src/sys/dev/pci/if_nxe.c

2195 lines
56 KiB
C

/* $OpenBSD: if_nxe.c,v 1.80 2023/11/10 15:51:20 bluhm Exp $ */
/*
* Copyright (c) 2007 David Gwynne <dlg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/timeout.h>
#include <sys/sensors.h>
#include <sys/rwlock.h>
#include <machine/bus.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <netinet/in.h>
#include <netinet/if_ether.h>
#ifdef NXE_DEBUG
int nxedebug = 0;
#define DPRINTF(l, f...) do { if (nxedebug & (l)) printf(f); } while (0)
#define DASSERT(_a) assert(_a)
#else
#define DPRINTF(l, f...)
#define DASSERT(_a)
#endif
/* this driver likes firmwares around this version */
#define NXE_VERSION_MAJOR 3
#define NXE_VERSION_MINOR 4
#define NXE_VERSION_BUILD 31
#define NXE_VERSION \
((NXE_VERSION_MAJOR << 16)|(NXE_VERSION_MINOR << 8)|(NXE_VERSION_BUILD))
/*
* PCI configuration space registers
*/
#define NXE_PCI_BAR_MEM 0x10 /* bar 0 */
#define NXE_PCI_BAR_MEM_128MB (128 * 1024 * 1024)
#define NXE_PCI_BAR_DOORBELL 0x20 /* bar 4 */
/*
* doorbell register space
*/
#define NXE_DB 0x00000000
#define NXE_DB_PEGID 0x00000003
#define NXE_DB_PEGID_RX 0x00000001 /* rx unit */
#define NXE_DB_PEGID_TX 0x00000002 /* tx unit */
#define NXE_DB_PRIVID 0x00000004 /* must be set */
#define NXE_DB_COUNT(_c) ((_c)<<3) /* count */
#define NXE_DB_CTXID(_c) ((_c)<<18) /* context id */
#define NXE_DB_OPCODE_RX_PROD 0x00000000
#define NXE_DB_OPCODE_RX_JUMBO_PROD 0x10000000
#define NXE_DB_OPCODE_RX_LRO_PROD 0x20000000
#define NXE_DB_OPCODE_CMD_PROD 0x30000000
#define NXE_DB_OPCODE_UPD_CONS 0x40000000
#define NXE_DB_OPCODE_RESET_CTX 0x50000000
/*
* register space
*/
/* different PCI functions use different registers sometimes */
#define _F(_f) ((_f) * 0x20)
/*
* driver ref section 4.2
*
* All the hardware registers are mapped in memory. Apart from the registers
* for the individual hardware blocks, the memory map includes a large number
* of software definable registers.
*
* The following table gives the memory map in the PCI address space.
*/
#define NXE_MAP_DDR_NET 0x00000000
#define NXE_MAP_DDR_MD 0x02000000
#define NXE_MAP_QDR_NET 0x04000000
#define NXE_MAP_DIRECT_CRB 0x04400000
#define NXE_MAP_OCM0 0x05000000
#define NXE_MAP_OCM1 0x05100000
#define NXE_MAP_CRB 0x06000000
/*
* Since there are a large number of registers they do not fit in a single
* PCI addressing range. Hence two windows are defined. The window starts at
* NXE_MAP_CRB, and extends to the end of the register map. The window is set
* using the NXE_REG_WINDOW_CRB register. The format of the NXE_REG_WINDOW_CRB
* register is as follows:
*/
#define NXE_WIN_CRB(_f) (0x06110210 + _F(_f))
#define NXE_WIN_CRB_0 (0<<25)
#define NXE_WIN_CRB_1 (1<<25)
/*
* The memory map inside the register windows are divided into a set of blocks.
* Each register block is owned by one hardware agent. The following table
* gives the memory map of the various register blocks in window 0. These
* registers are all in the CRB register space, so the offsets given here are
* relative to the base of the CRB offset region (NXE_MAP_CRB).
*/
#define NXE_W0_PCIE 0x00100000 /* PCI Express */
#define NXE_W0_NIU 0x00600000 /* Network Interface Unit */
#define NXE_W0_PPE_0 0x01100000 /* Protocol Processing Engine 0 */
#define NXE_W0_PPE_1 0x01200000 /* Protocol Processing Engine 1 */
#define NXE_W0_PPE_2 0x01300000 /* Protocol Processing Engine 2 */
#define NXE_W0_PPE_3 0x01400000 /* Protocol Processing Engine 3 */
#define NXE_W0_PPE_D 0x01500000 /* PPE D-cache */
#define NXE_W0_PPE_I 0x01600000 /* PPE I-cache */
/*
* These are the register blocks inside window 1.
*/
#define NXE_W1_PCIE 0x00100000
#define NXE_W1_SW 0x00200000
#define NXE_W1_SIR 0x01200000
#define NXE_W1_ROMUSB 0x01300000
/*
* Global registers
*/
#define NXE_BOOTLD_START 0x00010000
/*
* driver ref section 5
*
* CRB Window Register Descriptions
*/
/*
* PCI Express Registers
*
* Despite being in the CRB window space, they can be accessed via both
* windows. This means they are accessible "globally" without going relative
* to the start of the CRB window space.
*/
/* Interrupts */
#define NXE_ISR_VECTOR 0x06110100 /* Interrupt Vector */
#define NXE_ISR_MASK 0x06110104 /* Interrupt Mask */
#define NXE_ISR_TARGET_STATUS 0x06110118
#define NXE_ISR_TARGET_MASK 0x06110128
#define NXE_ISR_MINE(_f) (0x08 << (_f))
/* lock registers (semaphores between chipset and driver) */
#define NXE_SEM_ROM_LOCK 0x0611c010 /* ROM access lock */
#define NXE_SEM_ROM_UNLOCK 0x0611c014
#define NXE_SEM_PHY_LOCK 0x0611c018 /* PHY access lock */
#define NXE_SEM_PHY_UNLOCK 0x0611c01c
#define NXE_SEM_DONE 0x1
/*
* Network Interface Unit (NIU) Registers
*/
#define NXE_0_NIU_MODE 0x00600000
#define NXE_0_NIU_MODE_XGE (1<<2) /* XGE interface enabled */
#define NXE_0_NIU_MODE_GBE (1<<1) /* 4 GbE interfaces enabled */
#define NXE_0_NIU_SINGLE_TERM 0x00600004
#define NXE_0_NIU_INT_MASK 0x00600040
#define NXE_0_NIU_RESET_XG 0x0060001c /* reset XG */
#define NXE_0_NIU_RESET_FIFO 0x00600088 /* reset sys fifos */
#define _P(_p) ((_p) * 0x10000)
#define NXE_0_XG_CFG0(_p) (0x00670000 + _P(_p))
#define NXE_0_XG_CFG0_TX_EN (1<<0) /* TX enable */
#define NXE_0_XG_CFG0_TX_SYNC (1<<1) /* TX synced */
#define NXE_0_XG_CFG0_RX_EN (1<<2) /* RX enable */
#define NXE_0_XG_CFG0_RX_SYNC (1<<3) /* RX synced */
#define NXE_0_XG_CFG0_TX_FLOWCTL (1<<4) /* enable pause frame gen */
#define NXE_0_XG_CFG0_RX_FLOWCTL (1<<5) /* act on rxed pause frames */
#define NXE_0_XG_CFG0_LOOPBACK (1<<8) /* tx appears on rx */
#define NXE_0_XG_CFG0_TX_RST_PB (1<<15) /* reset frm tx proto block */
#define NXE_0_XG_CFG0_RX_RST_PB (1<<16) /* reset frm rx proto block */
#define NXE_0_XG_CFG0_TX_RST_MAC (1<<17) /* reset frm tx multiplexer */
#define NXE_0_XG_CFG0_RX_RST_MAC (1<<18) /* reset ctl frms and timers */
#define NXE_0_XG_CFG0_SOFT_RST (1<<31) /* soft reset */
#define NXE_0_XG_CFG1(_p) (0x00670004 + _P(_p))
#define NXE_0_XG_CFG1_REM_CRC (1<<0) /* enable crc removal */
#define NXE_0_XG_CFG1_CRC_EN (1<<1) /* append crc to tx frames */
#define NXE_0_XG_CFG1_NO_MAX (1<<5) /* rx all frames despite size */
#define NXE_0_XG_CFG1_WIRE_LO_ERR (1<<6) /* recognize local err */
#define NXE_0_XG_CFG1_PAUSE_FR_DIS (1<<8) /* disable pause frame detect */
#define NXE_0_XG_CFG1_SEQ_ERR_EN (1<<10) /* enable seq err detection */
#define NXE_0_XG_CFG1_MULTICAST (1<<12) /* accept all multicast */
#define NXE_0_XG_CFG1_PROMISC (1<<13) /* accept all frames */
#define NXE_0_XG_IPG(_p) (0x00670008 + _P(_p))
#define NXE_0_XG_MAC_LO(_p) (0x00670010 + _P(_p))
#define NXE_0_XG_MAC_HI(_p) (0x0067000c + _P(_p))
#define NXE_0_XG_STATUS(_p) (0x00670018 + _P(_p))
#define NXE_0_XG_MTU(_p) (0x0067001c + _P(_p))
#define NXE_0_XG_PAUSE_FRM(_p) (0x00670020 + _P(_p))
#define NXE_0_XG_TX_BYTES(_p) (0x00670024 + _P(_p))
#define NXE_0_XG_TX_PKTS(_p) (0x00670028 + _P(_p))
#define NXE_0_XG_RX_BYTES(_p) (0x0067002c + _P(_p))
#define NXE_0_XG_RX_PKTS(_p) (0x00670030 + _P(_p))
#define NXE_0_XG_AGGR_ERRS(_p) (0x00670034 + _P(_p))
#define NXE_0_XG_MCAST_PKTS(_p) (0x00670038 + _P(_p))
#define NXE_0_XG_UCAST_PKTS(_p) (0x0067003c + _P(_p))
#define NXE_0_XG_CRC_ERRS(_p) (0x00670040 + _P(_p))
#define NXE_0_XG_OVERSIZE(_p) (0x00670044 + _P(_p))
#define NXE_0_XG_UNDERSIZE(_p) (0x00670048 + _P(_p))
#define NXE_0_XG_LOCAL_ERRS(_p) (0x0067004c + _P(_p))
#define NXE_0_XG_REMOTE_ERRS(_p) (0x00670050 + _P(_p))
#define NXE_0_XG_CNTL_CHARS(_p) (0x00670054 + _P(_p))
#define NXE_0_XG_PAUSE_PKTS(_p) (0x00670058 + _P(_p))
/*
* Software Defined Registers
*/
/* chipset state registers */
#define NXE_1_SW_ROM_LOCK_ID 0x00202100
#define NXE_1_SW_ROM_LOCK_ID_DRV 0x0d417340
#define NXE_1_SW_PHY_LOCK_ID 0x00202120
#define NXE_1_SW_PHY_LOCK_ID_DRV 0x44524956
/* firmware version */
#define NXE_1_SW_FWVER_MAJOR 0x00202150 /* Major f/w version */
#define NXE_1_SW_FWVER_MINOR 0x00202154 /* Minor f/w version */
#define NXE_1_SW_FWVER_BUILD 0x00202158 /* Build/Sub f/w version */
/* misc */
#define NXE_1_SW_CMD_ADDR_HI 0x00202218 /* cmd ring phys addr */
#define NXE_1_SW_CMD_ADDR_LO 0x0020221c /* cmd ring phys addr */
#define NXE_1_SW_CMD_SIZE 0x002022c8 /* entries in the cmd ring */
#define NXE_1_SW_DUMMY_ADDR_HI 0x0020223c /* hi address of dummy buf */
#define NXE_1_SW_DUMMY_ADDR_LO 0x00202240 /* lo address of dummy buf */
#define NXE_1_SW_DUMMY_ADDR_LEN 1024
static const u_int32_t nxe_regmap[][4] = {
#define NXE_1_SW_CMD_PRODUCER(_f) (nxe_regmap[0][(_f)])
{ 0x00202208, 0x002023ac, 0x002023b8, 0x002023d0 },
#define NXE_1_SW_CMD_CONSUMER(_f) (nxe_regmap[1][(_f)])
{ 0x0020220c, 0x002023b0, 0x002023bc, 0x002023d4 },
#define NXE_1_SW_CONTEXT(_p) (nxe_regmap[2][(_p)])
#define NXE_1_SW_CONTEXT_SIG(_p) (0xdee0 | (_p))
{ 0x0020238c, 0x00202390, 0x0020239c, 0x002023a4 },
#define NXE_1_SW_CONTEXT_ADDR_LO(_p) (nxe_regmap[3][(_p)])
{ 0x00202388, 0x00202390, 0x00202398, 0x002023a0 },
#define NXE_1_SW_CONTEXT_ADDR_HI(_p) (nxe_regmap[4][(_p)])
{ 0x002023c0, 0x002023c4, 0x002023c8, 0x002023cc },
#define NXE_1_SW_INT_MASK(_p) (nxe_regmap[5][(_p)])
{ 0x002023d8, 0x002023e0, 0x002023e4, 0x002023e8 },
#define NXE_1_SW_RX_PRODUCER(_c) (nxe_regmap[6][(_c)])
{ 0x00202300, 0x00202344, 0x002023d8, 0x0020242c },
#define NXE_1_SW_RX_CONSUMER(_c) (nxe_regmap[7][(_c)])
{ 0x00202304, 0x00202348, 0x002023dc, 0x00202430 },
#define NXE_1_SW_RX_RING(_c) (nxe_regmap[8][(_c)])
{ 0x00202308, 0x0020234c, 0x002023f0, 0x00202434 },
#define NXE_1_SW_RX_SIZE(_c) (nxe_regmap[9][(_c)])
{ 0x0020230c, 0x00202350, 0x002023f4, 0x00202438 },
#define NXE_1_SW_RX_JUMBO_PRODUCER(_c) (nxe_regmap[10][(_c)])
{ 0x00202310, 0x00202354, 0x002023f8, 0x0020243c },
#define NXE_1_SW_RX_JUMBO_CONSUMER(_c) (nxe_regmap[11][(_c)])
{ 0x00202314, 0x00202358, 0x002023fc, 0x00202440 },
#define NXE_1_SW_RX_JUMBO_RING(_c) (nxe_regmap[12][(_c)])
{ 0x00202318, 0x0020235c, 0x00202400, 0x00202444 },
#define NXE_1_SW_RX_JUMBO_SIZE(_c) (nxe_regmap[13][(_c)])
{ 0x0020231c, 0x00202360, 0x00202404, 0x00202448 },
#define NXE_1_SW_RX_LRO_PRODUCER(_c) (nxe_regmap[14][(_c)])
{ 0x00202320, 0x00202364, 0x00202408, 0x0020244c },
#define NXE_1_SW_RX_LRO_CONSUMER(_c) (nxe_regmap[15][(_c)])
{ 0x00202324, 0x00202368, 0x0020240c, 0x00202450 },
#define NXE_1_SW_RX_LRO_RING(_c) (nxe_regmap[16][(_c)])
{ 0x00202328, 0x0020236c, 0x00202410, 0x00202454 },
#define NXE_1_SW_RX_LRO_SIZE(_c) (nxe_regmap[17][(_c)])
{ 0x0020232c, 0x00202370, 0x00202414, 0x00202458 },
#define NXE_1_SW_STATUS_RING(_c) (nxe_regmap[18][(_c)])
{ 0x00202330, 0x00202374, 0x00202418, 0x0020245c },
#define NXE_1_SW_STATUS_PRODUCER(_c) (nxe_regmap[19][(_c)])
{ 0x00202334, 0x00202378, 0x0020241c, 0x00202460 },
#define NXE_1_SW_STATUS_CONSUMER(_c) (nxe_regmap[20][(_c)])
{ 0x00202338, 0x0020237c, 0x00202420, 0x00202464 },
#define NXE_1_SW_STATUS_STATE(_c) (nxe_regmap[21][(_c)])
#define NXE_1_SW_STATUS_STATE_READY 0x0000ff01
{ 0x0020233c, 0x00202380, 0x00202424, 0x00202468 },
#define NXE_1_SW_STATUS_SIZE(_c) (nxe_regmap[22][(_c)])
{ 0x00202340, 0x00202384, 0x00202428, 0x0020246c }
};
#define NXE_1_SW_BOOTLD_CONFIG 0x002021fc
#define NXE_1_SW_BOOTLD_CONFIG_ROM 0x00000000
#define NXE_1_SW_BOOTLD_CONFIG_RAM 0x12345678
#define NXE_1_SW_CMDPEG_STATE 0x00202250 /* init status */
#define NXE_1_SW_CMDPEG_STATE_START 0xff00 /* init starting */
#define NXE_1_SW_CMDPEG_STATE_DONE 0xff01 /* init complete */
#define NXE_1_SW_CMDPEG_STATE_ACK 0xf00f /* init ack */
#define NXE_1_SW_CMDPEG_STATE_ERROR 0xffff /* init failed */
#define NXE_1_SW_XG_STATE 0x00202294 /* phy state */
#define NXE_1_SW_XG_STATE_PORT(_r, _p) (((_r)>>8*(_p))&0xff)
#define NXE_1_SW_XG_STATE_UP (1<<4)
#define NXE_1_SW_XG_STATE_DOWN (1<<5)
#define NXE_1_SW_MPORT_MODE 0x002022c4
#define NXE_1_SW_MPORT_MODE_SINGLE 0x1111
#define NXE_1_SW_MPORT_MODE_MULTI 0x2222
#define NXE_1_SW_INT_VECTOR 0x002022d4
#define NXE_1_SW_NIC_CAP_HOST 0x002023a8 /* host capabilities */
#define NXE_1_SW_NIC_CAP_FW 0x002023dc /* firmware capabilities */
#define NXE_1_SW_NIC_CAP_PORTINTR 0x1 /* per port interrupts */
#define NXE_1_SW_DRIVER_VER 0x002024a0 /* host driver version */
#define NXE_1_SW_TEMP 0x002023b4 /* Temperature sensor */
#define NXE_1_SW_TEMP_STATE(_x) ((_x)&0xffff) /* Temp state */
#define NXE_1_SW_TEMP_STATE_NONE 0x0000
#define NXE_1_SW_TEMP_STATE_OK 0x0001
#define NXE_1_SW_TEMP_STATE_WARN 0x0002
#define NXE_1_SW_TEMP_STATE_CRIT 0x0003
#define NXE_1_SW_TEMP_VAL(_x) (((_x)>>16)&0xffff) /* Temp value */
#define NXE_1_SW_V2P(_f) (0x00202490+((_f)*4)) /* virtual to phys */
/*
* ROMUSB Registers
*/
#define NXE_1_ROMUSB_STATUS 0x01300004 /* ROM Status */
#define NXE_1_ROMUSB_STATUS_DONE (1<<1)
#define NXE_1_ROMUSB_SW_RESET 0x01300008
#define NXE_1_ROMUSB_SW_RESET_DEF 0xffffffff
#define NXE_1_ROMUSB_SW_RESET_BOOT 0x0080000f
#define NXE_1_CASPER_RESET 0x01300038
#define NXE_1_CASPER_RESET_ENABLE 0x1
#define NXE_1_CASPER_RESET_DISABLE 0x1
#define NXE_1_GLB_PEGTUNE 0x0130005c /* reset register */
#define NXE_1_GLB_PEGTUNE_DONE 0x00000001
#define NXE_1_GLB_CHIPCLKCTL 0x013000a8
#define NXE_1_GLB_CHIPCLKCTL_ON 0x00003fff
/* ROM Registers */
#define NXE_1_ROM_CONTROL 0x01310000
#define NXE_1_ROM_OPCODE 0x01310004
#define NXE_1_ROM_OPCODE_READ 0x0000000b
#define NXE_1_ROM_ADDR 0x01310008
#define NXE_1_ROM_WDATA 0x0131000c
#define NXE_1_ROM_ABYTE_CNT 0x01310010
#define NXE_1_ROM_DBYTE_CNT 0x01310014 /* dummy byte count */
#define NXE_1_ROM_RDATA 0x01310018
#define NXE_1_ROM_AGT_TAG 0x0131001c
#define NXE_1_ROM_TIME_PARM 0x01310020
#define NXE_1_ROM_CLK_DIV 0x01310024
#define NXE_1_ROM_MISS_INSTR 0x01310028
/*
* flash memory layout
*
* These are offsets of memory accessible via the ROM Registers above
*/
#define NXE_FLASH_CRBINIT 0x00000000 /* crb init section */
#define NXE_FLASH_BRDCFG 0x00004000 /* board config */
#define NXE_FLASH_INITCODE 0x00006000 /* pegtune code */
#define NXE_FLASH_BOOTLD 0x00010000 /* boot loader */
#define NXE_FLASH_IMAGE 0x00043000 /* compressed image */
#define NXE_FLASH_SECONDARY 0x00200000 /* backup image */
#define NXE_FLASH_PXE 0x003d0000 /* pxe image */
#define NXE_FLASH_USER 0x003e8000 /* user region for new boards */
#define NXE_FLASH_VPD 0x003e8c00 /* vendor private data */
#define NXE_FLASH_LICENSE 0x003e9000 /* firmware license */
#define NXE_FLASH_FIXED 0x003f0000 /* backup of crbinit */
/*
* misc hardware details
*/
#define NXE_MAX_PORTS 4
#define NXE_MAX_PORT_LLADDRS 32
#define NXE_MAX_PKTLEN (64 * 1024)
/*
* hardware structures
*/
struct nxe_info {
u_int32_t ni_hdrver;
#define NXE_INFO_HDRVER_1 0x00000001
u_int32_t ni_board_mfg;
u_int32_t ni_board_type;
#define NXE_BRDTYPE_P1_BD 0x0000
#define NXE_BRDTYPE_P1_SB 0x0001
#define NXE_BRDTYPE_P1_SMAX 0x0002
#define NXE_BRDTYPE_P1_SOCK 0x0003
#define NXE_BRDTYPE_P2_SOCK_31 0x0008
#define NXE_BRDTYPE_P2_SOCK_35 0x0009
#define NXE_BRDTYPE_P2_SB35_4G 0x000a
#define NXE_BRDTYPE_P2_SB31_10G 0x000b
#define NXE_BRDTYPE_P2_SB31_2G 0x000c
#define NXE_BRDTYPE_P2_SB31_10G_IMEZ 0x000d
#define NXE_BRDTYPE_P2_SB31_10G_HMEZ 0x000e
#define NXE_BRDTYPE_P2_SB31_10G_CX4 0x000f
u_int32_t ni_board_num;
u_int32_t ni_chip_id;
u_int32_t ni_chip_minor;
u_int32_t ni_chip_major;
u_int32_t ni_chip_pkg;
u_int32_t ni_chip_lot;
u_int32_t ni_port_mask;
u_int32_t ni_peg_mask;
u_int32_t ni_icache;
u_int32_t ni_dcache;
u_int32_t ni_casper;
u_int32_t ni_lladdr0_low;
u_int32_t ni_lladdr1_low;
u_int32_t ni_lladdr2_low;
u_int32_t ni_lladdr3_low;
u_int32_t ni_mnsync_mode;
u_int32_t ni_mnsync_shift_cclk;
u_int32_t ni_mnsync_shift_mclk;
u_int32_t ni_mnwb_enable;
u_int32_t ni_mnfreq_crystal;
u_int32_t ni_mnfreq_speed;
u_int32_t ni_mnorg;
u_int32_t ni_mndepth;
u_int32_t ni_mnranks0;
u_int32_t ni_mnranks1;
u_int32_t ni_mnrd_latency0;
u_int32_t ni_mnrd_latency1;
u_int32_t ni_mnrd_latency2;
u_int32_t ni_mnrd_latency3;
u_int32_t ni_mnrd_latency4;
u_int32_t ni_mnrd_latency5;
u_int32_t ni_mnrd_latency6;
u_int32_t ni_mnrd_latency7;
u_int32_t ni_mnrd_latency8;
u_int32_t ni_mndll[18];
u_int32_t ni_mnddr_mode;
u_int32_t ni_mnddr_extmode;
u_int32_t ni_mntiming0;
u_int32_t ni_mntiming1;
u_int32_t ni_mntiming2;
u_int32_t ni_snsync_mode;
u_int32_t ni_snpt_mode;
u_int32_t ni_snecc_enable;
u_int32_t ni_snwb_enable;
u_int32_t ni_snfreq_crystal;
u_int32_t ni_snfreq_speed;
u_int32_t ni_snorg;
u_int32_t ni_sndepth;
u_int32_t ni_sndll;
u_int32_t ni_snrd_latency;
u_int32_t ni_lladdr0_high;
u_int32_t ni_lladdr1_high;
u_int32_t ni_lladdr2_high;
u_int32_t ni_lladdr3_high;
u_int32_t ni_magic;
#define NXE_INFO_MAGIC 0x12345678
u_int32_t ni_mnrd_imm;
u_int32_t ni_mndll_override;
} __packed;
struct nxe_imageinfo {
u_int32_t nim_bootld_ver;
u_int32_t nim_bootld_size;
u_int8_t nim_img_ver_major;
u_int8_t nim_img_ver_minor;
u_int16_t nim_img_ver_build;
u_int32_t min_img_size;
} __packed;
struct nxe_lladdr {
u_int8_t pad[2];
u_int8_t lladdr[6];
} __packed;
struct nxe_userinfo {
u_int8_t nu_flash_md5[1024];
struct nxe_imageinfo nu_imageinfo;
u_int32_t nu_primary;
u_int32_t nu_secondary;
u_int64_t nu_lladdr[NXE_MAX_PORTS][NXE_MAX_PORT_LLADDRS];
u_int32_t nu_subsys_id;
u_int8_t nu_serial[32];
u_int32_t nu_bios_ver;
} __packed;
/* hw structures actually used in the io path */
struct nxe_ctx_ring {
u_int64_t r_addr;
u_int32_t r_size;
u_int32_t r_reserved;
};
#define NXE_RING_RX 0
#define NXE_RING_RX_JUMBO 1
#define NXE_RING_RX_LRO 2
#define NXE_NRING 3
struct nxe_ctx {
u_int64_t ctx_cmd_consumer_addr;
struct nxe_ctx_ring ctx_cmd_ring;
struct nxe_ctx_ring ctx_rx_rings[NXE_NRING];
u_int64_t ctx_status_ring_addr;
u_int32_t ctx_status_ring_size;
u_int32_t ctx_id;
} __packed;
struct nxe_tx_desc {
u_int8_t tx_tcp_offset;
u_int8_t tx_ip_offset;
u_int16_t tx_flags;
#define NXE_TXD_F_OPCODE_TX (0x01 << 7)
u_int8_t tx_nbufs;
u_int16_t tx_length; /* XXX who makes a 24bit field? */
u_int8_t tx_length_hi;
u_int64_t tx_addr_2;
u_int16_t tx_id;
u_int16_t tx_mss;
u_int8_t tx_port;
u_int8_t tx_tso_hdr_len;
u_int16_t tx_ipsec_id;
u_int64_t tx_addr_3;
u_int64_t tx_addr_1;
u_int16_t tx_slen_1;
u_int16_t tx_slen_2;
u_int16_t tx_slen_3;
u_int16_t tx_slen_4;
u_int64_t tx_addr_4;
u_int64_t tx_reserved;
} __packed;
#define NXE_TXD_SEGS 4
#define NXE_TXD_DESCS 8
#define NXE_TXD_MAX_SEGS (NXE_TXD_SEGS * NXE_TXD_DESCS)
struct nxe_rx_desc {
u_int16_t rx_id;
u_int16_t rx_flags;
u_int32_t rx_len; /* packet length */
u_int64_t rx_addr;
} __packed;
#define NXE_RXD_MAX_SEGS 1
struct nxe_status_desc {
u_int8_t st_lro;
u_int8_t st_owner;
u_int16_t st_id;
u_int16_t st_len;
u_int16_t st_flags;
} __packed;
/*
* driver definitions
*/
struct nxe_board {
u_int32_t brd_type;
u_int brd_mode;
};
struct nxe_dmamem {
bus_dmamap_t ndm_map;
bus_dma_segment_t ndm_seg;
size_t ndm_size;
caddr_t ndm_kva;
};
#define NXE_DMA_MAP(_ndm) ((_ndm)->ndm_map)
#define NXE_DMA_LEN(_ndm) ((_ndm)->ndm_size)
#define NXE_DMA_DVA(_ndm) ((_ndm)->ndm_map->dm_segs[0].ds_addr)
#define NXE_DMA_KVA(_ndm) ((void *)(_ndm)->ndm_kva)
struct nxe_pkt {
int pkt_id;
bus_dmamap_t pkt_dmap;
struct mbuf *pkt_m;
TAILQ_ENTRY(nxe_pkt) pkt_link;
};
struct nxe_pkt_list {
struct nxe_pkt *npl_pkts;
TAILQ_HEAD(, nxe_pkt) npl_free;
TAILQ_HEAD(, nxe_pkt) npl_used;
};
struct nxe_ring {
struct nxe_dmamem *nr_dmamem;
u_int8_t *nr_pos;
u_int nr_slot;
int nr_ready;
size_t nr_desclen;
u_int nr_nentries;
};
/*
* autoconf glue
*/
struct nxe_softc {
struct device sc_dev;
bus_dma_tag_t sc_dmat;
bus_space_tag_t sc_memt;
bus_space_handle_t sc_memh;
bus_size_t sc_mems;
bus_space_handle_t sc_crbh;
bus_space_tag_t sc_dbt;
bus_space_handle_t sc_dbh;
bus_size_t sc_dbs;
void *sc_ih;
int sc_function;
int sc_port;
int sc_window;
const struct nxe_board *sc_board;
u_int sc_fw_major;
u_int sc_fw_minor;
u_int sc_fw_build;
struct arpcom sc_ac;
struct ifmedia sc_media;
struct nxe_pkt_list *sc_tx_pkts;
struct nxe_pkt_list *sc_rx_pkts;
/* allocations for the hw */
struct nxe_dmamem *sc_dummy_dma;
struct nxe_dmamem *sc_dummy_rx;
struct nxe_dmamem *sc_ctx;
u_int32_t *sc_cmd_consumer;
u_int32_t sc_cmd_consumer_cur;
struct nxe_ring *sc_cmd_ring;
struct nxe_ring *sc_rx_rings[NXE_NRING];
struct nxe_ring *sc_status_ring;
/* monitoring */
struct timeout sc_tick;
struct ksensor sc_sensor;
struct ksensordev sc_sensor_dev;
/* ioctl lock */
struct rwlock sc_lock;
};
int nxe_match(struct device *, void *, void *);
void nxe_attach(struct device *, struct device *, void *);
int nxe_intr(void *);
const struct cfattach nxe_ca = {
sizeof(struct nxe_softc),
nxe_match,
nxe_attach
};
struct cfdriver nxe_cd = {
NULL,
"nxe",
DV_IFNET
};
/* init code */
int nxe_pci_map(struct nxe_softc *,
struct pci_attach_args *);
void nxe_pci_unmap(struct nxe_softc *);
int nxe_board_info(struct nxe_softc *);
int nxe_user_info(struct nxe_softc *);
int nxe_init(struct nxe_softc *);
void nxe_uninit(struct nxe_softc *);
void nxe_mountroot(struct device *);
/* chip state */
void nxe_tick(void *);
void nxe_link_state(struct nxe_softc *);
/* interface operations */
int nxe_ioctl(struct ifnet *, u_long, caddr_t);
void nxe_start(struct ifnet *);
int nxe_complete(struct nxe_softc *);
void nxe_watchdog(struct ifnet *);
void nxe_rx_start(struct nxe_softc *);
void nxe_up(struct nxe_softc *);
void nxe_lladdr(struct nxe_softc *);
void nxe_iff(struct nxe_softc *);
void nxe_down(struct nxe_softc *);
int nxe_up_fw(struct nxe_softc *);
/* ifmedia operations */
int nxe_media_change(struct ifnet *);
void nxe_media_status(struct ifnet *, struct ifmediareq *);
/* ring handling */
struct nxe_ring *nxe_ring_alloc(struct nxe_softc *, size_t, u_int);
void nxe_ring_sync(struct nxe_softc *, struct nxe_ring *,
int);
void nxe_ring_free(struct nxe_softc *, struct nxe_ring *);
int nxe_ring_readable(struct nxe_ring *, int);
int nxe_ring_writeable(struct nxe_ring *, int);
void *nxe_ring_cur(struct nxe_softc *, struct nxe_ring *);
void *nxe_ring_next(struct nxe_softc *, struct nxe_ring *);
struct mbuf *nxe_load_pkt(struct nxe_softc *, bus_dmamap_t,
struct mbuf *);
struct mbuf *nxe_coalesce_m(struct mbuf *);
/* pkts */
struct nxe_pkt_list *nxe_pkt_alloc(struct nxe_softc *, u_int, int);
void nxe_pkt_free(struct nxe_softc *,
struct nxe_pkt_list *);
void nxe_pkt_put(struct nxe_pkt_list *, struct nxe_pkt *);
struct nxe_pkt *nxe_pkt_get(struct nxe_pkt_list *);
struct nxe_pkt *nxe_pkt_used(struct nxe_pkt_list *);
/* wrapper around dmaable memory allocations */
struct nxe_dmamem *nxe_dmamem_alloc(struct nxe_softc *, bus_size_t,
bus_size_t);
void nxe_dmamem_free(struct nxe_softc *,
struct nxe_dmamem *);
/* low level hardware access goo */
u_int32_t nxe_read(struct nxe_softc *, bus_size_t);
void nxe_write(struct nxe_softc *, bus_size_t, u_int32_t);
int nxe_wait(struct nxe_softc *, bus_size_t, u_int32_t,
u_int32_t, u_int);
void nxe_doorbell(struct nxe_softc *, u_int32_t);
int nxe_crb_set(struct nxe_softc *, int);
u_int32_t nxe_crb_read(struct nxe_softc *, bus_size_t);
void nxe_crb_write(struct nxe_softc *, bus_size_t,
u_int32_t);
int nxe_crb_wait(struct nxe_softc *, bus_size_t,
u_int32_t, u_int32_t, u_int);
int nxe_rom_lock(struct nxe_softc *);
void nxe_rom_unlock(struct nxe_softc *);
int nxe_rom_read(struct nxe_softc *, u_int32_t,
u_int32_t *);
int nxe_rom_read_region(struct nxe_softc *, u_int32_t,
void *, size_t);
/* misc bits */
#define DEVNAME(_sc) ((_sc)->sc_dev.dv_xname)
/* let's go! */
const struct pci_matchid nxe_devices[] = {
{ PCI_VENDOR_NETXEN, PCI_PRODUCT_NETXEN_NXB_10GXXR },
{ PCI_VENDOR_NETXEN, PCI_PRODUCT_NETXEN_NXB_10GCX4 },
{ PCI_VENDOR_NETXEN, PCI_PRODUCT_NETXEN_NXB_4GCU },
{ PCI_VENDOR_NETXEN, PCI_PRODUCT_NETXEN_NXB_IMEZ },
{ PCI_VENDOR_NETXEN, PCI_PRODUCT_NETXEN_NXB_HMEZ },
{ PCI_VENDOR_NETXEN, PCI_PRODUCT_NETXEN_NXB_IMEZ_2 },
{ PCI_VENDOR_NETXEN, PCI_PRODUCT_NETXEN_NXB_HMEZ_2 }
};
const struct nxe_board nxe_boards[] = {
{ NXE_BRDTYPE_P2_SB35_4G, NXE_0_NIU_MODE_GBE },
{ NXE_BRDTYPE_P2_SB31_10G, NXE_0_NIU_MODE_XGE },
{ NXE_BRDTYPE_P2_SB31_2G, NXE_0_NIU_MODE_GBE },
{ NXE_BRDTYPE_P2_SB31_10G_IMEZ, NXE_0_NIU_MODE_XGE },
{ NXE_BRDTYPE_P2_SB31_10G_HMEZ, NXE_0_NIU_MODE_XGE },
{ NXE_BRDTYPE_P2_SB31_10G_CX4, NXE_0_NIU_MODE_XGE }
};
int
nxe_match(struct device *parent, void *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_CLASS(pa->pa_class) != PCI_CLASS_NETWORK)
return (0);
return (pci_matchbyid(pa, nxe_devices, nitems(nxe_devices)));
}
void
nxe_attach(struct device *parent, struct device *self, void *aux)
{
struct nxe_softc *sc = (struct nxe_softc *)self;
struct pci_attach_args *pa = aux;
pci_intr_handle_t ih;
struct ifnet *ifp;
sc->sc_dmat = pa->pa_dmat;
sc->sc_function = pa->pa_function;
sc->sc_window = -1;
rw_init(&sc->sc_lock, NULL);
if (nxe_pci_map(sc, pa) != 0) {
/* error already printed by nxe_pci_map() */
return;
}
nxe_crb_set(sc, 1);
if (nxe_board_info(sc) != 0) {
/* error already printed by nxe_board_info() */
goto unmap;
}
if (nxe_user_info(sc) != 0) {
/* error already printed by nxe_board_info() */
goto unmap;
}
if (nxe_init(sc) != 0) {
/* error already printed by nxe_init() */
goto unmap;
}
if (pci_intr_map(pa, &ih) != 0) {
printf(": unable to map interrupt\n");
goto uninit;
}
sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_NET,
nxe_intr, sc, DEVNAME(sc));
if (sc->sc_ih == NULL) {
printf(": unable to establish interrupt\n");
goto uninit;
}
ifp = &sc->sc_ac.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_capabilities = IFCAP_VLAN_MTU;
ifp->if_ioctl = nxe_ioctl;
ifp->if_start = nxe_start;
ifp->if_watchdog = nxe_watchdog;
ifp->if_hardmtu = MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN;
strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
ifq_init_maxlen(&ifp->if_snd, 512); /* XXX */
ifmedia_init(&sc->sc_media, 0, nxe_media_change, nxe_media_status);
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp);
printf(": %s firmware %d.%d.%d address %s\n",
pci_intr_string(pa->pa_pc, ih),
sc->sc_fw_major, sc->sc_fw_minor, sc->sc_fw_build,
ether_sprintf(sc->sc_ac.ac_enaddr));
return;
uninit:
nxe_uninit(sc);
unmap:
nxe_pci_unmap(sc);
}
int
nxe_pci_map(struct nxe_softc *sc, struct pci_attach_args *pa)
{
pcireg_t memtype;
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NXE_PCI_BAR_MEM);
if (pci_mapreg_map(pa, NXE_PCI_BAR_MEM, memtype, 0, &sc->sc_memt,
&sc->sc_memh, NULL, &sc->sc_mems, 0) != 0) {
printf(": unable to map host registers\n");
return (1);
}
if (sc->sc_mems != NXE_PCI_BAR_MEM_128MB) {
printf(": unexpected register map size\n");
goto unmap_mem;
}
/* set up the CRB window */
if (bus_space_subregion(sc->sc_memt, sc->sc_memh, NXE_MAP_CRB,
sc->sc_mems - NXE_MAP_CRB, &sc->sc_crbh) != 0) {
printf(": unable to create CRB window\n");
goto unmap_mem;
}
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NXE_PCI_BAR_DOORBELL);
if (pci_mapreg_map(pa, NXE_PCI_BAR_DOORBELL, memtype, 0, &sc->sc_dbt,
&sc->sc_dbh, NULL, &sc->sc_dbs, 0) != 0) {
printf(": unable to map doorbell registers\n");
/* bus_space(9) says i dont have to unmap subregions */
goto unmap_mem;
}
config_mountroot(&sc->sc_dev, nxe_mountroot);
return (0);
unmap_mem:
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
sc->sc_mems = 0;
return (1);
}
void
nxe_pci_unmap(struct nxe_softc *sc)
{
bus_space_unmap(sc->sc_dbt, sc->sc_dbh, sc->sc_dbs);
sc->sc_dbs = 0;
/* bus_space(9) says i dont have to unmap the crb subregion */
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
sc->sc_mems = 0;
}
int
nxe_intr(void *xsc)
{
struct nxe_softc *sc = xsc;
u_int32_t vector;
DASSERT(sc->sc_window == 1);
vector = nxe_crb_read(sc, NXE_1_SW_INT_VECTOR);
if (!ISSET(vector, NXE_ISR_MINE(sc->sc_function)))
return (0);
nxe_crb_write(sc, NXE_1_SW_INT_VECTOR, 0x80 << sc->sc_function);
/* the interrupt is mine! we should do some work now */
return (1);
}
int
nxe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr)
{
struct nxe_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)addr;
int s, error = 0;
rw_enter_write(&sc->sc_lock);
s = splnet();
timeout_del(&sc->sc_tick);
switch (cmd) {
case SIOCSIFADDR:
SET(ifp->if_flags, IFF_UP);
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ISSET(ifp->if_flags, IFF_UP)) {
if (ISSET(ifp->if_flags, IFF_RUNNING))
error = ENETRESET;
else
nxe_up(sc);
} else {
if (ISSET(ifp->if_flags, IFF_RUNNING))
nxe_down(sc);
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
error = ether_ioctl(ifp, &sc->sc_ac, cmd, addr);
}
if (error == ENETRESET) {
if (ISSET(ifp->if_flags, IFF_RUNNING)) {
nxe_crb_set(sc, 0);
nxe_iff(sc);
nxe_crb_set(sc, 1);
}
error = 0;
}
nxe_tick(sc);
splx(s);
rw_exit_write(&sc->sc_lock);
return (error);
}
void
nxe_up(struct nxe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
static const u_int rx_ring_sizes[] = { 16384, 1024, 128 };
struct {
struct nxe_ctx ctx;
u_int32_t cmd_consumer;
} __packed *dmamem;
struct nxe_ctx *ctx;
struct nxe_ctx_ring *ring;
struct nxe_ring *nr;
u_int64_t dva;
u_int32_t intr_scheme;
int i;
if (nxe_up_fw(sc) != 0)
return;
/* allocate pkt lists */
sc->sc_tx_pkts = nxe_pkt_alloc(sc, 128, NXE_TXD_MAX_SEGS);
if (sc->sc_tx_pkts == NULL)
return;
sc->sc_rx_pkts = nxe_pkt_alloc(sc, 128, NXE_RXD_MAX_SEGS);
if (sc->sc_rx_pkts == NULL)
goto free_tx_pkts;
/* allocate the context memory and the consumer field */
sc->sc_ctx = nxe_dmamem_alloc(sc, sizeof(*dmamem), PAGE_SIZE);
if (sc->sc_ctx == NULL)
goto free_rx_pkts;
dmamem = NXE_DMA_KVA(sc->sc_ctx);
dva = NXE_DMA_DVA(sc->sc_ctx);
ctx = &dmamem->ctx;
ctx->ctx_cmd_consumer_addr = htole64(dva + sizeof(dmamem->ctx));
ctx->ctx_id = htole32(sc->sc_function);
sc->sc_cmd_consumer = &dmamem->cmd_consumer;
sc->sc_cmd_consumer_cur = 0;
/* allocate the cmd/tx ring */
sc->sc_cmd_ring = nxe_ring_alloc(sc,
sizeof(struct nxe_tx_desc), 1024 /* XXX */);
if (sc->sc_cmd_ring == NULL)
goto free_ctx;
ctx->ctx_cmd_ring.r_addr =
htole64(NXE_DMA_DVA(sc->sc_cmd_ring->nr_dmamem));
ctx->ctx_cmd_ring.r_size = htole32(sc->sc_cmd_ring->nr_nentries);
/* allocate the status ring */
sc->sc_status_ring = nxe_ring_alloc(sc,
sizeof(struct nxe_status_desc), 16384 /* XXX */);
if (sc->sc_status_ring == NULL)
goto free_cmd_ring;
ctx->ctx_status_ring_addr =
htole64(NXE_DMA_DVA(sc->sc_status_ring->nr_dmamem));
ctx->ctx_status_ring_size = htole32(sc->sc_status_ring->nr_nentries);
/* allocate something to point the jumbo and lro rings at */
sc->sc_dummy_rx = nxe_dmamem_alloc(sc, NXE_MAX_PKTLEN, PAGE_SIZE);
if (sc->sc_dummy_rx == NULL)
goto free_status_ring;
/* allocate the rx rings */
for (i = 0; i < NXE_NRING; i++) {
ring = &ctx->ctx_rx_rings[i];
nr = nxe_ring_alloc(sc, sizeof(struct nxe_rx_desc),
rx_ring_sizes[i]);
if (nr == NULL)
goto free_rx_rings;
ring->r_addr = htole64(NXE_DMA_DVA(nr->nr_dmamem));
ring->r_size = htole32(nr->nr_nentries);
sc->sc_rx_rings[i] = nr;
nxe_ring_sync(sc, sc->sc_rx_rings[i], BUS_DMASYNC_PREWRITE);
}
/* nothing can possibly go wrong now */
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_dummy_rx),
0, NXE_DMA_LEN(sc->sc_dummy_rx), BUS_DMASYNC_PREREAD);
nxe_ring_sync(sc, sc->sc_status_ring, BUS_DMASYNC_PREREAD);
nxe_ring_sync(sc, sc->sc_cmd_ring, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_ctx),
0, NXE_DMA_LEN(sc->sc_ctx),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
nxe_crb_write(sc, NXE_1_SW_CONTEXT_ADDR_LO(sc->sc_function),
(u_int32_t)dva);
nxe_crb_write(sc, NXE_1_SW_CONTEXT_ADDR_HI(sc->sc_function),
(u_int32_t)(dva >> 32));
nxe_crb_write(sc, NXE_1_SW_CONTEXT(sc->sc_port),
NXE_1_SW_CONTEXT_SIG(sc->sc_port));
nxe_crb_set(sc, 0);
nxe_crb_write(sc, NXE_0_XG_MTU(sc->sc_function),
MCLBYTES - ETHER_ALIGN);
nxe_lladdr(sc);
nxe_iff(sc);
nxe_crb_set(sc, 1);
SET(ifp->if_flags, IFF_RUNNING);
ifq_clr_oactive(&ifp->if_snd);
/* enable interrupts */
intr_scheme = nxe_crb_read(sc, NXE_1_SW_NIC_CAP_FW);
if (intr_scheme != NXE_1_SW_NIC_CAP_PORTINTR)
nxe_write(sc, NXE_ISR_MASK, 0x77f);
nxe_crb_write(sc, NXE_1_SW_INT_MASK(sc->sc_function), 0x1);
if (intr_scheme != NXE_1_SW_NIC_CAP_PORTINTR)
nxe_crb_write(sc, NXE_1_SW_INT_VECTOR, 0x0);
nxe_write(sc, NXE_ISR_TARGET_MASK, 0xbff);
return;
free_rx_rings:
while (i > 0) {
i--;
nxe_ring_sync(sc, sc->sc_rx_rings[i], BUS_DMASYNC_POSTWRITE);
nxe_ring_free(sc, sc->sc_rx_rings[i]);
}
nxe_dmamem_free(sc, sc->sc_dummy_rx);
free_status_ring:
nxe_ring_free(sc, sc->sc_status_ring);
free_cmd_ring:
nxe_ring_free(sc, sc->sc_cmd_ring);
free_ctx:
nxe_dmamem_free(sc, sc->sc_ctx);
free_rx_pkts:
nxe_pkt_free(sc, sc->sc_rx_pkts);
free_tx_pkts:
nxe_pkt_free(sc, sc->sc_tx_pkts);
}
int
nxe_up_fw(struct nxe_softc *sc)
{
u_int32_t r;
r = nxe_crb_read(sc, NXE_1_SW_CMDPEG_STATE);
if (r == NXE_1_SW_CMDPEG_STATE_ACK)
return (0);
if (r != NXE_1_SW_CMDPEG_STATE_DONE)
return (1);
nxe_crb_write(sc, NXE_1_SW_NIC_CAP_HOST, NXE_1_SW_NIC_CAP_PORTINTR);
nxe_crb_write(sc, NXE_1_SW_MPORT_MODE, NXE_1_SW_MPORT_MODE_MULTI);
nxe_crb_write(sc, NXE_1_SW_CMDPEG_STATE, NXE_1_SW_CMDPEG_STATE_ACK);
/* XXX busy wait in a process context is naughty */
if (!nxe_crb_wait(sc, NXE_1_SW_STATUS_STATE(sc->sc_function),
0xffffffff, NXE_1_SW_STATUS_STATE_READY, 1000))
return (1);
return (0);
}
void
nxe_lladdr(struct nxe_softc *sc)
{
u_int8_t *lladdr = sc->sc_ac.ac_enaddr;
DASSERT(sc->sc_window == 0);
nxe_crb_write(sc, NXE_0_XG_MAC_LO(sc->sc_port),
(lladdr[0] << 16) | (lladdr[1] << 24));
nxe_crb_write(sc, NXE_0_XG_MAC_HI(sc->sc_port),
(lladdr[2] << 0) | (lladdr[3] << 8) |
(lladdr[4] << 16) | (lladdr[5] << 24));
}
void
nxe_iff(struct nxe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
u_int32_t cfg1 = 0x1447; /* XXX */
DASSERT(sc->sc_window == 0);
CLR(ifp->if_flags, IFF_ALLMULTI);
if (ISSET(ifp->if_flags, IFF_PROMISC) || sc->sc_ac.ac_multicnt > 0) {
SET(ifp->if_flags, IFF_ALLMULTI);
if (ISSET(ifp->if_flags, IFF_PROMISC))
cfg1 |= NXE_0_XG_CFG1_PROMISC;
else
cfg1 |= NXE_0_XG_CFG1_MULTICAST;
}
nxe_crb_write(sc, NXE_0_XG_CFG0(sc->sc_port),
NXE_0_XG_CFG0_TX_EN | NXE_0_XG_CFG0_RX_EN);
nxe_crb_write(sc, NXE_0_XG_CFG1(sc->sc_port), cfg1);
}
void
nxe_down(struct nxe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
int i;
CLR(ifp->if_flags, IFF_RUNNING | IFF_ALLMULTI);
ifq_clr_oactive(&ifp->if_snd);
/* XXX turn the chip off */
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_ctx),
0, NXE_DMA_LEN(sc->sc_ctx),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
nxe_ring_sync(sc, sc->sc_cmd_ring, BUS_DMASYNC_POSTWRITE);
nxe_ring_sync(sc, sc->sc_status_ring, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_dummy_rx),
0, NXE_DMA_LEN(sc->sc_dummy_rx), BUS_DMASYNC_POSTREAD);
for (i = 0; i < NXE_NRING; i++) {
nxe_ring_sync(sc, sc->sc_rx_rings[i], BUS_DMASYNC_POSTWRITE);
nxe_ring_free(sc, sc->sc_rx_rings[i]);
}
nxe_dmamem_free(sc, sc->sc_dummy_rx);
nxe_ring_free(sc, sc->sc_status_ring);
nxe_ring_free(sc, sc->sc_cmd_ring);
nxe_dmamem_free(sc, sc->sc_ctx);
nxe_pkt_free(sc, sc->sc_rx_pkts);
nxe_pkt_free(sc, sc->sc_tx_pkts);
}
void
nxe_start(struct ifnet *ifp)
{
struct nxe_softc *sc = ifp->if_softc;
struct nxe_ring *nr = sc->sc_cmd_ring;
struct nxe_tx_desc *txd;
struct nxe_pkt *pkt;
struct mbuf *m;
bus_dmamap_t dmap;
bus_dma_segment_t *segs;
int nsegs;
if (!ISSET(ifp->if_flags, IFF_RUNNING) ||
ifq_is_oactive(&ifp->if_snd) ||
ifq_empty(&ifp->if_snd))
return;
if (nxe_ring_writeable(nr, sc->sc_cmd_consumer_cur) < NXE_TXD_DESCS) {
ifq_set_oactive(&ifp->if_snd);
return;
}
nxe_ring_sync(sc, nr, BUS_DMASYNC_POSTWRITE);
txd = nxe_ring_cur(sc, nr);
bzero(txd, sizeof(struct nxe_tx_desc));
do {
m = ifq_deq_begin(&ifp->if_snd);
if (m == NULL)
break;
pkt = nxe_pkt_get(sc->sc_tx_pkts);
if (pkt == NULL) {
ifq_deq_rollback(&ifp->if_snd, m);
ifq_set_oactive(&ifp->if_snd);
break;
}
ifq_deq_commit(&ifp->if_snd, m);
dmap = pkt->pkt_dmap;
m = nxe_load_pkt(sc, dmap, m);
if (m == NULL) {
nxe_pkt_put(sc->sc_tx_pkts, pkt);
ifp->if_oerrors++;
break;
}
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
pkt->pkt_m = m;
txd->tx_flags = htole16(NXE_TXD_F_OPCODE_TX);
txd->tx_nbufs = dmap->dm_nsegs;
txd->tx_length = htole16(dmap->dm_mapsize);
txd->tx_port = sc->sc_port;
segs = dmap->dm_segs;
nsegs = dmap->dm_nsegs;
do {
switch ((nsegs > NXE_TXD_SEGS) ?
NXE_TXD_SEGS : nsegs) {
case 4:
txd->tx_addr_4 = htole64(segs[3].ds_addr);
txd->tx_slen_4 = htole32(segs[3].ds_len);
case 3:
txd->tx_addr_3 = htole64(segs[2].ds_addr);
txd->tx_slen_3 = htole32(segs[2].ds_len);
case 2:
txd->tx_addr_2 = htole64(segs[1].ds_addr);
txd->tx_slen_2 = htole32(segs[1].ds_len);
case 1:
txd->tx_addr_1 = htole64(segs[0].ds_addr);
txd->tx_slen_1 = htole32(segs[0].ds_len);
break;
default:
panic("%s: unexpected segments in tx map",
DEVNAME(sc));
}
nsegs -= NXE_TXD_SEGS;
segs += NXE_TXD_SEGS;
pkt->pkt_id = nr->nr_slot;
txd = nxe_ring_next(sc, nr);
bzero(txd, sizeof(struct nxe_tx_desc));
} while (nsegs > 0);
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
} while (nr->nr_ready >= NXE_TXD_DESCS);
nxe_ring_sync(sc, nr, BUS_DMASYNC_PREWRITE);
nxe_crb_write(sc, NXE_1_SW_CMD_PRODUCER(sc->sc_function), nr->nr_slot);
}
int
nxe_complete(struct nxe_softc *sc)
{
struct nxe_pkt *pkt;
int new_cons, cur_cons;
int rv = 0;
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_ctx),
0, NXE_DMA_LEN(sc->sc_ctx),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
new_cons = letoh32(*sc->sc_cmd_consumer);
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_ctx),
0, NXE_DMA_LEN(sc->sc_ctx),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
cur_cons = sc->sc_cmd_consumer_cur;
pkt = nxe_pkt_used(sc->sc_tx_pkts);
while (pkt != NULL && cur_cons != new_cons) {
if (pkt->pkt_id == cur_cons) {
bus_dmamap_sync(sc->sc_dmat, pkt->pkt_dmap,
0, pkt->pkt_dmap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, pkt->pkt_dmap);
m_freem(pkt->pkt_m);
nxe_pkt_put(sc->sc_tx_pkts, pkt);
pkt = nxe_pkt_used(sc->sc_tx_pkts);
}
cur_cons++;
cur_cons %= sc->sc_cmd_ring->nr_nentries;
rv = 1;
}
if (rv == 1) {
sc->sc_cmd_consumer_cur = cur_cons;
ifq_clr_oactive(&sc->sc_ac.ac_if.if_snd);
}
return (rv);
}
struct mbuf *
nxe_coalesce_m(struct mbuf *m)
{
struct mbuf *m0;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
goto err;
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m0, M_DONTWAIT);
if (!(m0->m_flags & M_EXT)) {
m_freem(m0);
m0 = NULL;
goto err;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m0, caddr_t));
m0->m_pkthdr.len = m0->m_len = m->m_pkthdr.len;
err:
m_freem(m);
return (m0);
}
struct mbuf *
nxe_load_pkt(struct nxe_softc *sc, bus_dmamap_t dmap, struct mbuf *m)
{
switch (bus_dmamap_load_mbuf(sc->sc_dmat, dmap, m, BUS_DMA_NOWAIT)) {
case 0:
break;
case EFBIG:
m = nxe_coalesce_m(m);
if (m == NULL)
break;
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmap, m,
BUS_DMA_NOWAIT) == 0)
break;
/* we get here on error */
/* FALLTHROUGH */
default:
m_freem(m);
m = NULL;
break;
}
return (m);
}
void
nxe_rx_start(struct nxe_softc *sc)
{
struct nxe_ring *nr = sc->sc_rx_rings[NXE_RING_RX];
struct nxe_rx_desc *rxd;
struct nxe_pkt *pkt;
struct mbuf *m;
if (nxe_ring_writeable(nr, 0) == 0)
return;
nxe_ring_sync(sc, nr, BUS_DMASYNC_POSTWRITE);
rxd = nxe_ring_cur(sc, nr);
for (;;) {
pkt = nxe_pkt_get(sc->sc_rx_pkts);
if (pkt == NULL)
goto done;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto put_pkt;
MCLGET(m, M_DONTWAIT);
if (!ISSET(m->m_flags, M_EXT))
goto free_m;
m->m_data += ETHER_ALIGN;
m->m_len = m->m_pkthdr.len = MCLBYTES - ETHER_ALIGN;
if (bus_dmamap_load_mbuf(sc->sc_dmat, pkt->pkt_dmap, m,
BUS_DMA_NOWAIT) != 0)
goto free_m;
pkt->pkt_m = m;
bzero(rxd, sizeof(struct nxe_rx_desc));
rxd->rx_len = htole32(m->m_len);
rxd->rx_id = pkt->pkt_id;
rxd->rx_addr = htole64(pkt->pkt_dmap->dm_segs[0].ds_addr);
bus_dmamap_sync(sc->sc_dmat, pkt->pkt_dmap, 0,
pkt->pkt_dmap->dm_mapsize, BUS_DMASYNC_PREREAD);
rxd = nxe_ring_next(sc, nr);
if (nr->nr_ready == 0)
goto done;
}
free_m:
m_freem(m);
put_pkt:
nxe_pkt_put(sc->sc_rx_pkts, pkt);
done:
nxe_ring_sync(sc, nr, BUS_DMASYNC_PREWRITE);
nxe_crb_write(sc, NXE_1_SW_RX_PRODUCER(sc->sc_function), nr->nr_slot);
nxe_doorbell(sc, NXE_DB_PEGID_RX | NXE_DB_PRIVID |
NXE_DB_OPCODE_RX_PROD |
NXE_DB_COUNT(nr->nr_slot) | NXE_DB_CTXID(sc->sc_function));
}
void
nxe_watchdog(struct ifnet *ifp)
{
/* do nothing */
}
int
nxe_media_change(struct ifnet *ifp)
{
/* ignore for now */
return (0);
}
void
nxe_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct nxe_softc *sc = ifp->if_softc;
imr->ifm_active = IFM_ETHER | IFM_AUTO;
imr->ifm_status = IFM_AVALID;
nxe_link_state(sc);
if (LINK_STATE_IS_UP(ifp->if_link_state))
imr->ifm_status |= IFM_ACTIVE;
}
void
nxe_link_state(struct nxe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ac.ac_if;
int link_state = LINK_STATE_DOWN;
u_int32_t r;
DASSERT(sc->sc_window == 1);
r = nxe_crb_read(sc, NXE_1_SW_XG_STATE);
if (NXE_1_SW_XG_STATE_PORT(r, sc->sc_function) & NXE_1_SW_XG_STATE_UP)
link_state = LINK_STATE_UP;
if (ifp->if_link_state != link_state) {
ifp->if_link_state = link_state;
if_link_state_change(ifp);
}
}
int
nxe_board_info(struct nxe_softc *sc)
{
struct nxe_info *ni;
int rv = 1;
int i;
ni = malloc(sizeof(struct nxe_info), M_TEMP, M_NOWAIT);
if (ni == NULL) {
printf(": unable to allocate temporary memory\n");
return (1);
}
if (nxe_rom_read_region(sc, NXE_FLASH_BRDCFG, ni,
sizeof(struct nxe_info)) != 0) {
printf(": unable to read board info\n");
goto out;
}
if (ni->ni_hdrver != NXE_INFO_HDRVER_1) {
printf(": unexpected board info header version 0x%08x\n",
ni->ni_hdrver);
goto out;
}
if (ni->ni_magic != NXE_INFO_MAGIC) {
printf(": board info magic is invalid\n");
goto out;
}
for (i = 0; i < nitems(nxe_boards); i++) {
if (ni->ni_board_type == nxe_boards[i].brd_type) {
sc->sc_board = &nxe_boards[i];
break;
}
}
if (sc->sc_board == NULL) {
printf(": unknown board type %04x\n", ni->ni_board_type);
goto out;
}
rv = 0;
out:
free(ni, M_TEMP, 0);
return (rv);
}
int
nxe_user_info(struct nxe_softc *sc)
{
struct nxe_userinfo *nu;
u_int64_t lladdr;
struct nxe_lladdr *la;
int rv = 1;
nu = malloc(sizeof(struct nxe_userinfo), M_TEMP, M_NOWAIT);
if (nu == NULL) {
printf(": unable to allocate temp memory\n");
return (1);
}
if (nxe_rom_read_region(sc, NXE_FLASH_USER, nu,
sizeof(struct nxe_userinfo)) != 0) {
printf(": unable to read user info\n");
goto out;
}
sc->sc_fw_major = nu->nu_imageinfo.nim_img_ver_major;
sc->sc_fw_minor = nu->nu_imageinfo.nim_img_ver_minor;
sc->sc_fw_build = letoh16(nu->nu_imageinfo.nim_img_ver_build);
if (sc->sc_fw_major > NXE_VERSION_MAJOR ||
sc->sc_fw_major < NXE_VERSION_MAJOR ||
sc->sc_fw_minor > NXE_VERSION_MINOR ||
sc->sc_fw_minor < NXE_VERSION_MINOR) {
printf(": firmware %d.%d.%d is unsupported by this driver\n",
sc->sc_fw_major, sc->sc_fw_minor, sc->sc_fw_build);
goto out;
}
lladdr = swap64(nu->nu_lladdr[sc->sc_function][0]);
la = (struct nxe_lladdr *)&lladdr;
bcopy(la->lladdr, sc->sc_ac.ac_enaddr, ETHER_ADDR_LEN);
rv = 0;
out:
free(nu, M_TEMP, 0);
return (rv);
}
int
nxe_init(struct nxe_softc *sc)
{
u_int64_t dva;
u_int32_t r;
/* stop the chip from processing */
nxe_crb_write(sc, NXE_1_SW_CMD_PRODUCER(sc->sc_function), 0);
nxe_crb_write(sc, NXE_1_SW_CMD_CONSUMER(sc->sc_function), 0);
nxe_crb_write(sc, NXE_1_SW_CMD_ADDR_HI, 0);
nxe_crb_write(sc, NXE_1_SW_CMD_ADDR_LO, 0);
/*
* if this is the first port on the device it needs some special
* treatment to get things going.
*/
if (sc->sc_function == 0) {
/* init adapter offload */
sc->sc_dummy_dma = nxe_dmamem_alloc(sc,
NXE_1_SW_DUMMY_ADDR_LEN, PAGE_SIZE);
if (sc->sc_dummy_dma == NULL) {
printf(": unable to allocate dummy memory\n");
return (1);
}
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_dummy_dma),
0, NXE_DMA_LEN(sc->sc_dummy_dma), BUS_DMASYNC_PREREAD);
dva = NXE_DMA_DVA(sc->sc_dummy_dma);
nxe_crb_write(sc, NXE_1_SW_DUMMY_ADDR_HI, dva >> 32);
nxe_crb_write(sc, NXE_1_SW_DUMMY_ADDR_LO, dva);
r = nxe_crb_read(sc, NXE_1_SW_BOOTLD_CONFIG);
if (r == 0x55555555) {
r = nxe_crb_read(sc, NXE_1_ROMUSB_SW_RESET);
if (r != NXE_1_ROMUSB_SW_RESET_BOOT) {
printf(": unexpected boot state\n");
goto err;
}
/* clear */
nxe_crb_write(sc, NXE_1_SW_BOOTLD_CONFIG, 0);
}
/* start the device up */
nxe_crb_write(sc, NXE_1_SW_DRIVER_VER, NXE_VERSION);
nxe_crb_write(sc, NXE_1_GLB_PEGTUNE, NXE_1_GLB_PEGTUNE_DONE);
/*
* the firmware takes a long time to boot, so we'll check
* it later on, and again when we want to bring a port up.
*/
}
return (0);
err:
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_dummy_dma),
0, NXE_DMA_LEN(sc->sc_dummy_dma), BUS_DMASYNC_POSTREAD);
nxe_dmamem_free(sc, sc->sc_dummy_dma);
return (1);
}
void
nxe_uninit(struct nxe_softc *sc)
{
if (sc->sc_function == 0) {
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(sc->sc_dummy_dma),
0, NXE_DMA_LEN(sc->sc_dummy_dma), BUS_DMASYNC_POSTREAD);
nxe_dmamem_free(sc, sc->sc_dummy_dma);
}
}
void
nxe_mountroot(struct device *self)
{
struct nxe_softc *sc = (struct nxe_softc *)self;
DASSERT(sc->sc_window == 1);
if (!nxe_crb_wait(sc, NXE_1_SW_CMDPEG_STATE, 0xffffffff,
NXE_1_SW_CMDPEG_STATE_DONE, 10000)) {
printf("%s: firmware bootstrap failed, code 0x%08x\n",
DEVNAME(sc), nxe_crb_read(sc, NXE_1_SW_CMDPEG_STATE));
return;
}
sc->sc_port = nxe_crb_read(sc, NXE_1_SW_V2P(sc->sc_function));
if (sc->sc_port == 0x55555555)
sc->sc_port = sc->sc_function;
nxe_crb_write(sc, NXE_1_SW_NIC_CAP_HOST, NXE_1_SW_NIC_CAP_PORTINTR);
nxe_crb_write(sc, NXE_1_SW_MPORT_MODE, NXE_1_SW_MPORT_MODE_MULTI);
nxe_crb_write(sc, NXE_1_SW_CMDPEG_STATE, NXE_1_SW_CMDPEG_STATE_ACK);
sc->sc_sensor.type = SENSOR_TEMP;
strlcpy(sc->sc_sensor_dev.xname, DEVNAME(sc),
sizeof(sc->sc_sensor_dev.xname));
sensor_attach(&sc->sc_sensor_dev, &sc->sc_sensor);
sensordev_install(&sc->sc_sensor_dev);
timeout_set(&sc->sc_tick, nxe_tick, sc);
nxe_tick(sc);
}
void
nxe_tick(void *xsc)
{
struct nxe_softc *sc = xsc;
u_int32_t temp;
int window;
int s;
s = splnet();
window = nxe_crb_set(sc, 1);
temp = nxe_crb_read(sc, NXE_1_SW_TEMP);
nxe_link_state(sc);
nxe_crb_set(sc, window);
splx(s);
sc->sc_sensor.value = NXE_1_SW_TEMP_VAL(temp) * 1000000 + 273150000;
sc->sc_sensor.flags = 0;
switch (NXE_1_SW_TEMP_STATE(temp)) {
case NXE_1_SW_TEMP_STATE_NONE:
sc->sc_sensor.status = SENSOR_S_UNSPEC;
break;
case NXE_1_SW_TEMP_STATE_OK:
sc->sc_sensor.status = SENSOR_S_OK;
break;
case NXE_1_SW_TEMP_STATE_WARN:
sc->sc_sensor.status = SENSOR_S_WARN;
break;
case NXE_1_SW_TEMP_STATE_CRIT:
/* we should probably bring things down if this is true */
sc->sc_sensor.status = SENSOR_S_CRIT;
break;
default:
sc->sc_sensor.flags = SENSOR_FUNKNOWN;
break;
}
timeout_add_sec(&sc->sc_tick, 5);
}
struct nxe_ring *
nxe_ring_alloc(struct nxe_softc *sc, size_t desclen, u_int nentries)
{
struct nxe_ring *nr;
nr = malloc(sizeof(struct nxe_ring), M_DEVBUF, M_WAITOK);
nr->nr_dmamem = nxe_dmamem_alloc(sc, desclen * nentries, PAGE_SIZE);
if (nr->nr_dmamem == NULL) {
free(nr, M_DEVBUF, 0);
return (NULL);
}
nr->nr_pos = NXE_DMA_KVA(nr->nr_dmamem);
nr->nr_slot = 0;
nr->nr_desclen = desclen;
nr->nr_nentries = nentries;
return (nr);
}
void
nxe_ring_sync(struct nxe_softc *sc, struct nxe_ring *nr, int flags)
{
bus_dmamap_sync(sc->sc_dmat, NXE_DMA_MAP(nr->nr_dmamem),
0, NXE_DMA_LEN(nr->nr_dmamem), flags);
}
void
nxe_ring_free(struct nxe_softc *sc, struct nxe_ring *nr)
{
nxe_dmamem_free(sc, nr->nr_dmamem);
free(nr, M_DEVBUF, 0);
}
int
nxe_ring_readable(struct nxe_ring *nr, int producer)
{
nr->nr_ready = producer - nr->nr_slot;
if (nr->nr_ready < 0)
nr->nr_ready += nr->nr_nentries;
return (nr->nr_ready);
}
int
nxe_ring_writeable(struct nxe_ring *nr, int consumer)
{
nr->nr_ready = consumer - nr->nr_slot;
if (nr->nr_ready <= 0)
nr->nr_ready += nr->nr_nentries;
return (nr->nr_ready);
}
void *
nxe_ring_cur(struct nxe_softc *sc, struct nxe_ring *nr)
{
return (nr->nr_pos);
}
void *
nxe_ring_next(struct nxe_softc *sc, struct nxe_ring *nr)
{
if (++nr->nr_slot >= nr->nr_nentries) {
nr->nr_slot = 0;
nr->nr_pos = NXE_DMA_KVA(nr->nr_dmamem);
} else
nr->nr_pos += nr->nr_desclen;
nr->nr_ready--;
return (nr->nr_pos);
}
struct nxe_pkt_list *
nxe_pkt_alloc(struct nxe_softc *sc, u_int npkts, int nsegs)
{
struct nxe_pkt_list *npl;
struct nxe_pkt *pkt;
int i;
npl = malloc(sizeof(*npl), M_DEVBUF, M_WAITOK | M_ZERO);
pkt = mallocarray(npkts, sizeof(*pkt), M_DEVBUF, M_WAITOK | M_ZERO);
npl->npl_pkts = pkt;
TAILQ_INIT(&npl->npl_free);
TAILQ_INIT(&npl->npl_used);
for (i = 0; i < npkts; i++) {
pkt = &npl->npl_pkts[i];
pkt->pkt_id = i;
if (bus_dmamap_create(sc->sc_dmat, NXE_MAX_PKTLEN, nsegs,
NXE_MAX_PKTLEN, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
&pkt->pkt_dmap) != 0) {
nxe_pkt_free(sc, npl);
return (NULL);
}
TAILQ_INSERT_TAIL(&npl->npl_free, pkt, pkt_link);
}
return (npl);
}
void
nxe_pkt_free(struct nxe_softc *sc, struct nxe_pkt_list *npl)
{
struct nxe_pkt *pkt;
while ((pkt = nxe_pkt_get(npl)) != NULL)
bus_dmamap_destroy(sc->sc_dmat, pkt->pkt_dmap);
free(npl->npl_pkts, M_DEVBUF, 0);
free(npl, M_DEVBUF, sizeof *npl);
}
struct nxe_pkt *
nxe_pkt_get(struct nxe_pkt_list *npl)
{
struct nxe_pkt *pkt;
pkt = TAILQ_FIRST(&npl->npl_free);
if (pkt != NULL) {
TAILQ_REMOVE(&npl->npl_free, pkt, pkt_link);
TAILQ_INSERT_TAIL(&npl->npl_used, pkt, pkt_link);
}
return (pkt);
}
void
nxe_pkt_put(struct nxe_pkt_list *npl, struct nxe_pkt *pkt)
{
TAILQ_REMOVE(&npl->npl_used, pkt, pkt_link);
TAILQ_INSERT_TAIL(&npl->npl_free, pkt, pkt_link);
}
struct nxe_pkt *
nxe_pkt_used(struct nxe_pkt_list *npl)
{
return (TAILQ_FIRST(&npl->npl_used));
}
struct nxe_dmamem *
nxe_dmamem_alloc(struct nxe_softc *sc, bus_size_t size, bus_size_t align)
{
struct nxe_dmamem *ndm;
int nsegs;
ndm = malloc(sizeof(*ndm), M_DEVBUF, M_WAITOK | M_ZERO);
ndm->ndm_size = size;
if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
goto ndmfree;
if (bus_dmamem_alloc(sc->sc_dmat, size, align, 0, &ndm->ndm_seg, 1,
&nsegs, BUS_DMA_WAITOK |BUS_DMA_ZERO) != 0)
goto destroy;
if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
&ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
goto free;
if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
NULL, BUS_DMA_WAITOK) != 0)
goto unmap;
return (ndm);
unmap:
bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
free:
bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
destroy:
bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
ndmfree:
free(ndm, M_DEVBUF, sizeof *ndm);
return (NULL);
}
void
nxe_dmamem_free(struct nxe_softc *sc, struct nxe_dmamem *ndm)
{
bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
free(ndm, M_DEVBUF, sizeof *ndm);
}
u_int32_t
nxe_read(struct nxe_softc *sc, bus_size_t r)
{
bus_space_barrier(sc->sc_memt, sc->sc_memh, r, 4,
BUS_SPACE_BARRIER_READ);
return (bus_space_read_4(sc->sc_memt, sc->sc_memh, r));
}
void
nxe_write(struct nxe_softc *sc, bus_size_t r, u_int32_t v)
{
bus_space_write_4(sc->sc_memt, sc->sc_memh, r, v);
bus_space_barrier(sc->sc_memt, sc->sc_memh, r, 4,
BUS_SPACE_BARRIER_WRITE);
}
int
nxe_wait(struct nxe_softc *sc, bus_size_t r, u_int32_t m, u_int32_t v,
u_int timeout)
{
while ((nxe_read(sc, r) & m) != v) {
if (timeout == 0)
return (0);
delay(1000);
timeout--;
}
return (1);
}
void
nxe_doorbell(struct nxe_softc *sc, u_int32_t v)
{
bus_space_write_4(sc->sc_memt, sc->sc_memh, NXE_DB, v);
bus_space_barrier(sc->sc_memt, sc->sc_memh, NXE_DB, 4,
BUS_SPACE_BARRIER_WRITE);
}
int
nxe_crb_set(struct nxe_softc *sc, int window)
{
int oldwindow = sc->sc_window;
u_int32_t r;
if (sc->sc_window != window) {
sc->sc_window = window;
r = window ? NXE_WIN_CRB_1 : NXE_WIN_CRB_0;
nxe_write(sc, NXE_WIN_CRB(sc->sc_function), r);
if (nxe_read(sc, NXE_WIN_CRB(sc->sc_function)) != r)
printf("%s: crb window hasnt moved\n", DEVNAME(sc));
}
return (oldwindow);
}
u_int32_t
nxe_crb_read(struct nxe_softc *sc, bus_size_t r)
{
bus_space_barrier(sc->sc_memt, sc->sc_crbh, r, 4,
BUS_SPACE_BARRIER_READ);
return (bus_space_read_4(sc->sc_memt, sc->sc_crbh, r));
}
void
nxe_crb_write(struct nxe_softc *sc, bus_size_t r, u_int32_t v)
{
bus_space_write_4(sc->sc_memt, sc->sc_crbh, r, v);
bus_space_barrier(sc->sc_memt, sc->sc_crbh, r, 4,
BUS_SPACE_BARRIER_WRITE);
}
int
nxe_crb_wait(struct nxe_softc *sc, bus_size_t r, u_int32_t m, u_int32_t v,
u_int timeout)
{
while ((nxe_crb_read(sc, r) & m) != v) {
if (timeout == 0)
return (0);
delay(1000);
timeout--;
}
return (1);
}
int
nxe_rom_lock(struct nxe_softc *sc)
{
if (!nxe_wait(sc, NXE_SEM_ROM_LOCK, 0xffffffff,
NXE_SEM_DONE, 10000))
return (1);
nxe_crb_write(sc, NXE_1_SW_ROM_LOCK_ID, NXE_1_SW_ROM_LOCK_ID);
return (0);
}
void
nxe_rom_unlock(struct nxe_softc *sc)
{
nxe_read(sc, NXE_SEM_ROM_UNLOCK);
}
int
nxe_rom_read(struct nxe_softc *sc, u_int32_t r, u_int32_t *v)
{
int rv = 1;
DASSERT(sc->sc_window == 1);
if (nxe_rom_lock(sc) != 0)
return (1);
/* set the rom address */
nxe_crb_write(sc, NXE_1_ROM_ADDR, r);
/* set the xfer len */
nxe_crb_write(sc, NXE_1_ROM_ABYTE_CNT, 3);
delay(100); /* used to prevent bursting on the chipset */
nxe_crb_write(sc, NXE_1_ROM_DBYTE_CNT, 0);
/* set opcode and wait for completion */
nxe_crb_write(sc, NXE_1_ROM_OPCODE, NXE_1_ROM_OPCODE_READ);
if (!nxe_crb_wait(sc, NXE_1_ROMUSB_STATUS, NXE_1_ROMUSB_STATUS_DONE,
NXE_1_ROMUSB_STATUS_DONE, 100))
goto err;
/* reset counters */
nxe_crb_write(sc, NXE_1_ROM_ABYTE_CNT, 0);
delay(100);
nxe_crb_write(sc, NXE_1_ROM_DBYTE_CNT, 0);
*v = nxe_crb_read(sc, NXE_1_ROM_RDATA);
rv = 0;
err:
nxe_rom_unlock(sc);
return (rv);
}
int
nxe_rom_read_region(struct nxe_softc *sc, u_int32_t r, void *buf,
size_t buflen)
{
u_int32_t *databuf = buf;
int i;
#ifdef NXE_DEBUG
if ((buflen % 4) != 0)
panic("nxe_read_rom_region: buflen is wrong (%d)", buflen);
#endif
buflen = buflen / 4;
for (i = 0; i < buflen; i++) {
if (nxe_rom_read(sc, r, &databuf[i]) != 0)
return (1);
r += sizeof(u_int32_t);
}
return (0);
}