src/sys/dev/pci/if_ipw.c

2060 lines
52 KiB
C

/* $OpenBSD: if_ipw.c,v 1.134 2024/04/14 03:26:25 jsg Exp $ */
/*-
* Copyright (c) 2004-2008
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Intel PRO/Wireless 2100 802.11 network adapters.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/task.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/pci/if_ipwreg.h>
#include <dev/pci/if_ipwvar.h>
int ipw_match(struct device *, void *, void *);
void ipw_attach(struct device *, struct device *, void *);
int ipw_activate(struct device *, int);
void ipw_wakeup(struct ipw_softc *);
int ipw_dma_alloc(struct ipw_softc *);
void ipw_release(struct ipw_softc *);
int ipw_media_change(struct ifnet *);
void ipw_media_status(struct ifnet *, struct ifmediareq *);
int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
struct ipw_soft_bd *, struct ipw_soft_buf *,
struct mbuf_list *);
void ipw_notification_intr(struct ipw_softc *,
struct ipw_soft_buf *);
void ipw_rx_intr(struct ipw_softc *);
void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
void ipw_tx_intr(struct ipw_softc *);
int ipw_intr(void *);
int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
int ipw_send_mgmt(struct ieee80211com *, struct ieee80211_node *,
int, int, int);
int ipw_tx_start(struct ifnet *, struct mbuf *,
struct ieee80211_node *);
void ipw_start(struct ifnet *);
void ipw_watchdog(struct ifnet *);
int ipw_ioctl(struct ifnet *, u_long, caddr_t);
uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
int ipw_read_table2(struct ipw_softc *, uint32_t, void *,
uint32_t *);
void ipw_stop_master(struct ipw_softc *);
int ipw_reset(struct ipw_softc *);
int ipw_load_ucode(struct ipw_softc *, u_char *, int);
int ipw_load_firmware(struct ipw_softc *, u_char *, int);
int ipw_read_firmware(struct ipw_softc *, struct ipw_firmware *);
void ipw_scan(void *);
void ipw_auth_and_assoc(void *);
int ipw_config(struct ipw_softc *);
int ipw_init(struct ifnet *);
void ipw_stop(struct ifnet *, int);
void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
bus_size_t);
void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
bus_size_t);
static __inline uint8_t
MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
}
static __inline uint32_t
MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
}
#ifdef IPW_DEBUG
#define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0)
int ipw_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
const struct cfattach ipw_ca = {
sizeof (struct ipw_softc), ipw_match, ipw_attach, NULL,
ipw_activate
};
int
ipw_match(struct device *parent, void *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
return 1;
return 0;
}
/* Base Address Register */
#define IPW_PCI_BAR0 0x10
void
ipw_attach(struct device *parent, struct device *self, void *aux)
{
struct ipw_softc *sc = (struct ipw_softc *)self;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
bus_space_tag_t memt;
bus_space_handle_t memh;
bus_addr_t base;
pci_intr_handle_t ih;
pcireg_t data;
uint16_t val;
int error, i;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag,
/* clear device specific PCI configuration register 0x41 */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
data &= ~0x0000ff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
/* map the register window */
error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz, 0);
if (error != 0) {
printf(": can't map mem space\n");
return;
}
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_dmat = pa->pa_dmat;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
if (pci_intr_map(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc,
sc->sc_dev.dv_xname);
if (sc->sc_ih == NULL) {
printf(": can't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(": %s", intrstr);
rw_init(&sc->sc_rwlock, "ipwlock");
task_set(&sc->sc_scantask, ipw_scan, sc);
task_set(&sc->sc_authandassoctask, ipw_auth_and_assoc, sc);
if (ipw_reset(sc) != 0) {
printf(": could not reset adapter\n");
return;
}
if (ipw_dma_alloc(sc) != 0) {
printf(": failed to allocate DMA resources\n");
return;
}
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
#ifndef IEEE80211_STA_ONLY
IEEE80211_C_IBSS | /* IBSS mode supported */
#endif
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WEP | /* s/w WEP */
IEEE80211_C_RSN | /* WPA/RSN */
IEEE80211_C_SCANALL; /* h/w scanning */
/* read MAC address from EEPROM */
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val >> 8;
ic->ic_myaddr[1] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val >> 8;
ic->ic_myaddr[3] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val >> 8;
ic->ic_myaddr[5] = val & 0xff;
printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
/* set supported .11b rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
/* set supported .11b channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
}
/* IBSS channel undefined for now */
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ipw_ioctl;
ifp->if_start = ipw_start;
ifp->if_watchdog = ipw_watchdog;
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ipw_newstate;
ic->ic_send_mgmt = ipw_send_mgmt;
ieee80211_media_init(ifp, ipw_media_change, ipw_media_status);
#if NBPFILTER > 0
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
#endif
}
int
ipw_activate(struct device *self, int act)
{
struct ipw_softc *sc = (struct ipw_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
switch (act) {
case DVACT_SUSPEND:
if (ifp->if_flags & IFF_RUNNING)
ipw_stop(ifp, 0);
break;
case DVACT_WAKEUP:
ipw_wakeup(sc);
break;
}
return 0;
}
void
ipw_wakeup(struct ipw_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
pcireg_t data;
int s;
/* clear device specific PCI configuration register 0x41 */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
data &= ~0x0000ff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
rw_enter_write(&sc->sc_rwlock);
s = splnet();
if (ifp->if_flags & IFF_UP)
ipw_init(ifp);
splx(s);
rw_exit_write(&sc->sc_rwlock);
}
int
ipw_dma_alloc(struct ipw_softc *sc)
{
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
int i, nsegs, error;
/*
* Allocate and map tx ring.
*/
error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
BUS_DMA_NOWAIT, &sc->tbd_map);
if (error != 0) {
printf("%s: could not create tx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
&sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate tx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
(caddr_t *)&sc->tbd_list, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map tx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load tx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Allocate and map rx ring.
*/
error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
BUS_DMA_NOWAIT, &sc->rbd_map);
if (error != 0) {
printf("%s: could not create rx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
&sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate rx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
(caddr_t *)&sc->rbd_list, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map rx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load tx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Allocate and map status ring.
*/
error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
0, BUS_DMA_NOWAIT, &sc->status_map);
if (error != 0) {
printf("%s: could not create status ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
&sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate status ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
IPW_STATUS_SZ, (caddr_t *)&sc->status_list, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map status ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load status ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Allocate command DMA map.
*/
error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd), 1,
sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
if (error != 0) {
printf("%s: could not create command DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Allocate headers DMA maps.
*/
SLIST_INIT(&sc->free_shdr);
for (i = 0; i < IPW_NDATA; i++) {
shdr = &sc->shdr_list[i];
error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_hdr),
1, sizeof (struct ipw_hdr), 0, BUS_DMA_NOWAIT, &shdr->map);
if (error != 0) {
printf("%s: could not create header DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
}
/*
* Allocate tx buffers DMA maps.
*/
SLIST_INIT(&sc->free_sbuf);
for (i = 0; i < IPW_NDATA; i++) {
sbuf = &sc->tx_sbuf_list[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IPW_MAX_NSEG,
MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
if (error != 0) {
printf("%s: could not create tx DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
}
/*
* Initialize tx ring.
*/
for (i = 0; i < IPW_NTBD; i++) {
sbd = &sc->stbd_list[i];
sbd->bd = &sc->tbd_list[i];
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
/*
* Pre-allocate rx buffers and DMA maps.
*/
for (i = 0; i < IPW_NRBD; i++) {
sbd = &sc->srbd_list[i];
sbuf = &sc->rx_sbuf_list[i];
sbd->bd = &sc->rbd_list[i];
MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
if (sbuf->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
MCLGET(sbuf->m, M_DONTWAIT);
if (!(sbuf->m->m_flags & M_EXT)) {
m_freem(sbuf->m);
printf("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &sbuf->map);
if (error != 0) {
printf("%s: could not create rx DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sbuf->map,
mtod(sbuf->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map rx DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(MCLBYTES);
}
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
BUS_DMASYNC_PREWRITE);
return 0;
fail: ipw_release(sc);
return error;
}
void
ipw_release(struct ipw_softc *sc)
{
struct ipw_soft_buf *sbuf;
int i;
if (sc->tbd_map != NULL) {
if (sc->tbd_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tbd_list,
IPW_TBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
}
if (sc->rbd_map != NULL) {
if (sc->rbd_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rbd_list,
IPW_RBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
}
if (sc->status_map != NULL) {
if (sc->status_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->status_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->status_list,
IPW_RBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
}
if (sc->cmd_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
for (i = 0; i < IPW_NDATA; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->shdr_list[i].map);
for (i = 0; i < IPW_NDATA; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
for (i = 0; i < IPW_NRBD; i++) {
sbuf = &sc->rx_sbuf_list[i];
if (sbuf->map != NULL) {
if (sbuf->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
m_freem(sbuf->m);
}
bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
}
}
task_del(systq, &sc->sc_scantask);
task_del(systq, &sc->sc_authandassoctask);
}
int
ipw_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
ipw_init(ifp);
return 0;
}
void
ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
static const struct {
uint32_t val;
int rate;
} rates[] = {
{ IPW_RATE_DS1, 2 },
{ IPW_RATE_DS2, 4 },
{ IPW_RATE_DS5, 11 },
{ IPW_RATE_DS11, 22 },
};
uint32_t val;
int rate, i;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE);
val &= 0xf;
/* convert rate to 802.11 rate */
for (i = 0; i < nitems(rates) && rates[i].val != val; i++)
;
rate = (i < nitems(rates)) ? rates[i].rate : 0;
imr->ifm_active |= IFM_IEEE80211_11B;
imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_IBSS;
break;
#endif
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
default:
/* should not get there */
break;
}
}
int
ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ipw_softc *sc = ic->ic_softc;
struct ifnet *ifp = &ic->ic_if;
if (LINK_STATE_IS_UP(ifp->if_link_state))
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
switch (nstate) {
case IEEE80211_S_SCAN:
task_add(systq, &sc->sc_scantask);
break;
case IEEE80211_S_AUTH:
task_add(systq, &sc->sc_authandassoctask);
break;
case IEEE80211_S_RUN:
if (!(ic->ic_flags & IEEE80211_F_RSNON)) {
/*
* NB: When RSN is enabled, we defer setting
* the link up until the port is valid.
*/
ieee80211_set_link_state(ic, LINK_STATE_UP);
}
break;
case IEEE80211_S_INIT:
case IEEE80211_S_ASSOC:
/* nothing to do */
break;
}
ic->ic_state = nstate;
return 0;
}
/*
* Read 16 bits at address 'addr' from the Microwire EEPROM.
* DON'T PLAY WITH THIS CODE UNLESS YOU KNOW *EXACTLY* WHAT YOU'RE DOING!
*/
uint16_t
ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* write start bit (1) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
/* write READ opcode (10) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
}
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
}
IPW_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
return val;
}
void
ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ipw_cmd *cmd;
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
BUS_DMASYNC_POSTREAD);
cmd = mtod(sbuf->m, struct ipw_cmd *);
DPRINTFN(2, ("received command ack type=%u,status=%u\n",
letoh32(cmd->type), letoh32(cmd->status)));
wakeup(&sc->cmd);
}
void
ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
uint32_t state;
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
BUS_DMASYNC_POSTREAD);
state = letoh32(*mtod(sbuf->m, uint32_t *));
DPRINTFN(2, ("firmware state changed to 0x%x\n", state));
switch (state) {
case IPW_STATE_ASSOCIATED:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IPW_STATE_SCANNING:
if (ic->ic_state == IEEE80211_S_RUN)
ieee80211_begin_scan(ifp);
break;
case IPW_STATE_SCAN_COMPLETE:
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_end_scan(ifp);
break;
case IPW_STATE_ASSOCIATION_LOST:
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
break;
case IPW_STATE_DISABLED:
wakeup(sc);
break;
case IPW_STATE_RADIO_DISABLED:
ipw_stop(&ic->ic_if, 1);
break;
}
}
void
ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf, struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct mbuf *mnew, *m;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
int error;
DPRINTFN(5, ("received data frame len=%u,rssi=%u\n",
letoh32(status->len), status->rssi));
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(mnew);
ifp->if_ierrors++;
return;
}
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, letoh32(status->len),
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
error = bus_dmamap_load(sc->sc_dmat, sbuf->map, mtod(mnew, void *),
MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->sc_dmat, sbuf->map,
mtod(sbuf->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
sc->sc_dev.dv_xname);
}
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
ifp->if_ierrors++;
return;
}
m = sbuf->m;
sbuf->m = mnew;
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
/* finalize mbuf */
m->m_pkthdr.len = m->m_len = letoh32(status->len);
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_antsignal = status->rssi;
tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
m, BPF_DIRECTION_IN);
}
#endif
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, wh);
/* send the frame to the upper layer */
memset(&rxi, 0, sizeof(rxi));
rxi.rxi_rssi = status->rssi;
ieee80211_inputm(ifp, m, ni, &rxi, ml);
ieee80211_release_node(ic, ni);
}
void
ipw_notification_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
DPRINTFN(2, ("received notification\n"));
}
void
ipw_rx_intr(struct ipw_softc *sc)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct ipw_status *status;
struct ipw_soft_bd *sbd;
struct ipw_soft_buf *sbuf;
uint32_t r, i;
r = CSR_READ_4(sc, IPW_CSR_RX_READ_INDEX);
for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, sc->status_map,
i * sizeof (struct ipw_status), sizeof (struct ipw_status),
BUS_DMASYNC_POSTREAD);
status = &sc->status_list[i];
sbd = &sc->srbd_list[i];
sbuf = sbd->priv;
switch (letoh16(status->code) & 0xf) {
case IPW_STATUS_CODE_COMMAND:
ipw_command_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_NEWSTATE:
ipw_newstate_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_DATA_802_3:
case IPW_STATUS_CODE_DATA_802_11:
ipw_data_intr(sc, status, sbd, sbuf, &ml);
break;
case IPW_STATUS_CODE_NOTIFICATION:
ipw_notification_intr(sc, sbuf);
break;
default:
printf("%s: unknown status code %u\n",
sc->sc_dev.dv_xname, letoh16(status->code));
}
sbd->bd->flags = 0;
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_PREWRITE);
}
if_input(&sc->sc_ic.ic_if, &ml);
/* tell the firmware what we have processed */
sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE_INDEX, sc->rxcur);
}
void
ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
switch (sbd->type) {
case IPW_SBD_TYPE_COMMAND:
bus_dmamap_unload(sc->sc_dmat, sc->cmd_map);
break;
case IPW_SBD_TYPE_HEADER:
shdr = sbd->priv;
bus_dmamap_unload(sc->sc_dmat, shdr->map);
SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
break;
case IPW_SBD_TYPE_DATA:
sbuf = sbd->priv;
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
m_freem(sbuf->m);
if (sbuf->ni != NULL)
ieee80211_release_node(ic, sbuf->ni);
/* kill watchdog timer */
sc->sc_tx_timer = 0;
break;
}
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
void
ipw_tx_intr(struct ipw_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct ipw_soft_bd *sbd;
uint32_t r, i;
r = CSR_READ_4(sc, IPW_CSR_TX_READ_INDEX);
for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
sbd = &sc->stbd_list[i];
ipw_release_sbd(sc, sbd);
sc->txfree++;
}
/* remember what the firmware has processed */
sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
/* call start() since some buffer descriptors have been released */
ifq_clr_oactive(&ifp->if_snd);
(*ifp->if_start)(ifp);
}
int
ipw_intr(void *arg)
{
struct ipw_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
uint32_t r;
if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff)
return 0;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
ipw_stop(ifp, 1);
return 1;
}
if (r & IPW_INTR_FW_INIT_DONE)
wakeup(sc);
if (r & IPW_INTR_RX_TRANSFER)
ipw_rx_intr(sc);
if (r & IPW_INTR_TX_TRANSFER)
ipw_tx_intr(sc);
/* acknowledge interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR, r);
/* re-enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
return 1;
}
int
ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
{
struct ipw_soft_bd *sbd;
int s, error;
s = splnet();
sc->cmd.type = htole32(type);
sc->cmd.subtype = htole32(0);
sc->cmd.len = htole32(len);
sc->cmd.seq = htole32(0);
if (data != NULL)
bcopy(data, sc->cmd.data, len);
error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map command DMA memory\n",
sc->sc_dev.dv_xname);
splx(s);
return error;
}
sbd = &sc->stbd_list[sc->txcur];
sbd->type = IPW_SBD_TYPE_COMMAND;
sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(sizeof (struct ipw_cmd));
sbd->bd->nfrag = 1;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
IPW_BD_FLAG_TX_LAST_FRAGMENT;
bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_PREWRITE);
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
sc->txfree--;
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, sc->txcur);
DPRINTFN(2, ("sending command type=%u,len=%u\n", type, len));
/* wait at most one second for command to complete */
error = tsleep_nsec(&sc->cmd, 0, "ipwcmd", SEC_TO_NSEC(1));
splx(s);
return error;
}
int
ipw_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, int type,
int arg1, int arg2)
{
return EOPNOTSUPP;
}
int
ipw_tx_start(struct ifnet *ifp, struct mbuf *m, struct ieee80211_node *ni)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
int error, i;
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_get_txkey(ic, wh, ni);
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
return ENOBUFS;
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
m, BPF_DIRECTION_OUT);
}
#endif
shdr = SLIST_FIRST(&sc->free_shdr);
sbuf = SLIST_FIRST(&sc->free_sbuf);
shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
shdr->hdr.subtype = htole32(0);
shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0;
shdr->hdr.encrypt = 0;
shdr->hdr.keyidx = 0;
shdr->hdr.keysz = 0;
shdr->hdr.fragmentsz = htole16(0);
IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
if (ic->ic_opmode == IEEE80211_M_STA)
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
else
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
/* trim IEEE802.11 header */
m_adj(m, sizeof (struct ieee80211_frame));
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
if (m_defrag(m, M_DONTWAIT)) {
m_freem(m);
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return error;
}
}
error = bus_dmamap_load(sc->sc_dmat, shdr->map, &shdr->hdr,
sizeof (struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map header DMA memory (error %d)\n",
sc->sc_dev.dv_xname, error);
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
m_freem(m);
return error;
}
SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
SLIST_REMOVE_HEAD(&sc->free_shdr, next);
sbd = &sc->stbd_list[sc->txcur];
sbd->type = IPW_SBD_TYPE_HEADER;
sbd->priv = shdr;
sbd->bd->physaddr = htole32(shdr->map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(sizeof (struct ipw_hdr));
sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd),
sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
sc->txfree--;
sbuf->m = m;
sbuf->ni = ni;
for (i = 0; i < sbuf->map->dm_nsegs; i++) {
sbd = &sc->stbd_list[sc->txcur];
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
sbd->bd->nfrag = 0; /* used only in first bd */
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
if (i == sbuf->map->dm_nsegs - 1) {
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
} else {
sbd->type = IPW_SBD_TYPE_NOASSOC;
sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
}
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd),
sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
sc->txfree--;
}
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sbuf->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, shdr->map, 0, sizeof (struct ipw_hdr),
BUS_DMASYNC_PREWRITE);
/* inform firmware about this new packet */
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, sc->txcur);
return 0;
}
void
ipw_start(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m;
if (ic->ic_state != IEEE80211_S_RUN)
return;
for (;;) {
if (sc->txfree < 1 + IPW_MAX_NSEG) {
ifq_set_oactive(&ifp->if_snd);
break;
}
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
m = ieee80211_encap(ifp, m, &ni);
if (m == NULL)
continue;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (ipw_tx_start(ifp, m, ni) != 0) {
if (ni != NULL)
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
ipw_watchdog(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ipw_stop(ifp, 1);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ipw_softc *sc = ifp->if_softc;
int s, error = 0;
error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
if (error)
return error;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
ipw_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
ipw_stop(ifp, 1);
}
break;
case SIOCG80211TXPOWER:
/*
* If the hardware radio transmitter switch is off, report a
* tx power of IEEE80211_TXPOWER_MIN to indicate that radio
* transmitter is killed.
*/
((struct ieee80211_txpower *)data)->i_val =
(CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED) ?
IEEE80211_TXPOWER_MIN : sc->sc_ic.ic_txpower;
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
ipw_init(ifp);
error = 0;
}
splx(s);
rw_exit_write(&sc->sc_rwlock);
return error;
}
uint32_t
ipw_read_table1(struct ipw_softc *sc, uint32_t off)
{
return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
}
void
ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
{
MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
}
int
ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
{
uint32_t addr, info;
uint16_t count, size;
uint32_t total;
/* addr[4] + count[2] + size[2] */
addr = MEM_READ_4(sc, sc->table2_base + off);
info = MEM_READ_4(sc, sc->table2_base + off + 4);
count = info >> 16;
size = info & 0xffff;
total = count * size;
if (total > *len) {
*len = total;
return EINVAL;
}
*len = total;
ipw_read_mem_1(sc, addr, buf, total);
return 0;
}
void
ipw_stop_master(struct ipw_softc *sc)
{
uint32_t tmp;
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
for (ntries = 0; ntries < 50; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 50)
printf("%s: timeout waiting for master\n",
sc->sc_dev.dv_xname);
tmp = CSR_READ_4(sc, IPW_CSR_RST);
CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
}
int
ipw_reset(struct ipw_softc *sc)
{
uint32_t tmp;
int ntries;
ipw_stop_master(sc);
/* move adapter to D0 state */
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000)
return EIO;
tmp = CSR_READ_4(sc, IPW_CSR_RST);
CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
DELAY(10);
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
return 0;
}
int
ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
{
int ntries;
/* voodoo from the Intel Linux driver */
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
for (ntries = 0; ntries < 100; ntries++) {
if (MEM_READ_1(sc, 0x210000) & 1)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for ucode to initialize\n",
sc->sc_dev.dv_xname);
return EIO;
}
MEM_WRITE_4(sc, 0x3000e0, 0);
return 0;
}
/* set of macros to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
#define GETLE16(p) ((p)[0] | (p)[1] << 8)
int
ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
{
u_char *p, *end;
uint32_t tmp, dst;
uint16_t len;
int error;
p = fw;
end = fw + size;
while (p < end) {
if (p + 6 > end)
return EINVAL;
dst = GETLE32(p); p += 4;
len = GETLE16(p); p += 2;
if (p + len > end)
return EINVAL;
ipw_write_mem_1(sc, dst, p, len);
p += len;
}
CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
IPW_IO_LED_OFF);
/* allow interrupts so we know when the firmware is inited */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
/* tell the adapter to initialize the firmware */
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = tsleep_nsec(sc, 0, "ipwinit", SEC_TO_NSEC(1))) != 0) {
printf("%s: timeout waiting for firmware initialization to "
"complete\n", sc->sc_dev.dv_xname);
return error;
}
tmp = CSR_READ_4(sc, IPW_CSR_IO);
CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
IPW_IO_GPIO3_MASK);
return 0;
}
int
ipw_read_firmware(struct ipw_softc *sc, struct ipw_firmware *fw)
{
const struct ipw_firmware_hdr *hdr;
const char *name;
int error;
switch (sc->sc_ic.ic_opmode) {
case IEEE80211_M_STA:
name = "ipw-bss";
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
name = "ipw-ibss";
break;
#endif
case IEEE80211_M_MONITOR:
name = "ipw-monitor";
break;
default:
/* should not get there */
return ENODEV;
}
if ((error = loadfirmware(name, &fw->data, &fw->size)) != 0)
return error;
if (fw->size < sizeof (*hdr)) {
error = EINVAL;
goto fail;
}
hdr = (const struct ipw_firmware_hdr *)fw->data;
fw->main_size = letoh32(hdr->main_size);
fw->ucode_size = letoh32(hdr->ucode_size);
if (fw->size < sizeof (*hdr) + fw->main_size + fw->ucode_size) {
error = EINVAL;
goto fail;
}
fw->main = fw->data + sizeof (*hdr);
fw->ucode = fw->main + fw->main_size;
return 0;
fail: free(fw->data, M_DEVBUF, fw->size);
return error;
}
void
ipw_scan(void *arg1)
{
struct ipw_softc *sc = arg1;
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct ipw_scan_options scan;
uint8_t ssid[IEEE80211_NWID_LEN];
int error;
/*
* Firmware has a bug and does not honour the ``do not associate
* after scan'' bit in the scan command. To prevent the firmware
* from associating after the scan, we set the ESSID to something
* unlikely to be used by a real AP.
* XXX would setting the desired BSSID to a multicast address work?
*/
memset(ssid, '\r', sizeof ssid);
error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, sizeof ssid);
if (error != 0)
goto fail;
/* no mandatory BSSID */
DPRINTF(("Setting mandatory BSSID to null\n"));
error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
if (error != 0)
goto fail;
scan.flags = htole32(IPW_SCAN_DO_NOT_ASSOCIATE | IPW_SCAN_MIXED_CELL);
scan.channels = htole32(0x3fff); /* scan channels 1-14 */
DPRINTF(("Setting scan options to 0x%x\n", letoh32(scan.flags)));
error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &scan, sizeof scan);
if (error != 0)
goto fail;
/* start scanning */
DPRINTF(("Enabling adapter\n"));
error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
if (error != 0)
goto fail;
return;
fail:
printf("%s: scan request failed (error=%d)\n", sc->sc_dev.dv_xname,
error);
ieee80211_end_scan(ifp);
}
void
ipw_auth_and_assoc(void *arg1)
{
struct ipw_softc *sc = arg1;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ipw_scan_options scan;
struct ipw_security security;
struct ipw_assoc_req assoc;
uint32_t data;
uint8_t chan;
int s, error;
DPRINTF(("Disabling adapter\n"));
error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0);
if (error != 0)
goto fail;
#if 1
/* wait at most one second for card to be disabled */
s = splnet();
error = tsleep_nsec(sc, 0, "ipwdis", SEC_TO_NSEC(1));
splx(s);
if (error != 0) {
printf("%s: timeout waiting for disabled state\n",
sc->sc_dev.dv_xname);
goto fail;
}
#else
/* Intel's Linux driver polls for the DISABLED state instead.. */
for (ntries = 0; ntries < 1000; ntries++) {
if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == 1)
break;
DELAY(10);
}
if (ntries == 1000) {
printf("%s: timeout waiting for disabled state\n",
sc->sc_dev.dv_xname);
goto fail;
}
#endif
bzero(&security, sizeof security);
security.authmode = IPW_AUTH_OPEN;
security.ciphers = htole32(IPW_CIPHER_NONE);
DPRINTF(("Setting authmode to %u\n", security.authmode));
error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
sizeof security);
if (error != 0)
goto fail;
#ifdef IPW_DEBUG
if (ipw_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf("\n");
}
#endif
error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
if (error != 0)
goto fail;
DPRINTF(("Setting BSSID to %s\n", ether_sprintf(ni->ni_bssid)));
error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, ni->ni_bssid,
IEEE80211_ADDR_LEN);
if (error != 0)
goto fail;
data = htole32((ic->ic_flags & (IEEE80211_F_WEPON |
IEEE80211_F_RSNON)) ? IPW_PRIVACYON : 0);
DPRINTF(("Setting privacy flags to 0x%x\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_PRIVACY_FLAGS, &data, sizeof data);
if (error != 0)
goto fail;
/* let firmware set the capinfo, lintval, and bssid fixed fields */
bzero(&assoc, sizeof assoc);
if (ic->ic_flags & IEEE80211_F_RSNON) {
uint8_t *frm = assoc.optie;
/* tell firmware to add a WPA or RSN IE in (Re)Assoc req */
if (ni->ni_rsnprotos & IEEE80211_PROTO_RSN)
frm = ieee80211_add_rsn(frm, ic, ni);
else if (ni->ni_rsnprotos & IEEE80211_PROTO_WPA)
frm = ieee80211_add_wpa(frm, ic, ni);
assoc.optie_len = htole32(frm - assoc.optie);
}
DPRINTF(("Preparing association request (optional IE length=%d)\n",
letoh32(assoc.optie_len)));
error = ipw_cmd(sc, IPW_CMD_SET_ASSOC_REQ, &assoc, sizeof assoc);
if (error != 0)
goto fail;
scan.flags = htole32(IPW_SCAN_MIXED_CELL);
chan = ieee80211_chan2ieee(ic, ni->ni_chan);
scan.channels = htole32(1 << (chan - 1));
DPRINTF(("Setting scan options to 0x%x\n", letoh32(scan.flags)));
error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &scan, sizeof scan);
if (error != 0)
goto fail;
/* trigger scan+association */
DPRINTF(("Enabling adapter\n"));
error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
if (error != 0)
goto fail;
/*
* net80211 won't see the AP's auth response. Move to ASSOC state
* in order to make net80211 accept the AP's assoc response.
*/
ic->ic_newstate(ic, IEEE80211_S_ASSOC, -1);
return;
fail:
printf("%s: association failed (error=%d)\n", sc->sc_dev.dv_xname,
error);
ieee80211_begin_scan(&ic->ic_if);
}
int
ipw_config(struct ipw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ipw_configuration config;
uint32_t data;
int error;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
data = htole32(IPW_MODE_BSS);
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
data = htole32(IPW_MODE_IBSS);
break;
#endif
case IEEE80211_M_MONITOR:
data = htole32(IPW_MODE_MONITOR);
break;
default:
/* should not get there */
return ENODEV;
}
DPRINTF(("Setting mode to %u\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
if (error != 0)
return error;
if (
#ifndef IEEE80211_STA_ONLY
ic->ic_opmode == IEEE80211_M_IBSS ||
#endif
ic->ic_opmode == IEEE80211_M_MONITOR) {
data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
DPRINTF(("Setting channel to %u\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
if (error != 0)
return error;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
DPRINTF(("Enabling adapter\n"));
return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
}
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
return error;
config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1X_ENABLE);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_IBSS)
config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
#endif
if (ifp->if_flags & IFF_PROMISC)
config.flags |= htole32(IPW_CFG_PROMISCUOUS);
config.bss_chan = htole32(0x3fff); /* channels 1-14 */
config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
DPRINTF(("Setting configuration 0x%x\n", config.flags));
error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
if (error != 0)
return error;
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting frag threshold to %u\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
data = htole32(0x3); /* 1, 2 */
DPRINTF(("Setting basic tx rates to 0x%x\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(0xf); /* 1, 2, 5.5, 11 */
DPRINTF(("Setting tx rates to 0x%x\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(0xf); /* 1, 2, 5.5, 11 */
DPRINTF(("Setting MSDU tx rates to 0x%x\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(IPW_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
if (error != 0)
return error;
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_IBSS) {
data = htole32(32); /* default value */
DPRINTF(("Setting tx power index to %u\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
sizeof data);
if (error != 0)
return error;
data = htole32(ic->ic_lintval);
DPRINTF(("Setting beacon interval to %u\n", letoh32(data)));
error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
sizeof data);
if (error != 0)
return error;
}
#endif
return 0;
}
int
ipw_init(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ipw_firmware fw;
int error;
ipw_stop(ifp, 0);
if ((error = ipw_reset(sc)) != 0) {
printf("%s: could not reset adapter\n", sc->sc_dev.dv_xname);
goto fail1;
}
if ((error = ipw_read_firmware(sc, &fw)) != 0) {
printf("%s: error %d, could not read firmware\n",
sc->sc_dev.dv_xname, error);
goto fail1;
}
if ((error = ipw_load_ucode(sc, fw.ucode, fw.ucode_size)) != 0) {
printf("%s: could not load microcode\n", sc->sc_dev.dv_xname);
goto fail2;
}
ipw_stop_master(sc);
/*
* Setup tx, rx and status rings.
*/
CSR_WRITE_4(sc, IPW_CSR_TX_BD_BASE, sc->tbd_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IPW_CSR_TX_BD_SIZE, IPW_NTBD);
CSR_WRITE_4(sc, IPW_CSR_TX_READ_INDEX, 0);
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, 0);
sc->txold = IPW_NTBD - 1; /* latest bd index ack by firmware */
sc->txcur = 0; /* bd index to write to */
sc->txfree = IPW_NTBD - 2;
CSR_WRITE_4(sc, IPW_CSR_RX_BD_BASE, sc->rbd_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IPW_CSR_RX_BD_SIZE, IPW_NRBD);
CSR_WRITE_4(sc, IPW_CSR_RX_READ_INDEX, 0);
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE_INDEX, IPW_NRBD - 1);
sc->rxcur = IPW_NRBD - 1; /* latest bd index I've read */
CSR_WRITE_4(sc, IPW_CSR_RX_STATUS_BASE,
sc->status_map->dm_segs[0].ds_addr);
if ((error = ipw_load_firmware(sc, fw.main, fw.main_size)) != 0) {
printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
goto fail2;
}
free(fw.data, M_DEVBUF, fw.size);
fw.data = NULL;
/* retrieve information tables base addresses */
sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
ipw_write_table1(sc, IPW_INFO_LOCK, 0);
if ((error = ipw_config(sc)) != 0) {
printf("%s: device configuration failed\n",
sc->sc_dev.dv_xname);
goto fail1;
}
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_begin_scan(ifp);
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
fail2: free(fw.data, M_DEVBUF, fw.size);
fw.data = NULL;
fail1: ipw_stop(ifp, 0);
return error;
}
void
ipw_stop(struct ifnet *ifp, int disable)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int i;
ipw_stop_master(sc);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
/*
* Release tx buffers.
*/
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
void
ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
}
}
void
ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
}
}
struct cfdriver ipw_cd = {
NULL, "ipw", DV_IFNET
};