src/sys/dev/pci/viapm.c

781 lines
24 KiB
C

/* $OpenBSD: viapm.c,v 1.22 2023/02/04 19:19:37 cheloha Exp $ */
/*
* Copyright (c) 2005 Mark Kettenis <kettenis@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* $NetBSD: viaenv.c,v 1.9 2002/10/02 16:51:59 thorpej Exp $ */
/*
* Copyright (c) 2000 Johan Danielsson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of author nor the names of any contributors may
* be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for the SMBus controller and power management timer
* in the VIA VT82C596[B], VT82C686A, VT8231, VT8233[A], VT8235, VT8237[A,S],
* VT8251, CX700, VX800, VX855 and VX900 South Bridges.
* Also for the hardware monitoring part of the VIA VT82C686A and VT8231.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/rwlock.h>
#include <sys/sensors.h>
#include <sys/timeout.h>
#include <sys/timetc.h>
#include <machine/bus.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/i2c/i2cvar.h>
/*
* Register definitions.
*/
/* PCI configuration registers */
#define VIAPM_PM_CFG1 0x40 /* general configuration */
#define VIAPM_PM_CFG2 0x80
#define VIAPM_PM_CFG_TMR32 (1 << 11) /* 32-bit PM timer */
#define VIAPM_PM_CFG_PMEN (1 << 15) /* enable PM I/O space */
#define VIAPM_PM_BASE1 0x48 /* power management I/O base address */
#define VIAPM_PM_BASE2 0x88
#define VIAPM_PM_BASE_MASK 0xff80
#define VIAPM_HWMON_BASE 0x70 /* HWMon I/O base address */
#define VIAPM_HWMON_BASE_MASK 0xff80
#define VIAPM_HWMON_CFG 0x74 /* HWMon control register */
#define VIAPM_HWMON_CFG_HWEN (1 << 0) /* enable HWMon I/O space */
#define VIAPM_SMB_BASE1 0x90 /* SMBus I/O base address */
#define VIAPM_SMB_BASE2 0x80
#define VIAPM_SMB_BASE3 0xd0
#define VIAPM_SMB_BASE_MASK 0xfff0
#define VIAPM_SMB_CFG1 0xd2 /* host configuration */
#define VIAPM_SMB_CFG2 0x84
#define VIAPM_SMB_CFG_HSTEN (1 << 0) /* enable SMBus I/O space */
#define VIAPM_SMB_CFG_INTEN (1 << 1) /* enable SCI/SMI */
#define VIAPM_SMB_CFG_SCIEN (1 << 3) /* interrupt type (SCI/SMI) */
#define VIAPM_PM_SIZE 256 /* Power management I/O space size */
#define VIAPM_HWMON_SIZE 128 /* HWMon I/O space size */
#define VIAPM_SMB_SIZE 16 /* SMBus I/O space size */
/* HWMon I/O registers */
#define VIAPM_HWMON_TSENS3 0x1f
#define VIAPM_HWMON_TSENS1 0x20
#define VIAPM_HWMON_TSENS2 0x21
#define VIAPM_HWMON_VSENS1 0x22
#define VIAPM_HWMON_VSENS2 0x23
#define VIAPM_HWMON_VCORE 0x24
#define VIAPM_HWMON_VSENS3 0x25
#define VIAPM_HWMON_VSENS4 0x26
#define VIAPM_HWMON_FAN1 0x29
#define VIAPM_HWMON_FAN2 0x2a
#define VIAPM_HWMON_FANCONF 0x47 /* fan configuration */
#define VIAPM_HWMON_TLOW 0x49 /* temperature low order value */
#define VIAPM_HWMON_TIRQ 0x4b /* temperature interrupt configuration */
/* ACPI I/O registers */
#define VIAPM_PM_TMR 0x08 /* PM timer */
/* SMBus I/O registers */
#define VIAPM_SMB_HS 0x00 /* host status */
#define VIAPM_SMB_HS_BUSY (1 << 0) /* running a command */
#define VIAPM_SMB_HS_INTR (1 << 1) /* command completed */
#define VIAPM_SMB_HS_DEVERR (1 << 2) /* command error */
#define VIAPM_SMB_HS_BUSERR (1 << 3) /* transaction collision */
#define VIAPM_SMB_HS_FAILED (1 << 4) /* failed bus transaction */
#define VIAPM_SMB_HS_INUSE (1 << 6) /* bus semaphore */
#define VIAPM_SMB_HS_BITS \
"\020\001BUSY\002INTR\003DEVERR\004BUSERR\005FAILED\007INUSE"
#define VIAPM_SMB_HC 0x02 /* host control */
#define VIAPM_SMB_HC_INTREN (1 << 0) /* enable interrupts */
#define VIAPM_SMB_HC_KILL (1 << 1) /* kill current transaction */
#define VIAPM_SMB_HC_CMD_QUICK (0 << 2) /* QUICK command */
#define VIAPM_SMB_HC_CMD_BYTE (1 << 2) /* BYTE command */
#define VIAPM_SMB_HC_CMD_BDATA (2 << 2) /* BYTE DATA command */
#define VIAPM_SMB_HC_CMD_WDATA (3 << 2) /* WORD DATA command */
#define VIAPM_SMB_HC_CMD_PCALL (4 << 2) /* PROCESS CALL command */
#define VIAPM_SMB_HC_CMD_BLOCK (5 << 2) /* BLOCK command */
#define VIAPM_SMB_HC_START (1 << 6) /* start transaction */
#define VIAPM_SMB_HCMD 0x03 /* host command */
#define VIAPM_SMB_TXSLVA 0x04 /* transmit slave address */
#define VIAPM_SMB_TXSLVA_READ (1 << 0) /* read direction */
#define VIAPM_SMB_TXSLVA_ADDR(x) (((x) & 0x7f) << 1) /* 7-bit address */
#define VIAPM_SMB_HD0 0x05 /* host data 0 */
#define VIAPM_SMB_HD1 0x06 /* host data 1 */
#define VIAPM_SMB_HBDB 0x07 /* host block data byte */
#ifdef VIAPM_DEBUG
#define DPRINTF(x...) printf(x)
#else
#define DPRINTF(x...)
#endif
#define DEVNAME(sc) ((sc)->sc_dev.dv_xname)
#define VIAPM_SMBUS_DELAY 100
#define VIAPM_SMBUS_TIMEOUT 1
#define VIAPM_NUM_SENSORS 10 /* three temp, two fan, five voltage */
u_int viapm_get_timecount(struct timecounter *tc);
#ifndef VIAPM_FREQUENCY
#define VIAPM_FREQUENCY 3579545
#endif
static struct timecounter viapm_timecounter = {
.tc_get_timecount = viapm_get_timecount,
.tc_counter_mask = 0xffffff,
.tc_frequency = VIAPM_FREQUENCY,
.tc_name = "VIAPM",
.tc_quality = 1000,
.tc_priv = NULL,
.tc_user = 0,
};
struct timeout viapm_timeout;
struct viapm_softc {
struct device sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_pm_ioh;
bus_space_handle_t sc_smbus_ioh;
bus_space_handle_t sc_hwmon_ioh;
void * sc_ih;
int sc_poll;
int sc_fan_div[2]; /* fan RPM divisor */
struct ksensor sc_data[VIAPM_NUM_SENSORS];
struct ksensordev sc_sensordev;
struct i2c_controller sc_i2c_tag;
struct rwlock sc_i2c_lock;
struct {
i2c_op_t op;
void * buf;
size_t len;
int flags;
volatile int error;
} sc_i2c_xfer;
};
int viapm_match(struct device *, void *, void *);
void viapm_attach(struct device *, struct device *, void *);
int viapm_i2c_acquire_bus(void *, int);
void viapm_i2c_release_bus(void *, int);
int viapm_i2c_exec(void *, i2c_op_t, i2c_addr_t, const void *, size_t,
void *, size_t, int);
int viapm_intr(void *);
int val_to_uK(unsigned int);
int val_to_rpm(unsigned int, int);
long val_to_uV(unsigned int, int);
void viapm_refresh_sensor_data(struct viapm_softc *);
void viapm_refresh(void *);
const struct cfattach viapm_ca = {
sizeof(struct viapm_softc), viapm_match, viapm_attach
};
struct cfdriver viapm_cd = {
NULL, "viapm", DV_DULL
};
const struct pci_matchid viapm_ids[] = {
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT82C596 },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT82C596B_PM },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT82C686A_SMB },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8231_PWR },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8233_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8233A_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8235_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8237_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8237A_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8237S_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT8251_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_CX700_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VX800_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VX855_ISA },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VX900_ISA }
};
/*
* XXX there doesn't seem to exist much hard documentation on how to
* convert the raw values to usable units, this code is more or less
* stolen from the Linux driver, but changed to suit our conditions
*/
/*
* lookup-table to translate raw values to uK, this is the same table
* used by the Linux driver (modulo units); there is a fifth degree
* polynomial that supposedly been used to generate this table, but I
* haven't been able to figure out how -- it doesn't give the same values
*/
static const long val_to_temp[] = {
20225, 20435, 20645, 20855, 21045, 21245, 21425, 21615, 21785, 21955,
22125, 22285, 22445, 22605, 22755, 22895, 23035, 23175, 23315, 23445,
23565, 23695, 23815, 23925, 24045, 24155, 24265, 24365, 24465, 24565,
24665, 24765, 24855, 24945, 25025, 25115, 25195, 25275, 25355, 25435,
25515, 25585, 25655, 25725, 25795, 25865, 25925, 25995, 26055, 26115,
26175, 26235, 26295, 26355, 26405, 26465, 26515, 26575, 26625, 26675,
26725, 26775, 26825, 26875, 26925, 26975, 27025, 27065, 27115, 27165,
27205, 27255, 27295, 27345, 27385, 27435, 27475, 27515, 27565, 27605,
27645, 27685, 27735, 27775, 27815, 27855, 27905, 27945, 27985, 28025,
28065, 28105, 28155, 28195, 28235, 28275, 28315, 28355, 28405, 28445,
28485, 28525, 28565, 28615, 28655, 28695, 28735, 28775, 28825, 28865,
28905, 28945, 28995, 29035, 29075, 29125, 29165, 29205, 29245, 29295,
29335, 29375, 29425, 29465, 29505, 29555, 29595, 29635, 29685, 29725,
29765, 29815, 29855, 29905, 29945, 29985, 30035, 30075, 30125, 30165,
30215, 30255, 30305, 30345, 30385, 30435, 30475, 30525, 30565, 30615,
30655, 30705, 30755, 30795, 30845, 30885, 30935, 30975, 31025, 31075,
31115, 31165, 31215, 31265, 31305, 31355, 31405, 31455, 31505, 31545,
31595, 31645, 31695, 31745, 31805, 31855, 31905, 31955, 32005, 32065,
32115, 32175, 32225, 32285, 32335, 32395, 32455, 32515, 32575, 32635,
32695, 32755, 32825, 32885, 32955, 33025, 33095, 33155, 33235, 33305,
33375, 33455, 33525, 33605, 33685, 33765, 33855, 33935, 34025, 34115,
34205, 34295, 34395, 34495, 34595, 34695, 34805, 34905, 35015, 35135,
35245, 35365, 35495, 35615, 35745, 35875, 36015, 36145, 36295, 36435,
36585, 36745, 36895, 37065, 37225, 37395, 37575, 37755, 37935, 38125,
38325, 38525, 38725, 38935, 39155, 39375, 39605, 39835, 40075, 40325,
40575, 40835, 41095, 41375, 41655, 41935,
};
int
viapm_match(struct device *parent, void *match, void *aux)
{
return (pci_matchbyid(aux, viapm_ids, nitems(viapm_ids)));
}
void
viapm_attach(struct device *parent, struct device *self, void *aux)
{
struct viapm_softc *sc = (struct viapm_softc *)self;
struct pci_attach_args *pa = aux;
struct i2cbus_attach_args iba;
pcireg_t conf, iobase;
pci_intr_handle_t ih;
const char *intrstr = NULL;
int basereg, cfgreg;
int i, v;
sc->sc_iot = pa->pa_iot;
/* SMBus */
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_VIATECH_VT82C596:
case PCI_PRODUCT_VIATECH_VT82C596B_PM:
case PCI_PRODUCT_VIATECH_VT82C686A_SMB:
case PCI_PRODUCT_VIATECH_VT8231_PWR:
basereg = VIAPM_SMB_BASE1;
break;
default:
basereg = VIAPM_SMB_BASE3;
}
cfgreg = (VIAPM_SMB_CFG1 & (~0x03)); /* XXX 4-byte aligned */
/* Check 2nd address for VT82C596 */
iobase = pci_conf_read(pa->pa_pc, pa->pa_tag, basereg);
if ((PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT82C596) &&
((iobase & 0x0001) == 0)) {
iobase = pci_conf_read(pa->pa_pc, pa->pa_tag, VIAPM_SMB_BASE2);
cfgreg = VIAPM_SMB_CFG2;
}
/* Check if SMBus I/O space is enabled */
conf = pci_conf_read(pa->pa_pc, pa->pa_tag, cfgreg);
if (cfgreg != VIAPM_SMB_CFG2)
conf >>= 16;
DPRINTF(": conf 0x%02x", conf & 0xff);
if ((conf & VIAPM_SMB_CFG_HSTEN) == 0) {
printf(": SMBus disabled\n");
goto nosmb;
}
/* Map SMBus I/O space */
iobase &= VIAPM_SMB_BASE_MASK;
if (iobase == 0 || bus_space_map(sc->sc_iot, iobase,
VIAPM_SMB_SIZE, 0, &sc->sc_smbus_ioh)) {
printf(": can't map SMBus i/o space\n");
goto nosmb;
}
sc->sc_poll = 1;
if ((conf & VIAPM_SMB_CFG_SCIEN) == 0) {
/* No PCI IRQ */
printf(": SMI");
} else {
/* Install interrupt handler */
if (pci_intr_map(pa, &ih) == 0) {
intrstr = pci_intr_string(pa->pa_pc, ih);
sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO,
viapm_intr, sc, DEVNAME(sc));
if (sc->sc_ih != NULL) {
printf(": %s", intrstr);
sc->sc_poll = 0;
}
}
if (sc->sc_poll)
printf(": polling");
}
printf("\n");
/* Attach I2C bus */
rw_init(&sc->sc_i2c_lock, "iiclk");
sc->sc_i2c_tag.ic_cookie = sc;
sc->sc_i2c_tag.ic_acquire_bus = viapm_i2c_acquire_bus;
sc->sc_i2c_tag.ic_release_bus = viapm_i2c_release_bus;
sc->sc_i2c_tag.ic_exec = viapm_i2c_exec;
bzero(&iba, sizeof iba);
iba.iba_name = "iic";
iba.iba_tag = &sc->sc_i2c_tag;
config_found(self, &iba, iicbus_print);
nosmb:
/* Power management */
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_VIATECH_VT82C596:
case PCI_PRODUCT_VIATECH_VT82C596B_PM:
case PCI_PRODUCT_VIATECH_VT82C686A_SMB:
case PCI_PRODUCT_VIATECH_VT8231_PWR:
basereg = VIAPM_PM_BASE1;
cfgreg = VIAPM_PM_CFG1;
break;
default:
basereg = VIAPM_PM_BASE2;
cfgreg = VIAPM_PM_CFG2;
}
/* Check if power management I/O space is enabled */
conf = pci_conf_read(pa->pa_pc, pa->pa_tag, cfgreg);
if ((conf & VIAPM_PM_CFG_PMEN) == 0) {
printf("%s: PM disabled\n", DEVNAME(sc));
goto nopm;
}
/* Map power management I/O space */
iobase = pci_conf_read(pa->pa_pc, pa->pa_tag, basereg);
iobase &= VIAPM_PM_BASE_MASK;
if (iobase == 0 || bus_space_map(sc->sc_iot, iobase,
VIAPM_PM_SIZE, 0, &sc->sc_pm_ioh)) {
/* XXX can't map PM i/o space if ACPI mode */
DPRINTF("%s: can't map PM i/o space\n", DEVNAME(sc));
goto nopm;
}
/* Check for 32-bit PM timer */
if (conf & VIAPM_PM_CFG_TMR32)
viapm_timecounter.tc_counter_mask = 0xffffffff;
/* Register new timecounter */
viapm_timecounter.tc_priv = sc;
tc_init(&viapm_timecounter);
printf("%s: %s-bit timer at %lluHz\n", DEVNAME(sc),
(viapm_timecounter.tc_counter_mask == 0xffffffff ? "32" : "24"),
(unsigned long long)viapm_timecounter.tc_frequency);
nopm:
/* HWMon */
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_VIATECH_VT82C686A_SMB:
case PCI_PRODUCT_VIATECH_VT8231_PWR:
break;
default:
return;
}
/* Check if HWMon I/O space is enabled */
conf = pci_conf_read(pa->pa_pc, pa->pa_tag, VIAPM_HWMON_CFG);
if ((conf & VIAPM_HWMON_CFG_HWEN) == 0) {
printf("%s: HWM disabled\n", DEVNAME(sc));
return;
}
/* Map HWMon I/O space */
iobase = pci_conf_read(pa->pa_pc, pa->pa_tag, VIAPM_HWMON_BASE);
iobase &= VIAPM_HWMON_BASE_MASK;
if (iobase == 0 || bus_space_map(sc->sc_iot, iobase,
VIAPM_HWMON_SIZE, 0, &sc->sc_hwmon_ioh)) {
printf("%s: can't map HWM i/o space\n", DEVNAME(sc));
return;
}
v = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh, VIAPM_HWMON_FANCONF);
sc->sc_fan_div[0] = 1 << ((v >> 4) & 0x3);
sc->sc_fan_div[1] = 1 << ((v >> 6) & 0x3);
for (i = 0; i <= 2; i++)
sc->sc_data[i].type = SENSOR_TEMP;
for (i = 3; i <= 4; i++)
sc->sc_data[i].type = SENSOR_FANRPM;
for (i = 5; i <= 9; ++i)
sc->sc_data[i].type = SENSOR_VOLTS_DC;
strlcpy(sc->sc_data[5].desc, "VSENS1",
sizeof(sc->sc_data[5].desc)); /* CPU core (2V) */
strlcpy(sc->sc_data[6].desc, "VSENS2",
sizeof(sc->sc_data[6].desc)); /* NB core? (2.5V) */
strlcpy(sc->sc_data[7].desc, "Vcore",
sizeof(sc->sc_data[7].desc)); /* Vcore (3.3V) */
strlcpy(sc->sc_data[8].desc, "VSENS3",
sizeof(sc->sc_data[8].desc)); /* VSENS3 (5V) */
strlcpy(sc->sc_data[9].desc, "VSENS4",
sizeof(sc->sc_data[9].desc)); /* VSENS4 (12V) */
/* Get initial set of sensor values. */
viapm_refresh_sensor_data(sc);
/* Register sensors with sysctl */
strlcpy(sc->sc_sensordev.xname, DEVNAME(sc),
sizeof(sc->sc_sensordev.xname));
for (i = 0; i < VIAPM_NUM_SENSORS; ++i)
sensor_attach(&sc->sc_sensordev, &sc->sc_data[i]);
sensordev_install(&sc->sc_sensordev);
/* Refresh sensors data every 1.5 seconds */
timeout_set(&viapm_timeout, viapm_refresh, sc);
timeout_add_msec(&viapm_timeout, 1500);
}
int
viapm_i2c_acquire_bus(void *cookie, int flags)
{
struct viapm_softc *sc = cookie;
if (cold || sc->sc_poll || (flags & I2C_F_POLL))
return (0);
return (rw_enter(&sc->sc_i2c_lock, RW_WRITE | RW_INTR));
}
void
viapm_i2c_release_bus(void *cookie, int flags)
{
struct viapm_softc *sc = cookie;
if (cold || sc->sc_poll || (flags & I2C_F_POLL))
return;
rw_exit(&sc->sc_i2c_lock);
}
int
viapm_i2c_exec(void *cookie, i2c_op_t op, i2c_addr_t addr,
const void *cmdbuf, size_t cmdlen, void *buf, size_t len, int flags)
{
struct viapm_softc *sc = cookie;
u_int8_t *b;
u_int8_t ctl, st;
int retries;
/* Check if there's a transfer already running */
st = bus_space_read_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_HS);
DPRINTF("%s: exec op %d, addr 0x%x, cmdlen %d, len %d, "
"flags 0x%x, status 0x%b\n", DEVNAME(sc), op, addr,
cmdlen, len, flags, st, VIAPM_SMB_HS_BITS);
if (st & VIAPM_SMB_HS_BUSY)
return (1);
if (cold || sc->sc_poll)
flags |= I2C_F_POLL;
if (!I2C_OP_STOP_P(op) || cmdlen > 1 || len > 2)
return (1);
/* Setup transfer */
sc->sc_i2c_xfer.op = op;
sc->sc_i2c_xfer.buf = buf;
sc->sc_i2c_xfer.len = len;
sc->sc_i2c_xfer.flags = flags;
sc->sc_i2c_xfer.error = 0;
/* Set slave address and transfer direction */
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_TXSLVA,
VIAPM_SMB_TXSLVA_ADDR(addr) |
(I2C_OP_READ_P(op) ? VIAPM_SMB_TXSLVA_READ : 0));
b = (void *)cmdbuf;
if (cmdlen > 0)
/* Set command byte */
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh,
VIAPM_SMB_HCMD, b[0]);
if (I2C_OP_WRITE_P(op)) {
/* Write data */
b = buf;
if (len > 0)
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh,
VIAPM_SMB_HD0, b[0]);
if (len > 1)
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh,
VIAPM_SMB_HD1, b[1]);
}
/* Set SMBus command */
if (len == 0)
ctl = VIAPM_SMB_HC_CMD_BYTE;
else if (len == 1)
ctl = VIAPM_SMB_HC_CMD_BDATA;
else if (len == 2)
ctl = VIAPM_SMB_HC_CMD_WDATA;
else
panic("%s: unexpected len %zd", __func__, len);
if ((flags & I2C_F_POLL) == 0)
ctl |= VIAPM_SMB_HC_INTREN;
/* Start transaction */
ctl |= VIAPM_SMB_HC_START;
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_HC, ctl);
if (flags & I2C_F_POLL) {
/* Poll for completion */
DELAY(VIAPM_SMBUS_DELAY);
for (retries = 1000; retries > 0; retries--) {
st = bus_space_read_1(sc->sc_iot, sc->sc_smbus_ioh,
VIAPM_SMB_HS);
if ((st & VIAPM_SMB_HS_BUSY) == 0)
break;
DELAY(VIAPM_SMBUS_DELAY);
}
if (st & VIAPM_SMB_HS_BUSY)
goto timeout;
viapm_intr(sc);
} else {
/* Wait for interrupt */
if (tsleep_nsec(sc, PRIBIO, "iicexec",
SEC_TO_NSEC(VIAPM_SMBUS_TIMEOUT)))
goto timeout;
}
if (sc->sc_i2c_xfer.error)
return (1);
return (0);
timeout:
/*
* Transfer timeout. Kill the transaction and clear status bits.
*/
printf("%s: timeout, status 0x%b\n", DEVNAME(sc), st,
VIAPM_SMB_HS_BITS);
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_HC,
VIAPM_SMB_HC_KILL);
DELAY(VIAPM_SMBUS_DELAY);
st = bus_space_read_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_HS);
if ((st & VIAPM_SMB_HS_FAILED) == 0)
printf("%s: transaction abort failed, status 0x%b\n",
DEVNAME(sc), st, VIAPM_SMB_HS_BITS);
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_HS, st);
return (1);
}
int
viapm_intr(void *arg)
{
struct viapm_softc *sc = arg;
u_int8_t st;
u_int8_t *b;
size_t len;
/* Read status */
st = bus_space_read_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_HS);
if ((st & VIAPM_SMB_HS_BUSY) != 0 || (st & (VIAPM_SMB_HS_INTR |
VIAPM_SMB_HS_DEVERR | VIAPM_SMB_HS_BUSERR |
VIAPM_SMB_HS_FAILED)) == 0)
/* Interrupt was not for us */
return (0);
DPRINTF("%s: intr st 0x%b\n", DEVNAME(sc), st, VIAPM_SMB_HS_BITS);
/* Clear status bits */
bus_space_write_1(sc->sc_iot, sc->sc_smbus_ioh, VIAPM_SMB_HS, st);
/* Check for errors */
if (st & (VIAPM_SMB_HS_DEVERR | VIAPM_SMB_HS_BUSERR |
VIAPM_SMB_HS_FAILED)) {
sc->sc_i2c_xfer.error = 1;
goto done;
}
if (st & VIAPM_SMB_HS_INTR) {
if (I2C_OP_WRITE_P(sc->sc_i2c_xfer.op))
goto done;
/* Read data */
b = sc->sc_i2c_xfer.buf;
len = sc->sc_i2c_xfer.len;
if (len > 0)
b[0] = bus_space_read_1(sc->sc_iot, sc->sc_smbus_ioh,
VIAPM_SMB_HD0);
if (len > 1)
b[1] = bus_space_read_1(sc->sc_iot, sc->sc_smbus_ioh,
VIAPM_SMB_HD1);
}
done:
if ((sc->sc_i2c_xfer.flags & I2C_F_POLL) == 0)
wakeup(sc);
return (1);
}
int
val_to_uK(unsigned int val)
{
int i = val / 4;
int j = val % 4;
KASSERT(i >= 0 && i <= 255);
if (j == 0 || i == 255)
return val_to_temp[i] * 10000;
/* is linear interpolation ok? */
return (val_to_temp[i] * (4 - j) +
val_to_temp[i + 1] * j) * 2500 /* really: / 4 * 10000 */ ;
}
int
val_to_rpm(unsigned int val, int div)
{
if (val == 0)
return 0;
return 1350000 / val / div;
}
long
val_to_uV(unsigned int val, int index)
{
static const long mult[] =
{1250000, 1250000, 1670000, 2600000, 6300000};
KASSERT(index >= 0 && index <= 4);
return (25LL * val + 133) * mult[index] / 2628;
}
void
viapm_refresh_sensor_data(struct viapm_softc *sc)
{
int i;
u_int8_t v, v2;
/* temperature */
v = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh, VIAPM_HWMON_TIRQ);
v2 = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh, VIAPM_HWMON_TSENS1);
DPRINTF("%s: TSENS1 = %d\n", DEVNAME(sc), (v2 << 2) | (v >> 6));
sc->sc_data[0].value = val_to_uK((v2 << 2) | (v >> 6));
v = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh, VIAPM_HWMON_TLOW);
v2 = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh, VIAPM_HWMON_TSENS2);
DPRINTF("%s: TSENS2 = %d\n", DEVNAME(sc), (v2 << 2) | ((v >> 4) & 0x3));
sc->sc_data[1].value = val_to_uK((v2 << 2) | ((v >> 4) & 0x3));
v2 = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh, VIAPM_HWMON_TSENS3);
DPRINTF("%s: TSENS3 = %d\n", DEVNAME(sc), (v2 << 2) | (v >> 6));
sc->sc_data[2].value = val_to_uK((v2 << 2) | (v >> 6));
/* fan */
for (i = 3; i <= 4; i++) {
v = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh,
VIAPM_HWMON_FAN1 + i - 3);
DPRINTF("%s: FAN%d = %d / %d\n", DEVNAME(sc), i - 3, v,
sc->sc_fan_div[i - 3]);
sc->sc_data[i].value = val_to_rpm(v, sc->sc_fan_div[i - 3]);
}
/* voltage */
for (i = 5; i <= 9; i++) {
v = bus_space_read_1(sc->sc_iot, sc->sc_hwmon_ioh,
VIAPM_HWMON_VSENS1 + i - 5);
DPRINTF("%s: V%d = %d\n", DEVNAME(sc), i - 5, v);
sc->sc_data[i].value = val_to_uV(v, i - 5);
}
}
void
viapm_refresh(void *arg)
{
struct viapm_softc *sc = (struct viapm_softc *)arg;
viapm_refresh_sensor_data(sc);
timeout_add_msec(&viapm_timeout, 1500);
}
u_int
viapm_get_timecount(struct timecounter *tc)
{
struct viapm_softc *sc = tc->tc_priv;
u_int u1, u2, u3;
u2 = bus_space_read_4(sc->sc_iot, sc->sc_pm_ioh, VIAPM_PM_TMR);
u3 = bus_space_read_4(sc->sc_iot, sc->sc_pm_ioh, VIAPM_PM_TMR);
do {
u1 = u2;
u2 = u3;
u3 = bus_space_read_4(sc->sc_iot, sc->sc_pm_ioh, VIAPM_PM_TMR);
} while (u1 > u2 || u2 > u3);
return (u2);
}