern.h> /* for vtophys */
#define VTOPHYS(v) vtophys((vaddr_t)(v))
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
/*
* Default to using PIO register access mode to pacify certain
* laptop docking stations with built-in ThunderLAN chips that
* don't seem to handle memory mapped mode properly.
*/
#define TL_USEIOSPACE
#include <dev/pci/if_tlreg.h>
#include <dev/mii/tlphyvar.h>
const struct tl_products tl_prods[] = {
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N100TX, TLPHY_MEDIA_NO_10_T },
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N10T, TLPHY_MEDIA_10_5 },
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_INTNF3P, TLPHY_MEDIA_10_2 },
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_INTPL100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DPNET100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DP4000, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P_BNC, TLPHY_MEDIA_10_2 },
{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P, TLPHY_MEDIA_10_5 },
{ PCI_VENDOR_TI, PCI_PRODUCT_TI_TLAN, 0 },
{ 0, 0, 0 }
};
int tl_probe(struct device *, void *, void *);
void tl_attach(struct device *, struct device *, void *);
void tl_wait_up(void *);
int tl_intvec_rxeoc(void *, u_int32_t);
int tl_intvec_txeoc(void *, u_int32_t);
int tl_intvec_txeof(void *, u_int32_t);
int tl_intvec_rxeof(void *, u_int32_t);
int tl_intvec_adchk(void *, u_int32_t);
int tl_intvec_netsts(void *, u_int32_t);
int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
void tl_stats_update(void *);
int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
int tl_intr(void *);
void tl_start(struct ifnet *);
int tl_ioctl(struct ifnet *, u_long, caddr_t);
void tl_init(void *);
void tl_stop(struct tl_softc *);
void tl_watchdog(struct ifnet *);
int tl_ifmedia_upd(struct ifnet *);
void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
void tl_mii_sync(struct tl_softc *);
void tl_mii_send(struct tl_softc *, u_int32_t, int);
int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *);
int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *);
int tl_miibus_readreg(struct device *, int, int);
void tl_miibus_writereg(struct device *, int, int, int);
void tl_miibus_statchg(struct device *);
void tl_setmode(struct tl_softc *, uint64_t);
int tl_calchash(u_int8_t *);
void tl_iff(struct tl_softc *);
void tl_setfilt(struct tl_softc *, caddr_t, int);
void tl_softreset(struct tl_softc *, int);
void tl_hardreset(struct device *);
int tl_list_rx_init(struct tl_softc *);
int tl_list_tx_init(struct tl_softc *);
u_int8_t tl_dio_read8(struct tl_softc *, int);
u_int16_t tl_dio_read16(struct tl_softc *, int);
u_int32_t tl_dio_read32(struct tl_softc *, int);
void tl_dio_write8(struct tl_softc *, int, int);
void tl_dio_write16(struct tl_softc *, int, int);
void tl_dio_write32(struct tl_softc *, int, int);
void tl_dio_setbit(struct tl_softc *, int, int);
void tl_dio_clrbit(struct tl_softc *, int, int);
void tl_dio_setbit16(struct tl_softc *, int, int);
void tl_dio_clrbit16(struct tl_softc *, int, int);
u_int8_t
tl_dio_read8(struct tl_softc *sc, int reg)
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
}
u_int16_t
tl_dio_read16(struct tl_softc *sc, int reg)
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
}
u_int32_t
tl_dio_read32(struct tl_softc *sc, int reg)
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
}
void
tl_dio_write8(struct tl_softc *sc, int reg, int val)
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
}
void
tl_dio_write16(struct tl_softc *sc, int reg, int val)
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
}
void
tl_dio_write32(struct tl_softc *sc, int reg, int val)
{
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
}
void
tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
{
u_int8_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
f |= bit;
CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
}
void
tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
{
u_int8_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
f &= ~bit;
CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
}
void
tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
{
u_int16_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
f |= bit;
CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
}
void
tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
{
u_int16_t f;
CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
f &= ~bit;
CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
}
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
u_int8_t
tl_eeprom_putbyte(struct tl_softc *sc, int byte)
{
int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
if (byte & i)
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
else
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
DELAY(1);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
DELAY(1);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
}
/*
* Turn off TX mode.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
/*
* Check for ack.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
return(ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
*/
u_int8_t
tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
{
int i;
u_int8_t byte = 0;
tl_dio_write8(sc, TL_NETSIO, 0);
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
printf("%s: failed to send write command, status: %x\n",
sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
return(1);
}
/*
* Send address of byte we want to read.
*/
if (tl_eeprom_putbyte(sc, addr)) {
printf("%s: failed to send address, status: %x\n",
sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
return(1);
}
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
printf("%s: failed to send write command, status: %x\n",
sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
return(1);
}
/*
* Start reading bits from EEPROM.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
for (i = 0x80; i; i >>= 1) {
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
DELAY(1);
if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
byte |= i;
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return(0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
int
tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = tl_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
void
tl_mii_sync(struct tl_softc *sc)
{
int i;
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
for (i = 0; i < 32; i++) {
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
}
void
tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
if (bits & i)
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
else
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
}
int
tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
{
int i, ack, s;
int minten = 0;
s = splnet();
tl_mii_sync(sc);
/*
* Set up frame for RX.
*/
frame->mii_stdelim = TL_MII_STARTDELIM;
frame->mii_opcode = TL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Turn off MII interrupt by forcing MINTEN low.
*/
minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
if (minten)
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
/*
* Turn on data xmit.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
/*
* Send command/address info.
*/
tl_mii_send(sc, frame->mii_stdelim, 2);
tl_mii_send(sc, frame->mii_opcode, 2);
tl_mii_send(sc, frame->mii_phyaddr, 5);
tl_mii_send(sc, frame->mii_regaddr, 5);
/*
* Turn off xmit.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
/* Idle bit */
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
/* Check for ack */
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
/* Complete the cycle */
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHYs in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
if (!ack) {
if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
frame->mii_data |= i;
}
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
}
fail:
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
/* Reenable interrupts */
if (minten)
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
splx(s);
if (ack)
return(1);
return(0);
}
int
tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
{
int s;
int minten;
tl_mii_sync(sc);
s = splnet();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = TL_MII_STARTDELIM;
frame->mii_opcode = TL_MII_WRITEOP;
frame->mii_turnaround = TL_MII_TURNAROUND;
/*
* Turn off MII interrupt by forcing MINTEN low.
*/
minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
if (minten)
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
/*
* Turn on data output.
*/
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
tl_mii_send(sc, frame->mii_stdelim, 2);
tl_mii_send(sc, frame->mii_opcode, 2);
tl_mii_send(sc, frame->mii_phyaddr, 5);
tl_mii_send(sc, frame->mii_regaddr, 5);
tl_mii_send(sc, frame->mii_turnaround, 2);
tl_mii_send(sc, frame->mii_data, 16);
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
/*
* Turn off xmit.
*/
tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
/* Reenable interrupts */
if (minten)
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
splx(s);
return(0);
}
int
tl_miibus_readreg(struct device *dev, int phy, int reg)
{
struct tl_softc *sc = (struct tl_softc *)dev;
struct tl_mii_frame frame;
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
tl_mii_readreg(sc, &frame);
return(frame.mii_data);
}
void
tl_miibus_writereg(struct device *dev, int phy, int reg, int data)
{
struct tl_softc *sc = (struct tl_softc *)dev;
struct tl_mii_frame frame;
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
tl_mii_writereg(sc, &frame);
}
void
tl_miibus_statchg(struct device *dev)
{
struct tl_softc *sc = (struct tl_softc *)dev;
if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX)
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
else
tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
}
/*
* Set modes for bitrate devices.
*/
void
tl_setmode(struct tl_softc *sc, uint64_t media)
{
if (IFM_SUBTYPE(media) == IFM_10_5)
tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
if (IFM_SUBTYPE(media) == IFM_10_T) {
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
if ((media & IFM_GMASK) == IFM_FDX) {
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
} else {
tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
}
}
}
/*
* Calculate the hash of a MAC address for programming the multicast hash
* table. This hash is simply the address split into 6-bit chunks
* XOR'd, e.g.
* byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
* bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
* Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
* the folded 24-bit value is split into 6-bit portions and XOR'd.
*/
int
tl_calchash(u_int8_t *addr)
{
int t;
t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
(addr[2] ^ addr[5]);
return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
}
/*
* The ThunderLAN has a perfect MAC address filter in addition to
* the multicast hash filter. The perfect filter can be programmed
* with up to four MAC addresses. The first one is always used to
* hold the station address, which leaves us free to use the other
* three for multicast addresses.
*/
void
tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
{
int i;
u_int16_t regaddr;
regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
for (i = 0; i < ETHER_ADDR_LEN; i++)
tl_dio_write8(sc, regaddr + i, *(addr + i));
}
/*
* XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
* linked list. This is fine, except addresses are added from the head
* end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
* group to always be in the perfect filter, but as more groups are added,
* the 224.0.0.1 entry (which is always added first) gets pushed down
* the list and ends up at the tail. So after 3 or 4 multicast groups
* are added, the all-hosts entry gets pushed out of the perfect filter
* and into the hash table.
*
* Because the multicast list is a doubly-linked list as opposed to a
* circular queue, we don't have the ability to just grab the tail of
* the list and traverse it backwards. Instead, we have to traverse
* the list once to find the tail, then traverse it again backwards to
* update the multicast filter.
*/
void
tl_iff(struct tl_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct arpcom *ac = &sc->arpcom;
struct ether_multistep step;
struct ether_multi *enm;
u_int32_t hashes[2];
int h = 0;
tl_dio_clrbit(sc, TL_NETCMD, (TL_CMD_CAF | TL_CMD_NOBRX));
bzero(hashes, sizeof(hashes));
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
else
hashes[0] = hashes[1] = 0xffffffff;
} else {
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = tl_calchash(enm->enm_addrlo);
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
}
}
tl_dio_write32(sc, TL_HASH1, hashes[0]);
tl_dio_write32(sc, TL_HASH2, hashes[1]);
}
/*
* This routine is recommended by the ThunderLAN manual to insure that
* the internal PHY is powered up correctly. It also recommends a one
* second pause at the end to 'wait for the clocks to start' but in my
* experience this isn't necessary.
*/
void
tl_hardreset(struct device *dev)
{
struct tl_softc *sc = (struct tl_softc *)dev;
int i;
u_int16_t flags;
flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
for (i =0 ; i < MII_NPHY; i++)
tl_miibus_writereg(dev, i, MII_BMCR, flags);
tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
tl_mii_sync(sc);
while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
DELAY(5000);
}
void
tl_softreset(struct tl_softc *sc, int internal)
{
u_int32_t cmd, dummy, i;
/* Assert the adapter reset bit. */
CMD_SET(sc, TL_CMD_ADRST);
/* Turn off interrupts */
CMD_SET(sc, TL_CMD_INTSOFF);
/* First, clear the stats registers. */
for (i = 0; i < 5; i++)
dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
/* Clear Areg and Hash registers */
for (i = 0; i < 8; i++)
tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
/*
* Set up Netconfig register. Enable one channel and
* one fragment mode.
*/
tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
if (internal && !sc->tl_bitrate) {
tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
} else {
tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
}
/* Handle cards with bitrate devices. */
if (sc->tl_bitrate)
tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
/*
* Load adapter irq pacing timer and tx threshold.
* We make the transmit threshold 1 initially but we may
* change that later.
*/
cmd = CSR_READ_4(sc, TL_HOSTCMD);
cmd |= TL_CMD_NES;
cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
/* Unreset the MII */
tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
/* Take the adapter out of reset */
tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
/* Wait for things to settle down a little. */
DELAY(500);
}
/*
* Initialize the transmit lists.
*/
int
tl_list_tx_init(struct tl_softc *sc)
{
struct tl_chain_data *cd;
struct tl_list_data *ld;
int i;
cd = &sc->tl_cdata;
ld = sc->tl_ldata;
for (i = 0; i < TL_TX_LIST_CNT; i++) {
cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
if (i == (TL_TX_LIST_CNT - 1))
cd->tl_tx_chain[i].tl_next = NULL;
else
cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
}
cd->tl_tx_free = &cd->tl_tx_chain[0];
cd->tl_tx_tail = cd->tl_tx_head = NULL;
sc->tl_txeoc = 1;
return(0);
}
/*
* Initialize the RX lists and allocate mbufs for them.
*/
int
tl_list_rx_init(struct tl_softc *sc)
{
struct tl_chain_data *cd;
struct tl_list_data *ld;
int i;
cd = &sc->tl_cdata;
ld = sc->tl_ldata;
for (i = 0; i < TL_RX_LIST_CNT; i++) {
cd->tl_rx_chain[i].tl_ptr =
(struct tl_list_onefrag *)&ld->tl_rx_list[i];
if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
return(ENOBUFS);
if (i == (TL_RX_LIST_CNT - 1)) {
cd->tl_rx_chain[i].tl_next = NULL;
ld->tl_rx_list[i].tlist_fptr = 0;
} else {
cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
ld->tl_rx_list[i].tlist_fptr =
VTOPHYS(&ld->tl_rx_list[i + 1]);
}
}
cd->tl_rx_head = &cd->tl_rx_chain[0];
cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
return(0);
}
int
tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
#ifdef __alpha__
m_new->m_data += 2;
#endif
c->tl_mbuf = m_new;
c->tl_next = NULL;
c->tl_ptr->tlist_frsize = MCLBYTES;
c->tl_ptr->tlist_fptr = 0;
c->tl_ptr->tl_frag.tlist_dadr = VTOPHYS(mtod(m_new, caddr_t));
c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
return(0);
}
/*
* Interrupt handler for RX 'end of frame' condition (EOF). This
* tells us that a full ethernet frame has been captured and we need
* to handle it.
*
* Reception is done using 'lists' which consist of a header and a
* series of 10 data count/data address pairs that point to buffers.
* Initially you're supposed to create a list, populate it with pointers
* to buffers, then load the physical address of the list into the
* ch_parm register. The adapter is then supposed to DMA the received
* frame into the buffers for you.
*
* To make things as fast as possible, we have the chip DMA directly
* into mbufs. This saves us from having to do a buffer copy: we can
* just hand the mbufs directly to the network stack. Once the frame
* has been sent on its way, the 'list' structure is assigned a new
* buffer and moved to the end of the RX chain. As long we stay
* ahead of the chip, it will always think it has an endless receive
* channel.
*
* If we happen to fall behind and the chip manages to fill up all of
* the buffers, it will generate an end of channel interrupt and wait
* for us to empty the chain and restart the receiver.
*/
int
tl_intvec_rxeof(void *xsc, u_int32_t type)
{
struct tl_softc *sc;
int r = 0, total_len = 0;
struct ether_header *eh;
struct mbuf *m;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct ifnet *ifp;
struct tl_chain_onefrag *cur_rx;
sc = xsc;
ifp = &sc->arpcom.ac_if;
while(sc->tl_cdata.tl_rx_head != NULL) {
cur_rx = sc->tl_cdata.tl_rx_head;
if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
break;
r++;
sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
m = cur_rx->tl_mbuf;
total_len = cur_rx->tl_ptr->tlist_frsize;
if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
continue;
}
sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
VTOPHYS(cur_rx->tl_ptr);
sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
sc->tl_cdata.tl_rx_tail = cur_rx;
eh = mtod(m, struct ether_header *);
/*
* Note: when the ThunderLAN chip is in 'capture all
* frames' mode, it will receive its own transmissions.
* We drop don't need to process our own transmissions,
* so we drop them here and continue.
*/
/*if (ifp->if_flags & IFF_PROMISC && */
if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN)) {
m_freem(m);
continue;
}
m->m_pkthdr.len = m->m_len = total_len;
ml_enqueue(&ml, m);
}
if_input(ifp, &ml);
return(r);
}
/*
* The RX-EOC condition hits when the ch_parm address hasn't been
* initialized or the adapter reached a list with a forward pointer
* of 0 (which indicates the end of the chain). In our case, this means
* the card has hit the end of the receive buffer chain and we need to
* empty out the buffers and shift the pointer back to the beginning again.
*/
int
tl_intvec_rxeoc(void *xsc, u_int32_t type)
{
struct tl_softc *sc;
int r;
struct tl_chain_data *cd;
sc = xsc;
cd = &sc->tl_cdata;
/* Flush out the receive queue and ack RXEOF interrupts. */
r = tl_intvec_rxeof(xsc, type);
CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
r = 1;
cd->tl_rx_head = &cd->tl_rx_chain[0];
cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(sc->tl_cdata.tl_rx_head->tl_ptr));
r |= (TL_CMD_GO|TL_CMD_RT);
return(r);
}
int
tl_intvec_txeof(void *xsc, u_int32_t type)
{
struct tl_softc *sc;
int r = 0;
struct tl_chain *cur_tx;
sc = xsc;
/*
* Go through our tx list and free mbufs for those
* frames that have been sent.
*/
while (sc->tl_cdata.tl_tx_head != NULL) {
cur_tx = sc->tl_cdata.tl_tx_head;
if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
break;
sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
r++;
m_freem(cur_tx->tl_mbuf);
cur_tx->tl_mbuf = NULL;
cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
sc->tl_cdata.tl_tx_free = cur_tx;
if (!cur_tx->tl_ptr->tlist_fptr)
break;
}
return(r);
}
/*
* The transmit end of channel interrupt. The adapter triggers this
* interrupt to tell us it hit the end of the current transmit list.
*
* A note about this: it's possible for a condition to arise where
* tl_start() may try to send frames between TXEOF and TXEOC interrupts.
* You have to avoid this since the chip expects things to go in a
* particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
* When the TXEOF handler is called, it will free all of the transmitted
* frames and reset the tx_head pointer to NULL. However, a TXEOC
* interrupt should be received and acknowledged before any more frames
* are queued for transmission. If tl_statrt() is called after TXEOF
* resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
* it could attempt to issue a transmit command prematurely.
*
* To guard against this, tl_start() will only issue transmit commands
* if the tl_txeoc flag is set, and only the TXEOC interrupt handler
* can set this flag once tl_start() has cleared it.
*/
int
tl_intvec_txeoc(void *xsc, u_int32_t type)
{
struct tl_softc *sc;
struct ifnet *ifp;
u_int32_t cmd;
sc = xsc;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->tl_cdata.tl_tx_head == NULL) {
ifq_clr_oactive(&ifp->if_snd);
sc->tl_cdata.tl_tx_tail = NULL;
sc->tl_txeoc = 1;
} else {
sc->tl_txeoc = 0;
/* First we have to ack the EOC interrupt. */
CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
/* Then load the address of the next TX list. */
CSR_WRITE_4(sc, TL_CH_PARM,
VTOPHYS(sc->tl_cdata.tl_tx_head->tl_ptr));
/* Restart TX channel. */
cmd = CSR_READ_4(sc, TL_HOSTCMD);
cmd &= ~TL_CMD_RT;
cmd |= TL_CMD_GO|TL_CMD_INTSON;
CMD_PUT(sc, cmd);
return(0);
}
return(1);
}
int
tl_intvec_adchk(void *xsc, u_int32_t type)
{
struct tl_softc *sc;
sc = xsc;
if (type)
printf("%s: adapter check: %x\n", sc->sc_dev.dv_xname,
(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
tl_softreset(sc, 1);
tl_stop(sc);
tl_init(sc);
CMD_SET(sc, TL_CMD_INTSON);
return(0);
}
int
tl_intvec_netsts(void *xsc, u_int32_t type)
{
struct tl_softc *sc;
u_int16_t netsts;
sc = xsc;
netsts = tl_dio_read16(sc, TL_NETSTS);
tl_dio_write16(sc, TL_NETSTS, netsts);
printf("%s: network status: %x\n", sc->sc_dev.dv_xname, netsts);
return(1);
}
int
tl_intr(void *xsc)
{
struct tl_softc *sc;
struct ifnet *ifp;
int r = 0;
u_int32_t type = 0;
u_int16_t ints = 0;
u_int8_t ivec = 0;
sc = xsc;
/* Disable interrupts */
ints = CSR_READ_2(sc, TL_HOST_INT);
CSR_WRITE_2(sc, TL_HOST_INT, ints);
type = (ints << 16) & 0xFFFF0000;
ivec = (ints & TL_VEC_MASK) >> 5;
ints = (ints & TL_INT_MASK) >> 2;
ifp = &sc->arpcom.ac_if;
switch(ints) {
case (TL_INTR_INVALID):
/* Re-enable interrupts but don't ack this one. */
CMD_PUT(sc, type);
r = 0;
break;
case (TL_INTR_TXEOF):
r = tl_intvec_txeof((void *)sc, type);
break;
case (TL_INTR_TXEOC):
r = tl_intvec_txeoc((void *)sc, type);
break;
case (TL_INTR_STATOFLOW):
tl_stats_update(sc);
r = 1;
break;
case (TL_INTR_RXEOF):
r = tl_intvec_rxeof((void *)sc, type);
break;
case (TL_INTR_DUMMY):
printf("%s: got a dummy interrupt\n", sc->sc_dev.dv_xname);
r = 1;
break;
case (TL_INTR_ADCHK):
if (ivec)
r = tl_intvec_adchk((void *)sc, type);
else
r = tl_intvec_netsts((void *)sc, type);
break;
case (TL_INTR_RXEOC):
r = tl_intvec_rxeoc((void *)sc, type);
break;
default:
printf("%s: bogus interrupt type\n", sc->sc_dev.dv_xname);
break;
}
/* Re-enable interrupts */
if (r) {
CMD_PUT(sc, TL_CMD_ACK | r | type);
}
if (!ifq_empty(&ifp->if_snd))
tl_start(ifp);
return r;
}
void
tl_stats_update(void *xsc)
{
struct tl_softc *sc;
struct ifnet *ifp;
struct tl_stats tl_stats;
u_int32_t *p;
int s;
s = splnet();
bzero(&tl_stats, sizeof(struct tl_stats));
sc = xsc;
ifp = &sc->arpcom.ac_if;
p = (u_int32_t *)&tl_stats;
CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
*p++ = CSR_READ_4(sc, TL_DIO_DATA);
ifp->if_collisions += tl_stats.tl_tx_single_collision +
tl_stats.tl_tx_multi_collision;
ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
tl_rx_overrun(tl_stats);
ifp->if_oerrors += tl_tx_underrun(tl_stats);
if (tl_tx_underrun(tl_stats)) {
u_int8_t tx_thresh;
tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
tx_thresh >>= 4;
tx_thresh++;
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
}
}
timeout_add_sec(&sc->tl_stats_tmo, 1);
if (!sc->tl_bitrate)
mii_tick(&sc->sc_mii);
splx(s);
}
/*
* Encapsulate an mbuf chain in a list by coupling the mbuf data
* pointers to the fragment pointers.
*/
int
tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
{
int frag = 0;
struct tl_frag *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == TL_MAXFRAGS)
break;
total_len+= m->m_len;
c->tl_ptr->tl_frag[frag].tlist_dadr =
VTOPHYS(mtod(m, vaddr_t));
c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
frag++;
}
}
/*
* Handle special cases.
* Special case #1: we used up all 10 fragments, but
* we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(1);
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->tl_ptr->tl_frag[0];
f->tlist_dadr = VTOPHYS(mtod(m_new, caddr_t));
f->tlist_dcnt = total_len = m_new->m_len;
frag = 1;
}
/*
* Special case #2: the frame is smaller than the minimum
* frame size. We have to pad it to make the chip happy.
*/
if (total_len < TL_MIN_FRAMELEN) {
f = &c->tl_ptr->tl_frag[frag];
f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
f->tlist_dadr = VTOPHYS(&sc->tl_ldata->tl_pad);
total_len += f->tlist_dcnt;
frag++;
}
c->tl_mbuf = m_head;
c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
c->tl_ptr->tlist_frsize = total_len;
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
c->tl_ptr->tlist_fptr = 0;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
void
tl_start(struct ifnet *ifp)
{
struct tl_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t cmd;
struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->tl_cdata.tl_tx_free == NULL) {
ifq_set_oactive(&ifp->if_snd);
return;
}
start_tx = sc->tl_cdata.tl_tx_free;
while(sc->tl_cdata.tl_tx_free != NULL) {
m_head = ifq_dequeue(&ifp->if_snd);
if (m_head == NULL)
break;
/* Pick a chain member off the free list. */
cur_tx = sc->tl_cdata.tl_tx_free;
sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
cur_tx->tl_next = NULL;
/* Pack the data into the list. */
tl_encap(sc, cur_tx, m_head);
/* Chain it together */
if (prev != NULL) {
prev->tl_next = cur_tx;
prev->tl_ptr->tlist_fptr = VTOPHYS(cur_tx->tl_ptr);
}
prev = cur_tx;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, cur_tx->tl_mbuf,
BPF_DIRECTION_OUT);
#endif
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* That's all we can stands, we can't stands no more.
* If there are no other transfers pending, then issue the
* TX GO command to the adapter to start things moving.
* Otherwise, just leave the data in the queue and let
* the EOF/EOC interrupt handler send.
*/
if (sc->tl_cdata.tl_tx_head == NULL) {
sc->tl_cdata.tl_tx_head = start_tx;
sc->tl_cdata.tl_tx_tail = cur_tx;
if (sc->tl_txeoc) {
sc->tl_txeoc = 0;
CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(start_tx->tl_ptr));
cmd = CSR_READ_4(sc, TL_HOSTCMD);
cmd &= ~TL_CMD_RT;
cmd |= TL_CMD_GO|TL_CMD_INTSON;
CMD_PUT(sc, cmd);
}
} else {
sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
sc->tl_cdata.tl_tx_tail = cur_tx;
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 10;
}
void
tl_init(void *xsc)
{
struct tl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
int s;
s = splnet();
/*
* Cancel pending I/O.
*/
tl_stop(sc);
/* Initialize TX FIFO threshold */
tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
/* Set PCI burst size */
tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
/* Init our MAC address */
tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
/* Program promiscuous mode and multicast filters. */
tl_iff(sc);
/* Init circular RX list. */
if (tl_list_rx_init(sc) == ENOBUFS) {
printf("%s: initialization failed: no memory for rx buffers\n",
sc->sc_dev.dv_xname);
tl_stop(sc);
splx(s);
return;
}
/* Init TX pointers. */
tl_list_tx_init(sc);
/* Enable PCI interrupts. */
CMD_SET(sc, TL_CMD_INTSON);
/* Load the address of the rx list */
CMD_SET(sc, TL_CMD_RT);
CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(&sc->tl_ldata->tl_rx_list[0]));
if (!sc->tl_bitrate)
mii_mediachg(&sc->sc_mii);
else
tl_ifmedia_upd(ifp);
/* Send the RX go command */
CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
splx(s);
/* Start the stats update counter */
timeout_set(&sc->tl_stats_tmo, tl_stats_update, sc);
timeout_add_sec(&sc->tl_stats_tmo, 1);
timeout_set(&sc->tl_wait_tmo, tl_wait_up, sc);
timeout_add_sec(&sc->tl_wait_tmo, 2);
}
/*
* Set media options.
*/
int
tl_ifmedia_upd(struct ifnet *ifp)
{
struct tl_softc *sc = ifp->if_softc;
if (sc->tl_bitrate)
tl_setmode(sc, sc->ifmedia.ifm_media);
else
mii_mediachg(&sc->sc_mii);
return(0);
}
/*
* Report current media status.
*/
void
tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct tl_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = &sc->sc_mii;
ifmr->ifm_active = IFM_ETHER;
if (sc->tl_bitrate) {
if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
ifmr->ifm_active = IFM_ETHER|IFM_10_5;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
return;
} else {
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
}
int
tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct tl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
tl_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
tl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
tl_stop(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->tl_bitrate)
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
else
error = ifmedia_ioctl(ifp, ifr,
&sc->sc_mii.mii_media, command);
break;
default:
error = ether_ioctl(ifp, &sc->arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
tl_iff(sc);
error = 0;
}
splx(s);
return(error);
}
void
tl_watchdog(struct ifnet *ifp)
{
struct tl_softc *sc;
sc = ifp->if_softc;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
tl_softreset(sc, 1);
tl_init(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
tl_stop(struct tl_softc *sc)
{
int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Stop the stats updater. */
timeout_del(&sc->tl_stats_tmo);
timeout_del(&sc->tl_wait_tmo);
/* Stop the transmitter */
CMD_CLR(sc, TL_CMD_RT);
CMD_SET(sc, TL_CMD_STOP);
CSR_WRITE_4(sc, TL_CH_PARM, 0);
/* Stop the receiver */
CMD_SET(sc, TL_CMD_RT);
CMD_SET(sc, TL_CMD_STOP);
CSR_WRITE_4(sc, TL_CH_PARM, 0);
/*
* Disable host interrupts.
*/
CMD_SET(sc, TL_CMD_INTSOFF);
/*
* Clear list pointer.
*/
CSR_WRITE_4(sc, TL_CH_PARM, 0);
/*
* Free the RX lists.
*/
for (i = 0; i < TL_RX_LIST_CNT; i++) {
if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
}
}
bzero(&sc->tl_ldata->tl_rx_list, sizeof(sc->tl_ldata->tl_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < TL_TX_LIST_CNT; i++) {
if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
}
}
bzero(&sc->tl_ldata->tl_tx_list, sizeof(sc->tl_ldata->tl_tx_list));
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
}
int
tl_probe(struct device *parent, void *match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI) {
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TI_TLAN)
return 1;
return 0;
}
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ) {
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_COMPAQ_N100TX:
case PCI_PRODUCT_COMPAQ_N10T:
case PCI_PRODUCT_COMPAQ_INTNF3P:
case PCI_PRODUCT_COMPAQ_DPNET100TX:
case PCI_PRODUCT_COMPAQ_INTPL100TX:
case PCI_PRODUCT_COMPAQ_DP4000:
case PCI_PRODUCT_COMPAQ_N10T2:
case PCI_PRODUCT_COMPAQ_N10_TX_UTP:
case PCI_PRODUCT_COMPAQ_NF3P:
case PCI_PRODUCT_COMPAQ_NF3P_BNC:
return 1;
}
return 0;
}
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) {
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_OLICOM_OC2183:
case PCI_PRODUCT_OLICOM_OC2325:
case PCI_PRODUCT_OLICOM_OC2326:
return 1;
}
return 0;
}
return 0;
}
void
tl_attach(struct device *parent, struct device *self, void *aux)
{
struct tl_softc *sc = (struct tl_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
struct ifnet *ifp = &sc->arpcom.ac_if;
bus_size_t iosize;
u_int32_t command;
int i, rseg;
bus_dma_segment_t seg;
bus_dmamap_t dmamap;
caddr_t kva;
/*
* Map control/status registers.
*/
#ifdef TL_USEIOSPACE
if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
&sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) {
if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_IO, 0,
&sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) {
printf(": can't map i/o space\n");
return;
}
}
#else
if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
&sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){
if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_MEM, 0,
&sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){
printf(": can't map mem space\n");
return;
}
}
#endif
/*
* Manual wants the PCI latency timer jacked up to 0xff
*/
command = pci_conf_read(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER);
command |= 0x0000ff00;
pci_conf_write(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER, command);
/*
* Allocate our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
printf(": couldn't map interrupt\n");
bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, tl_intr, sc,
self->dv_xname);
if (sc->sc_ih == NULL) {
printf(": could not establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
return;
}
printf(": %s", intrstr);
sc->sc_dmat = pa->pa_dmat;
if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct tl_list_data),
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
printf("%s: can't alloc list\n", sc->sc_dev.dv_xname);
bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
return;
}
if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct tl_list_data),
&kva, BUS_DMA_NOWAIT)) {
printf("%s: can't map dma buffers (%zd bytes)\n",
sc->sc_dev.dv_xname, sizeof(struct tl_list_data));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
return;
}
if (bus_dmamap_create(sc->sc_dmat, sizeof(struct tl_list_data), 1,
sizeof(struct tl_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) {
printf("%s: can't create dma map\n", sc->sc_dev.dv_xname);
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
return;
}
if (bus_dmamap_load(sc->sc_dmat, dmamap, kva,
sizeof(struct tl_list_data), NULL, BUS_DMA_NOWAIT)) {
printf("%s: can't load dma map\n", sc->sc_dev.dv_xname);
bus_dmamap_destroy(sc->sc_dmat, dmamap);
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
return;
}
sc->tl_ldata = (struct tl_list_data *)kva;
for (sc->tl_product = tl_prods; sc->tl_product->tp_vend;
sc->tl_product++) {
if (sc->tl_product->tp_vend == PCI_VENDOR(pa->pa_id) &&
sc->tl_product->tp_prod == PCI_PRODUCT(pa->pa_id))
break;
}
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ ||
PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI)
sc->tl_eeaddr = TL_EEPROM_EADDR;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM)
sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
/*
* Reset adapter.
*/
tl_softreset(sc, 1);
tl_hardreset(self);
DELAY(1000000);
tl_softreset(sc, 1);
/*
* Get station address from the EEPROM.
*/
if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
sc->tl_eeaddr, ETHER_ADDR_LEN)) {
printf("\n%s: failed to read station address\n",
sc->sc_dev.dv_xname);
bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
return;
}
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) {
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
u_int16_t *p;
p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
*p = ntohs(*p);
}
}
printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = tl_ioctl;
ifp->if_start = tl_start;
ifp->if_watchdog = tl_watchdog;
ifq_init_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
/*
* Reset adapter (again).
*/
tl_softreset(sc, 1);
tl_hardreset(self);
DELAY(1000000);
tl_softreset(sc, 1);
/*
* Do MII setup. If no PHYs are found, then this is a
* bitrate ThunderLAN chip that only supports 10baseT
* and AUI/BNC.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = tl_miibus_readreg;
sc->sc_mii.mii_writereg = tl_miibus_writereg;
sc->sc_mii.mii_statchg = tl_miibus_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, tl_ifmedia_upd, tl_ifmedia_sts);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
struct ifmedia *ifm;
sc->tl_bitrate = 1;
ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
/* Reset again, this time setting bitrate mode. */
tl_softreset(sc, 1);
ifm = &sc->ifmedia;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
tl_ifmedia_upd(ifp);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* Attach us everywhere.
*/
if_attach(ifp);
ether_ifattach(ifp);
}
void
tl_wait_up(void *xsc)
{
struct tl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
}
const struct cfattach tl_ca = {
sizeof(struct tl_softc), tl_probe, tl_attach
};
struct cfdriver tl_cd = {
NULL, "tl", DV_IFNET
};