2486 lines
58 KiB
C
2486 lines
58 KiB
C
/* $OpenBSD: kern_sig.c,v 1.326 2024/05/07 10:46:35 claudio Exp $ */
|
|
/* $NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Theo de Raadt. All rights reserved.
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_sig.c 8.7 (Berkeley) 4/18/94
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/event.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/user.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/ttycom.h>
|
|
#include <sys/pledge.h>
|
|
#include <sys/witness.h>
|
|
#include <sys/exec_elf.h>
|
|
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
#include <machine/tcb.h>
|
|
|
|
int nosuidcoredump = 1;
|
|
|
|
int filt_sigattach(struct knote *kn);
|
|
void filt_sigdetach(struct knote *kn);
|
|
int filt_signal(struct knote *kn, long hint);
|
|
|
|
const struct filterops sig_filtops = {
|
|
.f_flags = 0,
|
|
.f_attach = filt_sigattach,
|
|
.f_detach = filt_sigdetach,
|
|
.f_event = filt_signal,
|
|
};
|
|
|
|
/*
|
|
* The array below categorizes the signals and their default actions.
|
|
*/
|
|
const int sigprop[NSIG] = {
|
|
0, /* unused */
|
|
SA_KILL, /* SIGHUP */
|
|
SA_KILL, /* SIGINT */
|
|
SA_KILL|SA_CORE, /* SIGQUIT */
|
|
SA_KILL|SA_CORE, /* SIGILL */
|
|
SA_KILL|SA_CORE, /* SIGTRAP */
|
|
SA_KILL|SA_CORE, /* SIGABRT */
|
|
SA_KILL|SA_CORE, /* SIGEMT */
|
|
SA_KILL|SA_CORE, /* SIGFPE */
|
|
SA_KILL, /* SIGKILL */
|
|
SA_KILL|SA_CORE, /* SIGBUS */
|
|
SA_KILL|SA_CORE, /* SIGSEGV */
|
|
SA_KILL|SA_CORE, /* SIGSYS */
|
|
SA_KILL, /* SIGPIPE */
|
|
SA_KILL, /* SIGALRM */
|
|
SA_KILL, /* SIGTERM */
|
|
SA_IGNORE, /* SIGURG */
|
|
SA_STOP, /* SIGSTOP */
|
|
SA_STOP|SA_TTYSTOP, /* SIGTSTP */
|
|
SA_IGNORE|SA_CONT, /* SIGCONT */
|
|
SA_IGNORE, /* SIGCHLD */
|
|
SA_STOP|SA_TTYSTOP, /* SIGTTIN */
|
|
SA_STOP|SA_TTYSTOP, /* SIGTTOU */
|
|
SA_IGNORE, /* SIGIO */
|
|
SA_KILL, /* SIGXCPU */
|
|
SA_KILL, /* SIGXFSZ */
|
|
SA_KILL, /* SIGVTALRM */
|
|
SA_KILL, /* SIGPROF */
|
|
SA_IGNORE, /* SIGWINCH */
|
|
SA_IGNORE, /* SIGINFO */
|
|
SA_KILL, /* SIGUSR1 */
|
|
SA_KILL, /* SIGUSR2 */
|
|
SA_IGNORE, /* SIGTHR */
|
|
};
|
|
|
|
#define CONTSIGMASK (sigmask(SIGCONT))
|
|
#define STOPSIGMASK (sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
|
|
sigmask(SIGTTIN) | sigmask(SIGTTOU))
|
|
|
|
void setsigvec(struct proc *, int, struct sigaction *);
|
|
|
|
void proc_stop(struct proc *p, int);
|
|
void proc_stop_sweep(void *);
|
|
void *proc_stop_si;
|
|
|
|
void setsigctx(struct proc *, int, struct sigctx *);
|
|
void postsig_done(struct proc *, int, sigset_t, int);
|
|
void postsig(struct proc *, int, struct sigctx *);
|
|
int cansignal(struct proc *, struct process *, int);
|
|
|
|
struct pool sigacts_pool; /* memory pool for sigacts structures */
|
|
|
|
void sigio_del(struct sigiolst *);
|
|
void sigio_unlink(struct sigio_ref *, struct sigiolst *);
|
|
struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH);
|
|
|
|
/*
|
|
* Can thread p, send the signal signum to process qr?
|
|
*/
|
|
int
|
|
cansignal(struct proc *p, struct process *qr, int signum)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
struct ucred *uc = p->p_ucred;
|
|
struct ucred *quc = qr->ps_ucred;
|
|
|
|
if (uc->cr_uid == 0)
|
|
return (1); /* root can always signal */
|
|
|
|
if (pr == qr)
|
|
return (1); /* process can always signal itself */
|
|
|
|
/* optimization: if the same creds then the tests below will pass */
|
|
if (uc == quc)
|
|
return (1);
|
|
|
|
if (signum == SIGCONT && qr->ps_session == pr->ps_session)
|
|
return (1); /* SIGCONT in session */
|
|
|
|
/*
|
|
* Using kill(), only certain signals can be sent to setugid
|
|
* child processes
|
|
*/
|
|
if (qr->ps_flags & PS_SUGID) {
|
|
switch (signum) {
|
|
case 0:
|
|
case SIGKILL:
|
|
case SIGINT:
|
|
case SIGTERM:
|
|
case SIGALRM:
|
|
case SIGSTOP:
|
|
case SIGTTIN:
|
|
case SIGTTOU:
|
|
case SIGTSTP:
|
|
case SIGHUP:
|
|
case SIGUSR1:
|
|
case SIGUSR2:
|
|
if (uc->cr_ruid == quc->cr_ruid ||
|
|
uc->cr_uid == quc->cr_ruid)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
if (uc->cr_ruid == quc->cr_ruid ||
|
|
uc->cr_ruid == quc->cr_svuid ||
|
|
uc->cr_uid == quc->cr_ruid ||
|
|
uc->cr_uid == quc->cr_svuid)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize signal-related data structures.
|
|
*/
|
|
void
|
|
signal_init(void)
|
|
{
|
|
proc_stop_si = softintr_establish(IPL_SOFTCLOCK, proc_stop_sweep,
|
|
NULL);
|
|
if (proc_stop_si == NULL)
|
|
panic("signal_init failed to register softintr");
|
|
|
|
pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
|
|
PR_WAITOK, "sigapl", NULL);
|
|
}
|
|
|
|
/*
|
|
* Initialize a new sigaltstack structure.
|
|
*/
|
|
void
|
|
sigstkinit(struct sigaltstack *ss)
|
|
{
|
|
ss->ss_flags = SS_DISABLE;
|
|
ss->ss_size = 0;
|
|
ss->ss_sp = NULL;
|
|
}
|
|
|
|
/*
|
|
* Create an initial sigacts structure, using the same signal state
|
|
* as pr.
|
|
*/
|
|
struct sigacts *
|
|
sigactsinit(struct process *pr)
|
|
{
|
|
struct sigacts *ps;
|
|
|
|
ps = pool_get(&sigacts_pool, PR_WAITOK);
|
|
memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
|
|
return (ps);
|
|
}
|
|
|
|
/*
|
|
* Release a sigacts structure.
|
|
*/
|
|
void
|
|
sigactsfree(struct sigacts *ps)
|
|
{
|
|
pool_put(&sigacts_pool, ps);
|
|
}
|
|
|
|
int
|
|
sys_sigaction(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
struct sys_sigaction_args /* {
|
|
syscallarg(int) signum;
|
|
syscallarg(const struct sigaction *) nsa;
|
|
syscallarg(struct sigaction *) osa;
|
|
} */ *uap = v;
|
|
struct sigaction vec;
|
|
#ifdef KTRACE
|
|
struct sigaction ovec;
|
|
#endif
|
|
struct sigaction *sa;
|
|
const struct sigaction *nsa;
|
|
struct sigaction *osa;
|
|
struct sigacts *ps = p->p_p->ps_sigacts;
|
|
int signum;
|
|
int bit, error;
|
|
|
|
signum = SCARG(uap, signum);
|
|
nsa = SCARG(uap, nsa);
|
|
osa = SCARG(uap, osa);
|
|
|
|
if (signum <= 0 || signum >= NSIG ||
|
|
(nsa && (signum == SIGKILL || signum == SIGSTOP)))
|
|
return (EINVAL);
|
|
sa = &vec;
|
|
if (osa) {
|
|
mtx_enter(&p->p_p->ps_mtx);
|
|
sa->sa_handler = ps->ps_sigact[signum];
|
|
sa->sa_mask = ps->ps_catchmask[signum];
|
|
bit = sigmask(signum);
|
|
sa->sa_flags = 0;
|
|
if ((ps->ps_sigonstack & bit) != 0)
|
|
sa->sa_flags |= SA_ONSTACK;
|
|
if ((ps->ps_sigintr & bit) == 0)
|
|
sa->sa_flags |= SA_RESTART;
|
|
if ((ps->ps_sigreset & bit) != 0)
|
|
sa->sa_flags |= SA_RESETHAND;
|
|
if ((ps->ps_siginfo & bit) != 0)
|
|
sa->sa_flags |= SA_SIGINFO;
|
|
if (signum == SIGCHLD) {
|
|
if ((ps->ps_sigflags & SAS_NOCLDSTOP) != 0)
|
|
sa->sa_flags |= SA_NOCLDSTOP;
|
|
if ((ps->ps_sigflags & SAS_NOCLDWAIT) != 0)
|
|
sa->sa_flags |= SA_NOCLDWAIT;
|
|
}
|
|
mtx_leave(&p->p_p->ps_mtx);
|
|
if ((sa->sa_mask & bit) == 0)
|
|
sa->sa_flags |= SA_NODEFER;
|
|
sa->sa_mask &= ~bit;
|
|
error = copyout(sa, osa, sizeof (vec));
|
|
if (error)
|
|
return (error);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_STRUCT))
|
|
ovec = vec;
|
|
#endif
|
|
}
|
|
if (nsa) {
|
|
error = copyin(nsa, sa, sizeof (vec));
|
|
if (error)
|
|
return (error);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_STRUCT))
|
|
ktrsigaction(p, sa);
|
|
#endif
|
|
setsigvec(p, signum, sa);
|
|
}
|
|
#ifdef KTRACE
|
|
if (osa && KTRPOINT(p, KTR_STRUCT))
|
|
ktrsigaction(p, &ovec);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
setsigvec(struct proc *p, int signum, struct sigaction *sa)
|
|
{
|
|
struct sigacts *ps = p->p_p->ps_sigacts;
|
|
int bit;
|
|
|
|
bit = sigmask(signum);
|
|
|
|
mtx_enter(&p->p_p->ps_mtx);
|
|
ps->ps_sigact[signum] = sa->sa_handler;
|
|
if ((sa->sa_flags & SA_NODEFER) == 0)
|
|
sa->sa_mask |= sigmask(signum);
|
|
ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
|
|
if (signum == SIGCHLD) {
|
|
if (sa->sa_flags & SA_NOCLDSTOP)
|
|
atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
|
|
else
|
|
atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
|
|
/*
|
|
* If the SA_NOCLDWAIT flag is set or the handler
|
|
* is SIG_IGN we reparent the dying child to PID 1
|
|
* (init) which will reap the zombie. Because we use
|
|
* init to do our dirty work we never set SAS_NOCLDWAIT
|
|
* for PID 1.
|
|
* XXX exit1 rework means this is unnecessary?
|
|
*/
|
|
if (initprocess->ps_sigacts != ps &&
|
|
((sa->sa_flags & SA_NOCLDWAIT) ||
|
|
sa->sa_handler == SIG_IGN))
|
|
atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
|
|
else
|
|
atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
|
|
}
|
|
if ((sa->sa_flags & SA_RESETHAND) != 0)
|
|
ps->ps_sigreset |= bit;
|
|
else
|
|
ps->ps_sigreset &= ~bit;
|
|
if ((sa->sa_flags & SA_SIGINFO) != 0)
|
|
ps->ps_siginfo |= bit;
|
|
else
|
|
ps->ps_siginfo &= ~bit;
|
|
if ((sa->sa_flags & SA_RESTART) == 0)
|
|
ps->ps_sigintr |= bit;
|
|
else
|
|
ps->ps_sigintr &= ~bit;
|
|
if ((sa->sa_flags & SA_ONSTACK) != 0)
|
|
ps->ps_sigonstack |= bit;
|
|
else
|
|
ps->ps_sigonstack &= ~bit;
|
|
/*
|
|
* Set bit in ps_sigignore for signals that are set to SIG_IGN,
|
|
* and for signals set to SIG_DFL where the default is to ignore.
|
|
* However, don't put SIGCONT in ps_sigignore,
|
|
* as we have to restart the process.
|
|
*/
|
|
if (sa->sa_handler == SIG_IGN ||
|
|
(sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
|
|
atomic_clearbits_int(&p->p_siglist, bit);
|
|
atomic_clearbits_int(&p->p_p->ps_siglist, bit);
|
|
if (signum != SIGCONT)
|
|
ps->ps_sigignore |= bit; /* easier in psignal */
|
|
ps->ps_sigcatch &= ~bit;
|
|
} else {
|
|
ps->ps_sigignore &= ~bit;
|
|
if (sa->sa_handler == SIG_DFL)
|
|
ps->ps_sigcatch &= ~bit;
|
|
else
|
|
ps->ps_sigcatch |= bit;
|
|
}
|
|
mtx_leave(&p->p_p->ps_mtx);
|
|
}
|
|
|
|
/*
|
|
* Initialize signal state for process 0;
|
|
* set to ignore signals that are ignored by default.
|
|
*/
|
|
void
|
|
siginit(struct sigacts *ps)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NSIG; i++)
|
|
if (sigprop[i] & SA_IGNORE && i != SIGCONT)
|
|
ps->ps_sigignore |= sigmask(i);
|
|
ps->ps_sigflags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
|
|
}
|
|
|
|
/*
|
|
* Reset signals for an exec by the specified thread.
|
|
*/
|
|
void
|
|
execsigs(struct proc *p)
|
|
{
|
|
struct sigacts *ps;
|
|
int nc, mask;
|
|
|
|
ps = p->p_p->ps_sigacts;
|
|
mtx_enter(&p->p_p->ps_mtx);
|
|
|
|
/*
|
|
* Reset caught signals. Held signals remain held
|
|
* through p_sigmask (unless they were caught,
|
|
* and are now ignored by default).
|
|
*/
|
|
while (ps->ps_sigcatch) {
|
|
nc = ffs((long)ps->ps_sigcatch);
|
|
mask = sigmask(nc);
|
|
ps->ps_sigcatch &= ~mask;
|
|
if (sigprop[nc] & SA_IGNORE) {
|
|
if (nc != SIGCONT)
|
|
ps->ps_sigignore |= mask;
|
|
atomic_clearbits_int(&p->p_siglist, mask);
|
|
atomic_clearbits_int(&p->p_p->ps_siglist, mask);
|
|
}
|
|
ps->ps_sigact[nc] = SIG_DFL;
|
|
}
|
|
/*
|
|
* Reset stack state to the user stack.
|
|
* Clear set of signals caught on the signal stack.
|
|
*/
|
|
sigstkinit(&p->p_sigstk);
|
|
atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
|
|
if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
|
|
ps->ps_sigact[SIGCHLD] = SIG_DFL;
|
|
mtx_leave(&p->p_p->ps_mtx);
|
|
}
|
|
|
|
/*
|
|
* Manipulate signal mask.
|
|
* Note that we receive new mask, not pointer,
|
|
* and return old mask as return value;
|
|
* the library stub does the rest.
|
|
*/
|
|
int
|
|
sys_sigprocmask(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
struct sys_sigprocmask_args /* {
|
|
syscallarg(int) how;
|
|
syscallarg(sigset_t) mask;
|
|
} */ *uap = v;
|
|
int error = 0;
|
|
sigset_t mask;
|
|
|
|
KASSERT(p == curproc);
|
|
|
|
*retval = p->p_sigmask;
|
|
mask = SCARG(uap, mask) &~ sigcantmask;
|
|
|
|
switch (SCARG(uap, how)) {
|
|
case SIG_BLOCK:
|
|
SET(p->p_sigmask, mask);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
CLR(p->p_sigmask, mask);
|
|
break;
|
|
case SIG_SETMASK:
|
|
p->p_sigmask = mask;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_sigpending(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
*retval = p->p_siglist | p->p_p->ps_siglist;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Temporarily replace calling proc's signal mask for the duration of a
|
|
* system call. Original signal mask will be restored by userret().
|
|
*/
|
|
void
|
|
dosigsuspend(struct proc *p, sigset_t newmask)
|
|
{
|
|
KASSERT(p == curproc);
|
|
|
|
p->p_oldmask = p->p_sigmask;
|
|
p->p_sigmask = newmask;
|
|
atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
|
|
}
|
|
|
|
/*
|
|
* Suspend thread until signal, providing mask to be set
|
|
* in the meantime. Note nonstandard calling convention:
|
|
* libc stub passes mask, not pointer, to save a copyin.
|
|
*/
|
|
int
|
|
sys_sigsuspend(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
struct sys_sigsuspend_args /* {
|
|
syscallarg(int) mask;
|
|
} */ *uap = v;
|
|
|
|
dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
|
|
while (tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigsusp", INFSLP) == 0)
|
|
continue;
|
|
/* always return EINTR rather than ERESTART... */
|
|
return (EINTR);
|
|
}
|
|
|
|
int
|
|
sigonstack(size_t stack)
|
|
{
|
|
const struct sigaltstack *ss = &curproc->p_sigstk;
|
|
|
|
return (ss->ss_flags & SS_DISABLE ? 0 :
|
|
(stack - (size_t)ss->ss_sp < ss->ss_size));
|
|
}
|
|
|
|
int
|
|
sys_sigaltstack(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
struct sys_sigaltstack_args /* {
|
|
syscallarg(const struct sigaltstack *) nss;
|
|
syscallarg(struct sigaltstack *) oss;
|
|
} */ *uap = v;
|
|
struct sigaltstack ss;
|
|
const struct sigaltstack *nss;
|
|
struct sigaltstack *oss;
|
|
int onstack = sigonstack(PROC_STACK(p));
|
|
int error;
|
|
|
|
nss = SCARG(uap, nss);
|
|
oss = SCARG(uap, oss);
|
|
|
|
if (oss != NULL) {
|
|
ss = p->p_sigstk;
|
|
if (onstack)
|
|
ss.ss_flags |= SS_ONSTACK;
|
|
if ((error = copyout(&ss, oss, sizeof(ss))))
|
|
return (error);
|
|
}
|
|
if (nss == NULL)
|
|
return (0);
|
|
error = copyin(nss, &ss, sizeof(ss));
|
|
if (error)
|
|
return (error);
|
|
if (onstack)
|
|
return (EPERM);
|
|
if (ss.ss_flags & ~SS_DISABLE)
|
|
return (EINVAL);
|
|
if (ss.ss_flags & SS_DISABLE) {
|
|
p->p_sigstk.ss_flags = ss.ss_flags;
|
|
return (0);
|
|
}
|
|
if (ss.ss_size < MINSIGSTKSZ)
|
|
return (ENOMEM);
|
|
|
|
error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size);
|
|
if (error)
|
|
return (error);
|
|
|
|
p->p_sigstk = ss;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sys_kill(struct proc *cp, void *v, register_t *retval)
|
|
{
|
|
struct sys_kill_args /* {
|
|
syscallarg(int) pid;
|
|
syscallarg(int) signum;
|
|
} */ *uap = v;
|
|
struct process *pr;
|
|
int pid = SCARG(uap, pid);
|
|
int signum = SCARG(uap, signum);
|
|
int error;
|
|
int zombie = 0;
|
|
|
|
if ((error = pledge_kill(cp, pid)) != 0)
|
|
return (error);
|
|
if (((u_int)signum) >= NSIG)
|
|
return (EINVAL);
|
|
if (pid > 0) {
|
|
if ((pr = prfind(pid)) == NULL) {
|
|
if ((pr = zombiefind(pid)) == NULL)
|
|
return (ESRCH);
|
|
else
|
|
zombie = 1;
|
|
}
|
|
if (!cansignal(cp, pr, signum))
|
|
return (EPERM);
|
|
|
|
/* kill single process */
|
|
if (signum && !zombie)
|
|
prsignal(pr, signum);
|
|
return (0);
|
|
}
|
|
switch (pid) {
|
|
case -1: /* broadcast signal */
|
|
return (killpg1(cp, signum, 0, 1));
|
|
case 0: /* signal own process group */
|
|
return (killpg1(cp, signum, 0, 0));
|
|
default: /* negative explicit process group */
|
|
return (killpg1(cp, signum, -pid, 0));
|
|
}
|
|
}
|
|
|
|
int
|
|
sys_thrkill(struct proc *cp, void *v, register_t *retval)
|
|
{
|
|
struct sys_thrkill_args /* {
|
|
syscallarg(pid_t) tid;
|
|
syscallarg(int) signum;
|
|
syscallarg(void *) tcb;
|
|
} */ *uap = v;
|
|
struct proc *p;
|
|
int tid = SCARG(uap, tid);
|
|
int signum = SCARG(uap, signum);
|
|
void *tcb;
|
|
|
|
if (((u_int)signum) >= NSIG)
|
|
return (EINVAL);
|
|
|
|
p = tid ? tfind_user(tid, cp->p_p) : cp;
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
|
|
/* optionally require the target thread to have the given tcb addr */
|
|
tcb = SCARG(uap, tcb);
|
|
if (tcb != NULL && tcb != TCB_GET(p))
|
|
return (ESRCH);
|
|
|
|
if (signum)
|
|
ptsignal(p, signum, STHREAD);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Common code for kill process group/broadcast kill.
|
|
* cp is calling process.
|
|
*/
|
|
int
|
|
killpg1(struct proc *cp, int signum, int pgid, int all)
|
|
{
|
|
struct process *pr;
|
|
struct pgrp *pgrp;
|
|
int nfound = 0;
|
|
|
|
if (all) {
|
|
/*
|
|
* broadcast
|
|
*/
|
|
LIST_FOREACH(pr, &allprocess, ps_list) {
|
|
if (pr->ps_pid <= 1 ||
|
|
pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
|
|
pr == cp->p_p || !cansignal(cp, pr, signum))
|
|
continue;
|
|
nfound++;
|
|
if (signum)
|
|
prsignal(pr, signum);
|
|
}
|
|
} else {
|
|
if (pgid == 0)
|
|
/*
|
|
* zero pgid means send to my process group.
|
|
*/
|
|
pgrp = cp->p_p->ps_pgrp;
|
|
else {
|
|
pgrp = pgfind(pgid);
|
|
if (pgrp == NULL)
|
|
return (ESRCH);
|
|
}
|
|
LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
|
|
if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
|
|
!cansignal(cp, pr, signum))
|
|
continue;
|
|
nfound++;
|
|
if (signum)
|
|
prsignal(pr, signum);
|
|
}
|
|
}
|
|
return (nfound ? 0 : ESRCH);
|
|
}
|
|
|
|
#define CANDELIVER(uid, euid, pr) \
|
|
(euid == 0 || \
|
|
(uid) == (pr)->ps_ucred->cr_ruid || \
|
|
(uid) == (pr)->ps_ucred->cr_svuid || \
|
|
(uid) == (pr)->ps_ucred->cr_uid || \
|
|
(euid) == (pr)->ps_ucred->cr_ruid || \
|
|
(euid) == (pr)->ps_ucred->cr_svuid || \
|
|
(euid) == (pr)->ps_ucred->cr_uid)
|
|
|
|
#define CANSIGIO(cr, pr) \
|
|
CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))
|
|
|
|
/*
|
|
* Send a signal to a process group. If checktty is 1,
|
|
* limit to members which have a controlling terminal.
|
|
*/
|
|
void
|
|
pgsignal(struct pgrp *pgrp, int signum, int checkctty)
|
|
{
|
|
struct process *pr;
|
|
|
|
if (pgrp)
|
|
LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
|
|
if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
|
|
prsignal(pr, signum);
|
|
}
|
|
|
|
/*
|
|
* Send a SIGIO or SIGURG signal to a process or process group using stored
|
|
* credentials rather than those of the current process.
|
|
*/
|
|
void
|
|
pgsigio(struct sigio_ref *sir, int sig, int checkctty)
|
|
{
|
|
struct process *pr;
|
|
struct sigio *sigio;
|
|
|
|
if (sir->sir_sigio == NULL)
|
|
return;
|
|
|
|
KERNEL_LOCK();
|
|
mtx_enter(&sigio_lock);
|
|
sigio = sir->sir_sigio;
|
|
if (sigio == NULL)
|
|
goto out;
|
|
if (sigio->sio_pgid > 0) {
|
|
if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc))
|
|
prsignal(sigio->sio_proc, sig);
|
|
} else if (sigio->sio_pgid < 0) {
|
|
LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist) {
|
|
if (CANSIGIO(sigio->sio_ucred, pr) &&
|
|
(checkctty == 0 || (pr->ps_flags & PS_CONTROLT)))
|
|
prsignal(pr, sig);
|
|
}
|
|
}
|
|
out:
|
|
mtx_leave(&sigio_lock);
|
|
KERNEL_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Recalculate the signal mask and reset the signal disposition after
|
|
* usermode frame for delivery is formed.
|
|
*/
|
|
void
|
|
postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset)
|
|
{
|
|
p->p_ru.ru_nsignals++;
|
|
SET(p->p_sigmask, catchmask);
|
|
if (reset != 0) {
|
|
sigset_t mask = sigmask(signum);
|
|
struct sigacts *ps = p->p_p->ps_sigacts;
|
|
|
|
mtx_enter(&p->p_p->ps_mtx);
|
|
ps->ps_sigcatch &= ~mask;
|
|
if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
|
|
ps->ps_sigignore |= mask;
|
|
ps->ps_sigact[signum] = SIG_DFL;
|
|
mtx_leave(&p->p_p->ps_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send a signal caused by a trap to the current thread
|
|
* If it will be caught immediately, deliver it with correct code.
|
|
* Otherwise, post it normally.
|
|
*/
|
|
void
|
|
trapsignal(struct proc *p, int signum, u_long trapno, int code,
|
|
union sigval sigval)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
struct sigctx ctx;
|
|
int mask;
|
|
|
|
switch (signum) {
|
|
case SIGILL:
|
|
if (code == ILL_BTCFI) {
|
|
pr->ps_acflag |= ABTCFI;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case SIGBUS:
|
|
case SIGSEGV:
|
|
pr->ps_acflag |= ATRAP;
|
|
break;
|
|
}
|
|
|
|
mask = sigmask(signum);
|
|
setsigctx(p, signum, &ctx);
|
|
if ((pr->ps_flags & PS_TRACED) == 0 && ctx.sig_catch != 0 &&
|
|
(p->p_sigmask & mask) == 0) {
|
|
siginfo_t si;
|
|
|
|
initsiginfo(&si, signum, trapno, code, sigval);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_PSIG)) {
|
|
ktrpsig(p, signum, ctx.sig_action,
|
|
p->p_sigmask, code, &si);
|
|
}
|
|
#endif
|
|
if (sendsig(ctx.sig_action, signum, p->p_sigmask, &si,
|
|
ctx.sig_info, ctx.sig_onstack)) {
|
|
KERNEL_LOCK();
|
|
sigexit(p, SIGILL);
|
|
/* NOTREACHED */
|
|
}
|
|
postsig_done(p, signum, ctx.sig_catchmask, ctx.sig_reset);
|
|
} else {
|
|
p->p_sisig = signum;
|
|
p->p_sitrapno = trapno; /* XXX for core dump/debugger */
|
|
p->p_sicode = code;
|
|
p->p_sigval = sigval;
|
|
|
|
/*
|
|
* If traced, stop if signal is masked, and stay stopped
|
|
* until released by the debugger. If our parent process
|
|
* is waiting for us, don't hang as we could deadlock.
|
|
*/
|
|
if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
|
|
signum != SIGKILL && (p->p_sigmask & mask) != 0) {
|
|
int s;
|
|
|
|
single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
|
|
pr->ps_xsig = signum;
|
|
|
|
SCHED_LOCK(s);
|
|
proc_stop(p, 1);
|
|
SCHED_UNLOCK(s);
|
|
|
|
signum = pr->ps_xsig;
|
|
single_thread_clear(p, 0);
|
|
|
|
/*
|
|
* If we are no longer being traced, or the parent
|
|
* didn't give us a signal, skip sending the signal.
|
|
*/
|
|
if ((pr->ps_flags & PS_TRACED) == 0 ||
|
|
signum == 0)
|
|
return;
|
|
|
|
/* update signal info */
|
|
p->p_sisig = signum;
|
|
mask = sigmask(signum);
|
|
}
|
|
|
|
/*
|
|
* Signals like SIGBUS and SIGSEGV should not, when
|
|
* generated by the kernel, be ignorable or blockable.
|
|
* If it is and we're not being traced, then just kill
|
|
* the process.
|
|
* After vfs_shutdown(9), init(8) cannot receive signals
|
|
* because new code pages of the signal handler cannot be
|
|
* mapped from halted storage. init(8) may not die or the
|
|
* kernel panics. Better loop between signal handler and
|
|
* page fault trap until the machine is halted.
|
|
*/
|
|
if ((pr->ps_flags & PS_TRACED) == 0 &&
|
|
(sigprop[signum] & SA_KILL) &&
|
|
((p->p_sigmask & mask) || ctx.sig_ignore) &&
|
|
pr->ps_pid != 1) {
|
|
KERNEL_LOCK();
|
|
sigexit(p, signum);
|
|
/* NOTREACHED */
|
|
}
|
|
KERNEL_LOCK();
|
|
ptsignal(p, signum, STHREAD);
|
|
KERNEL_UNLOCK();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send the signal to the process. If the signal has an action, the action
|
|
* is usually performed by the target process rather than the caller; we add
|
|
* the signal to the set of pending signals for the process.
|
|
*
|
|
* Exceptions:
|
|
* o When a stop signal is sent to a sleeping process that takes the
|
|
* default action, the process is stopped without awakening it.
|
|
* o SIGCONT restarts stopped processes (or puts them back to sleep)
|
|
* regardless of the signal action (eg, blocked or ignored).
|
|
*
|
|
* Other ignored signals are discarded immediately.
|
|
*/
|
|
void
|
|
psignal(struct proc *p, int signum)
|
|
{
|
|
ptsignal(p, signum, SPROCESS);
|
|
}
|
|
|
|
/*
|
|
* type = SPROCESS process signal, can be diverted (sigwait())
|
|
* type = STHREAD thread signal, but should be propagated if unhandled
|
|
* type = SPROPAGATED propagated to this thread, so don't propagate again
|
|
*/
|
|
void
|
|
ptsignal(struct proc *p, int signum, enum signal_type type)
|
|
{
|
|
int s, prop;
|
|
sig_t action;
|
|
sigset_t mask, sigmask;
|
|
int *siglist;
|
|
struct process *pr = p->p_p;
|
|
struct proc *q;
|
|
int wakeparent = 0;
|
|
|
|
KERNEL_ASSERT_LOCKED();
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if ((u_int)signum >= NSIG || signum == 0)
|
|
panic("psignal signal number");
|
|
#endif
|
|
|
|
/* Ignore signal if the target process is exiting */
|
|
if (pr->ps_flags & PS_EXITING)
|
|
return;
|
|
|
|
mask = sigmask(signum);
|
|
sigmask = READ_ONCE(p->p_sigmask);
|
|
|
|
if (type == SPROCESS) {
|
|
sigset_t tmpmask;
|
|
|
|
/* Accept SIGKILL to coredumping processes */
|
|
if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
|
|
atomic_setbits_int(&pr->ps_siglist, mask);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the current thread can process the signal
|
|
* immediately (it's unblocked) then have it take it.
|
|
*/
|
|
q = curproc;
|
|
tmpmask = READ_ONCE(q->p_sigmask);
|
|
if (q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
|
|
(tmpmask & mask) == 0) {
|
|
p = q;
|
|
sigmask = tmpmask;
|
|
} else {
|
|
/*
|
|
* A process-wide signal can be diverted to a
|
|
* different thread that's in sigwait() for this
|
|
* signal. If there isn't such a thread, then
|
|
* pick a thread that doesn't have it blocked so
|
|
* that the stop/kill consideration isn't
|
|
* delayed. Otherwise, mark it pending on the
|
|
* main thread.
|
|
*/
|
|
TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
|
|
|
|
/* ignore exiting threads */
|
|
if (q->p_flag & P_WEXIT)
|
|
continue;
|
|
|
|
/* skip threads that have the signal blocked */
|
|
tmpmask = READ_ONCE(q->p_sigmask);
|
|
if ((tmpmask & mask) != 0)
|
|
continue;
|
|
|
|
/* okay, could send to this thread */
|
|
p = q;
|
|
sigmask = tmpmask;
|
|
|
|
/*
|
|
* sigsuspend, sigwait, ppoll/pselect, etc?
|
|
* Definitely go to this thread, as it's
|
|
* already blocked in the kernel.
|
|
*/
|
|
if (q->p_flag & P_SIGSUSPEND)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type != SPROPAGATED)
|
|
knote_locked(&pr->ps_klist, NOTE_SIGNAL | signum);
|
|
|
|
prop = sigprop[signum];
|
|
|
|
/*
|
|
* If proc is traced, always give parent a chance.
|
|
*/
|
|
if (pr->ps_flags & PS_TRACED) {
|
|
action = SIG_DFL;
|
|
} else {
|
|
sigset_t sigcatch, sigignore;
|
|
|
|
/*
|
|
* If the signal is being ignored,
|
|
* then we forget about it immediately.
|
|
* (Note: we don't set SIGCONT in ps_sigignore,
|
|
* and if it is set to SIG_IGN,
|
|
* action will be SIG_DFL here.)
|
|
*/
|
|
mtx_enter(&pr->ps_mtx);
|
|
sigignore = pr->ps_sigacts->ps_sigignore;
|
|
sigcatch = pr->ps_sigacts->ps_sigcatch;
|
|
mtx_leave(&pr->ps_mtx);
|
|
|
|
if (sigignore & mask)
|
|
return;
|
|
if (sigmask & mask) {
|
|
action = SIG_HOLD;
|
|
} else if (sigcatch & mask) {
|
|
action = SIG_CATCH;
|
|
} else {
|
|
action = SIG_DFL;
|
|
|
|
if (prop & SA_KILL && pr->ps_nice > NZERO)
|
|
pr->ps_nice = NZERO;
|
|
|
|
/*
|
|
* If sending a tty stop signal to a member of an
|
|
* orphaned process group, discard the signal here if
|
|
* the action is default; don't stop the process below
|
|
* if sleeping, and don't clear any pending SIGCONT.
|
|
*/
|
|
if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* If delivered to process, mark as pending there. Continue and stop
|
|
* signals will be propagated to all threads. So they are always
|
|
* marked at thread level.
|
|
*/
|
|
siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist;
|
|
if (prop & SA_CONT) {
|
|
siglist = &p->p_siglist;
|
|
atomic_clearbits_int(siglist, STOPSIGMASK);
|
|
}
|
|
if (prop & SA_STOP) {
|
|
siglist = &p->p_siglist;
|
|
atomic_clearbits_int(siglist, CONTSIGMASK);
|
|
atomic_clearbits_int(&p->p_flag, P_CONTINUED);
|
|
}
|
|
|
|
/*
|
|
* XXX delay processing of SA_STOP signals unless action == SIG_DFL?
|
|
*/
|
|
if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
|
|
TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
|
|
if (q != p)
|
|
ptsignal(q, signum, SPROPAGATED);
|
|
|
|
/*
|
|
* Defer further processing for signals which are held,
|
|
* except that stopped processes must be continued by SIGCONT.
|
|
*/
|
|
if (action == SIG_HOLD && ((prop & SA_CONT) == 0 ||
|
|
p->p_stat != SSTOP)) {
|
|
atomic_setbits_int(siglist, mask);
|
|
return;
|
|
}
|
|
|
|
SCHED_LOCK(s);
|
|
|
|
switch (p->p_stat) {
|
|
|
|
case SSLEEP:
|
|
/*
|
|
* If process is sleeping uninterruptibly
|
|
* we can't interrupt the sleep... the signal will
|
|
* be noticed when the process returns through
|
|
* trap() or syscall().
|
|
*/
|
|
if ((p->p_flag & P_SINTR) == 0)
|
|
goto out;
|
|
/*
|
|
* Process is sleeping and traced... make it runnable
|
|
* so it can discover the signal in cursig() and stop
|
|
* for the parent.
|
|
*/
|
|
if (pr->ps_flags & PS_TRACED)
|
|
goto run;
|
|
|
|
/*
|
|
* Recheck sigmask before waking up the process,
|
|
* there is a chance that while sending the signal
|
|
* the process changed sigmask and went to sleep.
|
|
*/
|
|
sigmask = READ_ONCE(p->p_sigmask);
|
|
if (sigmask & mask)
|
|
goto out;
|
|
|
|
/*
|
|
* If SIGCONT is default (or ignored) and process is
|
|
* asleep, we are finished; the process should not
|
|
* be awakened.
|
|
*/
|
|
if ((prop & SA_CONT) && action == SIG_DFL) {
|
|
mask = 0;
|
|
goto out;
|
|
}
|
|
/*
|
|
* When a sleeping process receives a stop
|
|
* signal, process immediately if possible.
|
|
*/
|
|
if ((prop & SA_STOP) && action == SIG_DFL) {
|
|
/*
|
|
* If a child holding parent blocked,
|
|
* stopping could cause deadlock.
|
|
*/
|
|
if (pr->ps_flags & PS_PPWAIT)
|
|
goto out;
|
|
mask = 0;
|
|
pr->ps_xsig = signum;
|
|
proc_stop(p, 0);
|
|
goto out;
|
|
}
|
|
/*
|
|
* All other (caught or default) signals
|
|
* cause the process to run.
|
|
*/
|
|
goto runfast;
|
|
/* NOTREACHED */
|
|
|
|
case SSTOP:
|
|
/*
|
|
* If traced process is already stopped,
|
|
* then no further action is necessary.
|
|
*/
|
|
if (pr->ps_flags & PS_TRACED)
|
|
goto out;
|
|
|
|
/*
|
|
* Kill signal always sets processes running.
|
|
*/
|
|
if (signum == SIGKILL) {
|
|
atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
|
|
goto runfast;
|
|
}
|
|
|
|
if (prop & SA_CONT) {
|
|
/*
|
|
* If SIGCONT is default (or ignored), we continue the
|
|
* process but don't leave the signal in p_siglist, as
|
|
* it has no further action. If SIGCONT is held, we
|
|
* continue the process and leave the signal in
|
|
* p_siglist. If the process catches SIGCONT, let it
|
|
* handle the signal itself. If it isn't waiting on
|
|
* an event, then it goes back to run state.
|
|
* Otherwise, process goes back to sleep state.
|
|
*/
|
|
atomic_setbits_int(&p->p_flag, P_CONTINUED);
|
|
atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
|
|
wakeparent = 1;
|
|
if (action == SIG_DFL)
|
|
mask = 0;
|
|
if (action == SIG_CATCH)
|
|
goto runfast;
|
|
if (p->p_wchan == NULL)
|
|
goto run;
|
|
atomic_clearbits_int(&p->p_flag, P_WSLEEP);
|
|
p->p_stat = SSLEEP;
|
|
goto out;
|
|
}
|
|
|
|
if (prop & SA_STOP) {
|
|
/*
|
|
* Already stopped, don't need to stop again.
|
|
* (If we did the shell could get confused.)
|
|
*/
|
|
mask = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If process is sleeping interruptibly, then simulate a
|
|
* wakeup so that when it is continued, it will be made
|
|
* runnable and can look at the signal. But don't make
|
|
* the process runnable, leave it stopped.
|
|
*/
|
|
if (p->p_flag & P_SINTR)
|
|
unsleep(p);
|
|
goto out;
|
|
|
|
case SONPROC:
|
|
/* set siglist before issuing the ast */
|
|
atomic_setbits_int(siglist, mask);
|
|
mask = 0;
|
|
signotify(p);
|
|
/* FALLTHROUGH */
|
|
default:
|
|
/*
|
|
* SRUN, SIDL, SDEAD do nothing with the signal,
|
|
* other than kicking ourselves if we are running.
|
|
* It will either never be noticed, or noticed very soon.
|
|
*/
|
|
goto out;
|
|
}
|
|
/* NOTREACHED */
|
|
|
|
runfast:
|
|
/*
|
|
* Raise priority to at least PUSER.
|
|
*/
|
|
if (p->p_usrpri > PUSER)
|
|
p->p_usrpri = PUSER;
|
|
run:
|
|
unsleep(p);
|
|
setrunnable(p);
|
|
out:
|
|
/* finally adjust siglist */
|
|
if (mask)
|
|
atomic_setbits_int(siglist, mask);
|
|
SCHED_UNLOCK(s);
|
|
if (wakeparent)
|
|
wakeup(pr->ps_pptr);
|
|
}
|
|
|
|
/* fill the signal context which should be used by postsig() and issignal() */
|
|
void
|
|
setsigctx(struct proc *p, int signum, struct sigctx *sctx)
|
|
{
|
|
struct sigacts *ps = p->p_p->ps_sigacts;
|
|
sigset_t mask;
|
|
|
|
mtx_enter(&p->p_p->ps_mtx);
|
|
mask = sigmask(signum);
|
|
sctx->sig_action = ps->ps_sigact[signum];
|
|
sctx->sig_catchmask = ps->ps_catchmask[signum];
|
|
sctx->sig_reset = (ps->ps_sigreset & mask) != 0;
|
|
sctx->sig_info = (ps->ps_siginfo & mask) != 0;
|
|
sctx->sig_intr = (ps->ps_sigintr & mask) != 0;
|
|
sctx->sig_onstack = (ps->ps_sigonstack & mask) != 0;
|
|
sctx->sig_ignore = (ps->ps_sigignore & mask) != 0;
|
|
sctx->sig_catch = (ps->ps_sigcatch & mask) != 0;
|
|
mtx_leave(&p->p_p->ps_mtx);
|
|
}
|
|
|
|
/*
|
|
* Determine signal that should be delivered to process p, the current
|
|
* process, 0 if none.
|
|
*
|
|
* If the current process has received a signal (should be caught or cause
|
|
* termination, should interrupt current syscall), return the signal number.
|
|
* Stop signals with default action are processed immediately, then cleared;
|
|
* they aren't returned. This is checked after each entry to the system for
|
|
* a syscall or trap. The normal call sequence is
|
|
*
|
|
* while (signum = cursig(curproc, &ctx))
|
|
* postsig(signum, &ctx);
|
|
*
|
|
* Assumes that if the P_SINTR flag is set, we're holding both the
|
|
* kernel and scheduler locks.
|
|
*/
|
|
int
|
|
cursig(struct proc *p, struct sigctx *sctx)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
int signum, mask, prop;
|
|
sigset_t ps_siglist;
|
|
int s;
|
|
|
|
KASSERT(p == curproc);
|
|
|
|
for (;;) {
|
|
ps_siglist = READ_ONCE(pr->ps_siglist);
|
|
membar_consumer();
|
|
mask = SIGPENDING(p);
|
|
if (pr->ps_flags & PS_PPWAIT)
|
|
mask &= ~STOPSIGMASK;
|
|
if (mask == 0) /* no signal to send */
|
|
return (0);
|
|
signum = ffs((long)mask);
|
|
mask = sigmask(signum);
|
|
|
|
/* take the signal! */
|
|
if (atomic_cas_uint(&pr->ps_siglist, ps_siglist,
|
|
ps_siglist & ~mask) != ps_siglist) {
|
|
/* lost race taking the process signal, restart */
|
|
continue;
|
|
}
|
|
atomic_clearbits_int(&p->p_siglist, mask);
|
|
setsigctx(p, signum, sctx);
|
|
|
|
/*
|
|
* We should see pending but ignored signals
|
|
* only if PS_TRACED was on when they were posted.
|
|
*/
|
|
if (sctx->sig_ignore && (pr->ps_flags & PS_TRACED) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If traced, always stop, and stay stopped until released
|
|
* by the debugger. If our parent process is waiting for
|
|
* us, don't hang as we could deadlock.
|
|
*/
|
|
if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
|
|
signum != SIGKILL) {
|
|
single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
|
|
pr->ps_xsig = signum;
|
|
|
|
SCHED_LOCK(s);
|
|
proc_stop(p, 1);
|
|
SCHED_UNLOCK(s);
|
|
|
|
/*
|
|
* re-take the signal before releasing
|
|
* the other threads. Must check the continue
|
|
* conditions below and only take the signal if
|
|
* those are not true.
|
|
*/
|
|
signum = pr->ps_xsig;
|
|
mask = sigmask(signum);
|
|
setsigctx(p, signum, sctx);
|
|
if (!((pr->ps_flags & PS_TRACED) == 0 ||
|
|
signum == 0 ||
|
|
(p->p_sigmask & mask) != 0)) {
|
|
atomic_clearbits_int(&p->p_siglist, mask);
|
|
atomic_clearbits_int(&pr->ps_siglist, mask);
|
|
}
|
|
|
|
single_thread_clear(p, 0);
|
|
|
|
/*
|
|
* If we are no longer being traced, or the parent
|
|
* didn't give us a signal, look for more signals.
|
|
*/
|
|
if ((pr->ps_flags & PS_TRACED) == 0 ||
|
|
signum == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If the new signal is being masked, look for other
|
|
* signals.
|
|
*/
|
|
if ((p->p_sigmask & mask) != 0)
|
|
continue;
|
|
|
|
}
|
|
|
|
prop = sigprop[signum];
|
|
|
|
/*
|
|
* Decide whether the signal should be returned.
|
|
* Return the signal's number, or fall through
|
|
* to clear it from the pending mask.
|
|
*/
|
|
switch ((long)sctx->sig_action) {
|
|
case (long)SIG_DFL:
|
|
/*
|
|
* Don't take default actions on system processes.
|
|
*/
|
|
if (pr->ps_pid <= 1) {
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Are you sure you want to ignore SIGSEGV
|
|
* in init? XXX
|
|
*/
|
|
printf("Process (pid %d) got signal"
|
|
" %d\n", pr->ps_pid, signum);
|
|
#endif
|
|
break; /* == ignore */
|
|
}
|
|
/*
|
|
* If there is a pending stop signal to process
|
|
* with default action, stop here,
|
|
* then clear the signal. However,
|
|
* if process is member of an orphaned
|
|
* process group, ignore tty stop signals.
|
|
*/
|
|
if (prop & SA_STOP) {
|
|
if (pr->ps_flags & PS_TRACED ||
|
|
(pr->ps_pgrp->pg_jobc == 0 &&
|
|
prop & SA_TTYSTOP))
|
|
break; /* == ignore */
|
|
pr->ps_xsig = signum;
|
|
SCHED_LOCK(s);
|
|
proc_stop(p, 1);
|
|
SCHED_UNLOCK(s);
|
|
break;
|
|
} else if (prop & SA_IGNORE) {
|
|
/*
|
|
* Except for SIGCONT, shouldn't get here.
|
|
* Default action is to ignore; drop it.
|
|
*/
|
|
break; /* == ignore */
|
|
} else
|
|
goto keep;
|
|
/* NOTREACHED */
|
|
case (long)SIG_IGN:
|
|
/*
|
|
* Masking above should prevent us ever trying
|
|
* to take action on an ignored signal other
|
|
* than SIGCONT, unless process is traced.
|
|
*/
|
|
if ((prop & SA_CONT) == 0 &&
|
|
(pr->ps_flags & PS_TRACED) == 0)
|
|
printf("%s\n", __func__);
|
|
break; /* == ignore */
|
|
default:
|
|
/*
|
|
* This signal has an action, let
|
|
* postsig() process it.
|
|
*/
|
|
goto keep;
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
|
|
keep:
|
|
atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
|
|
return (signum);
|
|
}
|
|
|
|
/*
|
|
* Put the argument process into the stopped state and notify the parent
|
|
* via wakeup. Signals are handled elsewhere. The process must not be
|
|
* on the run queue.
|
|
*/
|
|
void
|
|
proc_stop(struct proc *p, int sw)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
SCHED_ASSERT_LOCKED();
|
|
#endif
|
|
/* do not stop exiting procs */
|
|
if (ISSET(p->p_flag, P_WEXIT))
|
|
return;
|
|
|
|
p->p_stat = SSTOP;
|
|
atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
|
|
atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
|
|
atomic_setbits_int(&p->p_flag, P_SUSPSIG);
|
|
/*
|
|
* We need this soft interrupt to be handled fast.
|
|
* Extra calls to softclock don't hurt.
|
|
*/
|
|
softintr_schedule(proc_stop_si);
|
|
if (sw)
|
|
mi_switch();
|
|
}
|
|
|
|
/*
|
|
* Called from a soft interrupt to send signals to the parents of stopped
|
|
* processes.
|
|
* We can't do this in proc_stop because it's called with nasty locks held
|
|
* and we would need recursive scheduler lock to deal with that.
|
|
*/
|
|
void
|
|
proc_stop_sweep(void *v)
|
|
{
|
|
struct process *pr;
|
|
|
|
LIST_FOREACH(pr, &allprocess, ps_list) {
|
|
if ((pr->ps_flags & PS_STOPPED) == 0)
|
|
continue;
|
|
atomic_clearbits_int(&pr->ps_flags, PS_STOPPED);
|
|
|
|
if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP) == 0)
|
|
prsignal(pr->ps_pptr, SIGCHLD);
|
|
wakeup(pr->ps_pptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Take the action for the specified signal
|
|
* from the current set of pending signals.
|
|
*/
|
|
void
|
|
postsig(struct proc *p, int signum, struct sigctx *sctx)
|
|
{
|
|
u_long trapno;
|
|
int mask, returnmask;
|
|
siginfo_t si;
|
|
union sigval sigval;
|
|
int code;
|
|
|
|
KASSERT(signum != 0);
|
|
|
|
mask = sigmask(signum);
|
|
atomic_clearbits_int(&p->p_siglist, mask);
|
|
sigval.sival_ptr = NULL;
|
|
|
|
if (p->p_sisig != signum) {
|
|
trapno = 0;
|
|
code = SI_USER;
|
|
sigval.sival_ptr = NULL;
|
|
} else {
|
|
trapno = p->p_sitrapno;
|
|
code = p->p_sicode;
|
|
sigval = p->p_sigval;
|
|
}
|
|
initsiginfo(&si, signum, trapno, code, sigval);
|
|
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_PSIG)) {
|
|
ktrpsig(p, signum, sctx->sig_action, p->p_flag & P_SIGSUSPEND ?
|
|
p->p_oldmask : p->p_sigmask, code, &si);
|
|
}
|
|
#endif
|
|
if (sctx->sig_action == SIG_DFL) {
|
|
/*
|
|
* Default action, where the default is to kill
|
|
* the process. (Other cases were ignored above.)
|
|
*/
|
|
KERNEL_LOCK();
|
|
sigexit(p, signum);
|
|
/* NOTREACHED */
|
|
} else {
|
|
/*
|
|
* If we get here, the signal must be caught.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (sctx->sig_action == SIG_IGN || (p->p_sigmask & mask))
|
|
panic("postsig action");
|
|
#endif
|
|
/*
|
|
* Set the new mask value and also defer further
|
|
* occurrences of this signal.
|
|
*
|
|
* Special case: user has done a sigpause. Here the
|
|
* current mask is not of interest, but rather the
|
|
* mask from before the sigpause is what we want
|
|
* restored after the signal processing is completed.
|
|
*/
|
|
if (p->p_flag & P_SIGSUSPEND) {
|
|
atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
|
|
returnmask = p->p_oldmask;
|
|
} else {
|
|
returnmask = p->p_sigmask;
|
|
}
|
|
if (p->p_sisig == signum) {
|
|
p->p_sisig = 0;
|
|
p->p_sitrapno = 0;
|
|
p->p_sicode = SI_USER;
|
|
p->p_sigval.sival_ptr = NULL;
|
|
}
|
|
|
|
if (sendsig(sctx->sig_action, signum, returnmask, &si,
|
|
sctx->sig_info, sctx->sig_onstack)) {
|
|
KERNEL_LOCK();
|
|
sigexit(p, SIGILL);
|
|
/* NOTREACHED */
|
|
}
|
|
postsig_done(p, signum, sctx->sig_catchmask, sctx->sig_reset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force the current process to exit with the specified signal, dumping core
|
|
* if appropriate. We bypass the normal tests for masked and caught signals,
|
|
* allowing unrecoverable failures to terminate the process without changing
|
|
* signal state. Mark the accounting record with the signal termination.
|
|
* If dumping core, save the signal number for the debugger. Calls exit and
|
|
* does not return.
|
|
*/
|
|
void
|
|
sigexit(struct proc *p, int signum)
|
|
{
|
|
/* Mark process as going away */
|
|
atomic_setbits_int(&p->p_flag, P_WEXIT);
|
|
|
|
p->p_p->ps_acflag |= AXSIG;
|
|
if (sigprop[signum] & SA_CORE) {
|
|
p->p_sisig = signum;
|
|
|
|
/* if there are other threads, pause them */
|
|
if (P_HASSIBLING(p))
|
|
single_thread_set(p, SINGLE_UNWIND);
|
|
|
|
if (coredump(p) == 0)
|
|
signum |= WCOREFLAG;
|
|
}
|
|
exit1(p, 0, signum, EXIT_NORMAL);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Send uncatchable SIGABRT for coredump.
|
|
*/
|
|
void
|
|
sigabort(struct proc *p)
|
|
{
|
|
struct sigaction sa;
|
|
|
|
KASSERT(p == curproc || panicstr || db_active);
|
|
|
|
memset(&sa, 0, sizeof sa);
|
|
sa.sa_handler = SIG_DFL;
|
|
setsigvec(p, SIGABRT, &sa);
|
|
CLR(p->p_sigmask, sigmask(SIGABRT));
|
|
psignal(p, SIGABRT);
|
|
}
|
|
|
|
/*
|
|
* Return 1 if `sig', a given signal, is ignored or masked for `p', a given
|
|
* thread, and 0 otherwise.
|
|
*/
|
|
int
|
|
sigismasked(struct proc *p, int sig)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
int rv;
|
|
|
|
KASSERT(p == curproc);
|
|
|
|
mtx_enter(&pr->ps_mtx);
|
|
rv = (pr->ps_sigacts->ps_sigignore & sigmask(sig)) ||
|
|
(p->p_sigmask & sigmask(sig));
|
|
mtx_leave(&pr->ps_mtx);
|
|
|
|
return !!rv;
|
|
}
|
|
|
|
struct coredump_iostate {
|
|
struct proc *io_proc;
|
|
struct vnode *io_vp;
|
|
struct ucred *io_cred;
|
|
off_t io_offset;
|
|
};
|
|
|
|
/*
|
|
* Dump core, into a file named "progname.core", unless the process was
|
|
* setuid/setgid.
|
|
*/
|
|
int
|
|
coredump(struct proc *p)
|
|
{
|
|
#ifdef SMALL_KERNEL
|
|
return EPERM;
|
|
#else
|
|
struct process *pr = p->p_p;
|
|
struct vnode *vp;
|
|
struct ucred *cred = p->p_ucred;
|
|
struct vmspace *vm = p->p_vmspace;
|
|
struct nameidata nd;
|
|
struct vattr vattr;
|
|
struct coredump_iostate io;
|
|
int error, len, incrash = 0;
|
|
char *name;
|
|
const char *dir = "/var/crash";
|
|
|
|
atomic_setbits_int(&pr->ps_flags, PS_COREDUMP);
|
|
|
|
#ifdef PMAP_CHECK_COPYIN
|
|
/* disable copyin checks, so we can write out text sections if needed */
|
|
p->p_vmspace->vm_map.check_copyin_count = 0;
|
|
#endif
|
|
|
|
/* Don't dump if will exceed file size limit. */
|
|
if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >= lim_cur(RLIMIT_CORE))
|
|
return (EFBIG);
|
|
|
|
name = pool_get(&namei_pool, PR_WAITOK);
|
|
|
|
/*
|
|
* If the process has inconsistent uids, nosuidcoredump
|
|
* determines coredump placement policy.
|
|
*/
|
|
if (((pr->ps_flags & PS_SUGID) && (error = suser(p))) ||
|
|
((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
|
|
if (nosuidcoredump == 3) {
|
|
/*
|
|
* If the program directory does not exist, dumps of
|
|
* that core will silently fail.
|
|
*/
|
|
len = snprintf(name, MAXPATHLEN, "%s/%s/%u.core",
|
|
dir, pr->ps_comm, pr->ps_pid);
|
|
incrash = KERNELPATH;
|
|
} else if (nosuidcoredump == 2) {
|
|
len = snprintf(name, MAXPATHLEN, "%s/%s.core",
|
|
dir, pr->ps_comm);
|
|
incrash = KERNELPATH;
|
|
} else {
|
|
pool_put(&namei_pool, name);
|
|
return (EPERM);
|
|
}
|
|
} else
|
|
len = snprintf(name, MAXPATHLEN, "%s.core", pr->ps_comm);
|
|
|
|
if (len >= MAXPATHLEN) {
|
|
pool_put(&namei_pool, name);
|
|
return (EACCES);
|
|
}
|
|
|
|
/*
|
|
* Control the UID used to write out. The normal case uses
|
|
* the real UID. If the sugid case is going to write into the
|
|
* controlled directory, we do so as root.
|
|
*/
|
|
if (incrash == 0) {
|
|
cred = crdup(cred);
|
|
cred->cr_uid = cred->cr_ruid;
|
|
cred->cr_gid = cred->cr_rgid;
|
|
} else {
|
|
if (p->p_fd->fd_rdir) {
|
|
vrele(p->p_fd->fd_rdir);
|
|
p->p_fd->fd_rdir = NULL;
|
|
}
|
|
p->p_ucred = crdup(p->p_ucred);
|
|
crfree(cred);
|
|
cred = p->p_ucred;
|
|
crhold(cred);
|
|
cred->cr_uid = 0;
|
|
cred->cr_gid = 0;
|
|
}
|
|
|
|
/* incrash should be 0 or KERNELPATH only */
|
|
NDINIT(&nd, 0, BYPASSUNVEIL | incrash, UIO_SYSSPACE, name, p);
|
|
|
|
error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW | O_NONBLOCK,
|
|
S_IRUSR | S_IWUSR);
|
|
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* Don't dump to non-regular files, files with links, or files
|
|
* owned by someone else.
|
|
*/
|
|
vp = nd.ni_vp;
|
|
if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
|
|
VOP_UNLOCK(vp);
|
|
vn_close(vp, FWRITE, cred, p);
|
|
goto out;
|
|
}
|
|
if (vp->v_type != VREG || vattr.va_nlink != 1 ||
|
|
vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
|
|
vattr.va_uid != cred->cr_uid) {
|
|
error = EACCES;
|
|
VOP_UNLOCK(vp);
|
|
vn_close(vp, FWRITE, cred, p);
|
|
goto out;
|
|
}
|
|
VATTR_NULL(&vattr);
|
|
vattr.va_size = 0;
|
|
VOP_SETATTR(vp, &vattr, cred, p);
|
|
pr->ps_acflag |= ACORE;
|
|
|
|
io.io_proc = p;
|
|
io.io_vp = vp;
|
|
io.io_cred = cred;
|
|
io.io_offset = 0;
|
|
VOP_UNLOCK(vp);
|
|
vref(vp);
|
|
error = vn_close(vp, FWRITE, cred, p);
|
|
if (error == 0)
|
|
error = coredump_elf(p, &io);
|
|
vrele(vp);
|
|
out:
|
|
crfree(cred);
|
|
pool_put(&namei_pool, name);
|
|
return (error);
|
|
#endif
|
|
}
|
|
|
|
#ifndef SMALL_KERNEL
|
|
int
|
|
coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len,
|
|
int isvnode)
|
|
{
|
|
struct coredump_iostate *io = cookie;
|
|
off_t coffset = 0;
|
|
size_t csize;
|
|
int chunk, error;
|
|
|
|
csize = len;
|
|
do {
|
|
if (sigmask(SIGKILL) &
|
|
(io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist))
|
|
return (EINTR);
|
|
|
|
/* Rest of the loop sleeps with lock held, so... */
|
|
yield();
|
|
|
|
chunk = MIN(csize, MAXPHYS);
|
|
error = vn_rdwr(UIO_WRITE, io->io_vp,
|
|
(caddr_t)data + coffset, chunk,
|
|
io->io_offset + coffset, segflg,
|
|
IO_UNIT, io->io_cred, NULL, io->io_proc);
|
|
if (error && (error != EFAULT || !isvnode)) {
|
|
struct process *pr = io->io_proc->p_p;
|
|
|
|
if (error == ENOSPC)
|
|
log(LOG_ERR,
|
|
"coredump of %s(%d) failed, filesystem full\n",
|
|
pr->ps_comm, pr->ps_pid);
|
|
else
|
|
log(LOG_ERR,
|
|
"coredump of %s(%d), write failed: errno %d\n",
|
|
pr->ps_comm, pr->ps_pid, error);
|
|
return (error);
|
|
}
|
|
|
|
coffset += chunk;
|
|
csize -= chunk;
|
|
} while (csize > 0);
|
|
|
|
io->io_offset += len;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
|
|
{
|
|
struct coredump_iostate *io = cookie;
|
|
|
|
uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
|
|
}
|
|
|
|
#endif /* !SMALL_KERNEL */
|
|
|
|
/*
|
|
* Nonexistent system call-- signal process (may want to handle it).
|
|
* Flag error in case process won't see signal immediately (blocked or ignored).
|
|
*/
|
|
int
|
|
sys_nosys(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
ptsignal(p, SIGSYS, STHREAD);
|
|
return (ENOSYS);
|
|
}
|
|
|
|
int
|
|
sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
|
|
{
|
|
struct sys___thrsigdivert_args /* {
|
|
syscallarg(sigset_t) sigmask;
|
|
syscallarg(siginfo_t *) info;
|
|
syscallarg(const struct timespec *) timeout;
|
|
} */ *uap = v;
|
|
struct sigctx ctx;
|
|
sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
|
|
siginfo_t si;
|
|
uint64_t nsecs = INFSLP;
|
|
int timeinvalid = 0;
|
|
int error = 0;
|
|
|
|
memset(&si, 0, sizeof(si));
|
|
|
|
if (SCARG(uap, timeout) != NULL) {
|
|
struct timespec ts;
|
|
if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
|
|
return (error);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_STRUCT))
|
|
ktrreltimespec(p, &ts);
|
|
#endif
|
|
if (!timespecisvalid(&ts))
|
|
timeinvalid = 1;
|
|
else
|
|
nsecs = TIMESPEC_TO_NSEC(&ts);
|
|
}
|
|
|
|
dosigsuspend(p, p->p_sigmask &~ mask);
|
|
for (;;) {
|
|
si.si_signo = cursig(p, &ctx);
|
|
if (si.si_signo != 0) {
|
|
sigset_t smask = sigmask(si.si_signo);
|
|
if (smask & mask) {
|
|
atomic_clearbits_int(&p->p_siglist, smask);
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* per-POSIX, delay this error until after the above */
|
|
if (timeinvalid)
|
|
error = EINVAL;
|
|
/* per-POSIX, return immediately if timeout is zero-valued */
|
|
if (nsecs == 0)
|
|
error = EAGAIN;
|
|
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigwait", nsecs);
|
|
}
|
|
|
|
if (error == 0) {
|
|
*retval = si.si_signo;
|
|
if (SCARG(uap, info) != NULL) {
|
|
error = copyout(&si, SCARG(uap, info), sizeof(si));
|
|
#ifdef KTRACE
|
|
if (error == 0 && KTRPOINT(p, KTR_STRUCT))
|
|
ktrsiginfo(p, &si);
|
|
#endif
|
|
}
|
|
} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
|
|
/*
|
|
* Restarting is wrong if there's a timeout, as it'll be
|
|
* for the same interval again
|
|
*/
|
|
error = EINTR;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
|
|
{
|
|
memset(si, 0, sizeof(*si));
|
|
|
|
si->si_signo = sig;
|
|
si->si_code = code;
|
|
if (code == SI_USER) {
|
|
si->si_value = val;
|
|
} else {
|
|
switch (sig) {
|
|
case SIGSEGV:
|
|
case SIGILL:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
si->si_addr = val.sival_ptr;
|
|
si->si_trapno = trapno;
|
|
break;
|
|
case SIGXFSZ:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
filt_sigattach(struct knote *kn)
|
|
{
|
|
struct process *pr = curproc->p_p;
|
|
int s;
|
|
|
|
if (kn->kn_id >= NSIG)
|
|
return EINVAL;
|
|
|
|
kn->kn_ptr.p_process = pr;
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
|
|
s = splhigh();
|
|
klist_insert_locked(&pr->ps_klist, kn);
|
|
splx(s);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
filt_sigdetach(struct knote *kn)
|
|
{
|
|
struct process *pr = kn->kn_ptr.p_process;
|
|
int s;
|
|
|
|
s = splhigh();
|
|
klist_remove_locked(&pr->ps_klist, kn);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* signal knotes are shared with proc knotes, so we apply a mask to
|
|
* the hint in order to differentiate them from process hints. This
|
|
* could be avoided by using a signal-specific knote list, but probably
|
|
* isn't worth the trouble.
|
|
*/
|
|
int
|
|
filt_signal(struct knote *kn, long hint)
|
|
{
|
|
|
|
if (hint & NOTE_SIGNAL) {
|
|
hint &= ~NOTE_SIGNAL;
|
|
|
|
if (kn->kn_id == hint)
|
|
kn->kn_data++;
|
|
}
|
|
return (kn->kn_data != 0);
|
|
}
|
|
|
|
void
|
|
userret(struct proc *p)
|
|
{
|
|
struct sigctx ctx;
|
|
int signum;
|
|
|
|
if (p->p_flag & P_SUSPSINGLE)
|
|
single_thread_check(p, 0);
|
|
|
|
/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
|
|
if (p->p_flag & P_PROFPEND) {
|
|
atomic_clearbits_int(&p->p_flag, P_PROFPEND);
|
|
KERNEL_LOCK();
|
|
psignal(p, SIGPROF);
|
|
KERNEL_UNLOCK();
|
|
}
|
|
if (p->p_flag & P_ALRMPEND) {
|
|
atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
|
|
KERNEL_LOCK();
|
|
psignal(p, SIGVTALRM);
|
|
KERNEL_UNLOCK();
|
|
}
|
|
|
|
if (SIGPENDING(p) != 0) {
|
|
while ((signum = cursig(p, &ctx)) != 0)
|
|
postsig(p, signum, &ctx);
|
|
}
|
|
|
|
/*
|
|
* If P_SIGSUSPEND is still set here, then we still need to restore
|
|
* the original sigmask before returning to userspace. Also, this
|
|
* might unmask some pending signals, so we need to check a second
|
|
* time for signals to post.
|
|
*/
|
|
if (p->p_flag & P_SIGSUSPEND) {
|
|
p->p_sigmask = p->p_oldmask;
|
|
atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
|
|
|
|
while ((signum = cursig(p, &ctx)) != 0)
|
|
postsig(p, signum, &ctx);
|
|
}
|
|
|
|
WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
|
|
|
|
p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
|
|
}
|
|
|
|
int
|
|
single_thread_check_locked(struct proc *p, int deep, int s)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
|
|
SCHED_ASSERT_LOCKED();
|
|
|
|
if (pr->ps_single == NULL || pr->ps_single == p)
|
|
return (0);
|
|
|
|
do {
|
|
/* if we're in deep, we need to unwind to the edge */
|
|
if (deep) {
|
|
if (pr->ps_flags & PS_SINGLEUNWIND)
|
|
return (ERESTART);
|
|
if (pr->ps_flags & PS_SINGLEEXIT)
|
|
return (EINTR);
|
|
}
|
|
|
|
if (atomic_dec_int_nv(&pr->ps_singlecount) == 0)
|
|
wakeup(&pr->ps_singlecount);
|
|
|
|
if (pr->ps_flags & PS_SINGLEEXIT) {
|
|
SCHED_UNLOCK(s);
|
|
KERNEL_LOCK();
|
|
exit1(p, 0, 0, EXIT_THREAD_NOCHECK);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/* not exiting and don't need to unwind, so suspend */
|
|
p->p_stat = SSTOP;
|
|
mi_switch();
|
|
} while (pr->ps_single != NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
single_thread_check(struct proc *p, int deep)
|
|
{
|
|
int s, error;
|
|
|
|
SCHED_LOCK(s);
|
|
error = single_thread_check_locked(p, deep, s);
|
|
SCHED_UNLOCK(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Stop other threads in the process. The mode controls how and
|
|
* where the other threads should stop:
|
|
* - SINGLE_SUSPEND: stop wherever they are, will later be released (via
|
|
* single_thread_clear())
|
|
* - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
|
|
* (by setting to SINGLE_EXIT) or released as with SINGLE_SUSPEND
|
|
* - SINGLE_EXIT: unwind to kernel boundary and exit
|
|
*/
|
|
int
|
|
single_thread_set(struct proc *p, int flags)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
struct proc *q;
|
|
int error, s, mode = flags & SINGLE_MASK;
|
|
|
|
KASSERT(curproc == p);
|
|
|
|
SCHED_LOCK(s);
|
|
error = single_thread_check_locked(p, flags & SINGLE_DEEP, s);
|
|
if (error) {
|
|
SCHED_UNLOCK(s);
|
|
return error;
|
|
}
|
|
|
|
switch (mode) {
|
|
case SINGLE_SUSPEND:
|
|
break;
|
|
case SINGLE_UNWIND:
|
|
atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
|
|
break;
|
|
case SINGLE_EXIT:
|
|
atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
|
|
atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
|
|
break;
|
|
#ifdef DIAGNOSTIC
|
|
default:
|
|
panic("single_thread_mode = %d", mode);
|
|
#endif
|
|
}
|
|
pr->ps_singlecount = 0;
|
|
membar_producer();
|
|
pr->ps_single = p;
|
|
TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
|
|
if (q == p)
|
|
continue;
|
|
if (q->p_flag & P_WEXIT) {
|
|
if (mode == SINGLE_EXIT) {
|
|
if (q->p_stat == SSTOP) {
|
|
unsleep(q);
|
|
setrunnable(q);
|
|
atomic_inc_int(&pr->ps_singlecount);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
|
|
switch (q->p_stat) {
|
|
case SIDL:
|
|
case SRUN:
|
|
atomic_inc_int(&pr->ps_singlecount);
|
|
break;
|
|
case SSLEEP:
|
|
/* if it's not interruptible, then just have to wait */
|
|
if (q->p_flag & P_SINTR) {
|
|
/* merely need to suspend? just stop it */
|
|
if (mode == SINGLE_SUSPEND) {
|
|
q->p_stat = SSTOP;
|
|
break;
|
|
}
|
|
/* need to unwind or exit, so wake it */
|
|
unsleep(q);
|
|
setrunnable(q);
|
|
}
|
|
atomic_inc_int(&pr->ps_singlecount);
|
|
break;
|
|
case SSTOP:
|
|
if (mode == SINGLE_EXIT) {
|
|
unsleep(q);
|
|
setrunnable(q);
|
|
atomic_inc_int(&pr->ps_singlecount);
|
|
}
|
|
break;
|
|
case SDEAD:
|
|
break;
|
|
case SONPROC:
|
|
atomic_inc_int(&pr->ps_singlecount);
|
|
signotify(q);
|
|
break;
|
|
}
|
|
}
|
|
SCHED_UNLOCK(s);
|
|
|
|
if ((flags & SINGLE_NOWAIT) == 0)
|
|
single_thread_wait(pr, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for other threads to stop. If recheck is false then the function
|
|
* returns non-zero if the caller needs to restart the check else 0 is
|
|
* returned. If recheck is true the return value is always 0.
|
|
*/
|
|
int
|
|
single_thread_wait(struct process *pr, int recheck)
|
|
{
|
|
int wait;
|
|
|
|
/* wait until they're all suspended */
|
|
wait = pr->ps_singlecount > 0;
|
|
while (wait) {
|
|
sleep_setup(&pr->ps_singlecount, PWAIT, "suspend");
|
|
wait = pr->ps_singlecount > 0;
|
|
sleep_finish(0, wait);
|
|
if (!recheck)
|
|
break;
|
|
}
|
|
|
|
return wait;
|
|
}
|
|
|
|
void
|
|
single_thread_clear(struct proc *p, int flag)
|
|
{
|
|
struct process *pr = p->p_p;
|
|
struct proc *q;
|
|
int s;
|
|
|
|
KASSERT(pr->ps_single == p);
|
|
KASSERT(curproc == p);
|
|
|
|
SCHED_LOCK(s);
|
|
pr->ps_single = NULL;
|
|
atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
|
|
TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
|
|
if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
|
|
continue;
|
|
atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
|
|
|
|
/*
|
|
* if the thread was only stopped for single threading
|
|
* then clearing that either makes it runnable or puts
|
|
* it back into some sleep queue
|
|
*/
|
|
if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
|
|
if (q->p_wchan == NULL)
|
|
setrunnable(q);
|
|
else {
|
|
atomic_clearbits_int(&q->p_flag, P_WSLEEP);
|
|
q->p_stat = SSLEEP;
|
|
}
|
|
}
|
|
}
|
|
SCHED_UNLOCK(s);
|
|
}
|
|
|
|
void
|
|
sigio_del(struct sigiolst *rmlist)
|
|
{
|
|
struct sigio *sigio;
|
|
|
|
while ((sigio = LIST_FIRST(rmlist)) != NULL) {
|
|
LIST_REMOVE(sigio, sio_pgsigio);
|
|
crfree(sigio->sio_ucred);
|
|
free(sigio, M_SIGIO, sizeof(*sigio));
|
|
}
|
|
}
|
|
|
|
void
|
|
sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist)
|
|
{
|
|
struct sigio *sigio;
|
|
|
|
MUTEX_ASSERT_LOCKED(&sigio_lock);
|
|
|
|
sigio = sir->sir_sigio;
|
|
if (sigio != NULL) {
|
|
KASSERT(sigio->sio_myref == sir);
|
|
sir->sir_sigio = NULL;
|
|
|
|
if (sigio->sio_pgid > 0)
|
|
sigio->sio_proc = NULL;
|
|
else
|
|
sigio->sio_pgrp = NULL;
|
|
LIST_REMOVE(sigio, sio_pgsigio);
|
|
|
|
LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio);
|
|
}
|
|
}
|
|
|
|
void
|
|
sigio_free(struct sigio_ref *sir)
|
|
{
|
|
struct sigiolst rmlist;
|
|
|
|
if (sir->sir_sigio == NULL)
|
|
return;
|
|
|
|
LIST_INIT(&rmlist);
|
|
|
|
mtx_enter(&sigio_lock);
|
|
sigio_unlink(sir, &rmlist);
|
|
mtx_leave(&sigio_lock);
|
|
|
|
sigio_del(&rmlist);
|
|
}
|
|
|
|
void
|
|
sigio_freelist(struct sigiolst *sigiolst)
|
|
{
|
|
struct sigiolst rmlist;
|
|
struct sigio *sigio;
|
|
|
|
if (LIST_EMPTY(sigiolst))
|
|
return;
|
|
|
|
LIST_INIT(&rmlist);
|
|
|
|
mtx_enter(&sigio_lock);
|
|
while ((sigio = LIST_FIRST(sigiolst)) != NULL)
|
|
sigio_unlink(sigio->sio_myref, &rmlist);
|
|
mtx_leave(&sigio_lock);
|
|
|
|
sigio_del(&rmlist);
|
|
}
|
|
|
|
int
|
|
sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data)
|
|
{
|
|
struct sigiolst rmlist;
|
|
struct proc *p = curproc;
|
|
struct pgrp *pgrp = NULL;
|
|
struct process *pr = NULL;
|
|
struct sigio *sigio;
|
|
int error;
|
|
pid_t pgid = *(int *)data;
|
|
|
|
if (pgid == 0) {
|
|
sigio_free(sir);
|
|
return (0);
|
|
}
|
|
|
|
if (cmd == TIOCSPGRP) {
|
|
if (pgid < 0)
|
|
return (EINVAL);
|
|
pgid = -pgid;
|
|
}
|
|
|
|
sigio = malloc(sizeof(*sigio), M_SIGIO, M_WAITOK);
|
|
sigio->sio_pgid = pgid;
|
|
sigio->sio_ucred = crhold(p->p_ucred);
|
|
sigio->sio_myref = sir;
|
|
|
|
LIST_INIT(&rmlist);
|
|
|
|
/*
|
|
* The kernel lock, and not sleeping between prfind()/pgfind() and
|
|
* linking of the sigio ensure that the process or process group does
|
|
* not disappear unexpectedly.
|
|
*/
|
|
KERNEL_LOCK();
|
|
mtx_enter(&sigio_lock);
|
|
|
|
if (pgid > 0) {
|
|
pr = prfind(pgid);
|
|
if (pr == NULL) {
|
|
error = ESRCH;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Policy - Don't allow a process to FSETOWN a process
|
|
* in another session.
|
|
*
|
|
* Remove this test to allow maximum flexibility or
|
|
* restrict FSETOWN to the current process or process
|
|
* group for maximum safety.
|
|
*/
|
|
if (pr->ps_session != p->p_p->ps_session) {
|
|
error = EPERM;
|
|
goto fail;
|
|
}
|
|
|
|
if ((pr->ps_flags & PS_EXITING) != 0) {
|
|
error = ESRCH;
|
|
goto fail;
|
|
}
|
|
} else /* if (pgid < 0) */ {
|
|
pgrp = pgfind(-pgid);
|
|
if (pgrp == NULL) {
|
|
error = ESRCH;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Policy - Don't allow a process to FSETOWN a process
|
|
* in another session.
|
|
*
|
|
* Remove this test to allow maximum flexibility or
|
|
* restrict FSETOWN to the current process or process
|
|
* group for maximum safety.
|
|
*/
|
|
if (pgrp->pg_session != p->p_p->ps_session) {
|
|
error = EPERM;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (pgid > 0) {
|
|
sigio->sio_proc = pr;
|
|
LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio);
|
|
} else {
|
|
sigio->sio_pgrp = pgrp;
|
|
LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
|
|
}
|
|
|
|
sigio_unlink(sir, &rmlist);
|
|
sir->sir_sigio = sigio;
|
|
|
|
mtx_leave(&sigio_lock);
|
|
KERNEL_UNLOCK();
|
|
|
|
sigio_del(&rmlist);
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
mtx_leave(&sigio_lock);
|
|
KERNEL_UNLOCK();
|
|
|
|
crfree(sigio->sio_ucred);
|
|
free(sigio, M_SIGIO, sizeof(*sigio));
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data)
|
|
{
|
|
struct sigio *sigio;
|
|
pid_t pgid = 0;
|
|
|
|
mtx_enter(&sigio_lock);
|
|
sigio = sir->sir_sigio;
|
|
if (sigio != NULL)
|
|
pgid = sigio->sio_pgid;
|
|
mtx_leave(&sigio_lock);
|
|
|
|
if (cmd == TIOCGPGRP)
|
|
pgid = -pgid;
|
|
|
|
*(int *)data = pgid;
|
|
}
|
|
|
|
void
|
|
sigio_copy(struct sigio_ref *dst, struct sigio_ref *src)
|
|
{
|
|
struct sigiolst rmlist;
|
|
struct sigio *newsigio, *sigio;
|
|
|
|
sigio_free(dst);
|
|
|
|
if (src->sir_sigio == NULL)
|
|
return;
|
|
|
|
newsigio = malloc(sizeof(*newsigio), M_SIGIO, M_WAITOK);
|
|
LIST_INIT(&rmlist);
|
|
|
|
mtx_enter(&sigio_lock);
|
|
|
|
sigio = src->sir_sigio;
|
|
if (sigio == NULL) {
|
|
mtx_leave(&sigio_lock);
|
|
free(newsigio, M_SIGIO, sizeof(*newsigio));
|
|
return;
|
|
}
|
|
|
|
newsigio->sio_pgid = sigio->sio_pgid;
|
|
newsigio->sio_ucred = crhold(sigio->sio_ucred);
|
|
newsigio->sio_myref = dst;
|
|
if (newsigio->sio_pgid > 0) {
|
|
newsigio->sio_proc = sigio->sio_proc;
|
|
LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,
|
|
sio_pgsigio);
|
|
} else {
|
|
newsigio->sio_pgrp = sigio->sio_pgrp;
|
|
LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,
|
|
sio_pgsigio);
|
|
}
|
|
|
|
sigio_unlink(dst, &rmlist);
|
|
dst->sir_sigio = newsigio;
|
|
|
|
mtx_leave(&sigio_lock);
|
|
|
|
sigio_del(&rmlist);
|
|
}
|