1626 lines
39 KiB
C
1626 lines
39 KiB
C
/* $OpenBSD: if_stge.c,v 1.73 2023/11/10 15:51:24 bluhm Exp $ */
|
|
/* $NetBSD: if_stge.c,v 1.27 2005/05/16 21:35:32 bouyer Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Sundance Tech. TC9021 10/100/1000
|
|
* Ethernet controller.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
#include "vlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/timeout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <net/if_media.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_stgereg.h>
|
|
|
|
void stge_start(struct ifnet *);
|
|
void stge_watchdog(struct ifnet *);
|
|
int stge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
int stge_init(struct ifnet *);
|
|
void stge_stop(struct ifnet *, int);
|
|
|
|
void stge_reset(struct stge_softc *);
|
|
void stge_rxdrain(struct stge_softc *);
|
|
int stge_add_rxbuf(struct stge_softc *, int);
|
|
void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
|
|
void stge_tick(void *);
|
|
|
|
void stge_stats_update(struct stge_softc *);
|
|
|
|
void stge_iff(struct stge_softc *);
|
|
|
|
int stge_intr(void *);
|
|
void stge_txintr(struct stge_softc *);
|
|
void stge_rxintr(struct stge_softc *);
|
|
|
|
int stge_mii_readreg(struct device *, int, int);
|
|
void stge_mii_writereg(struct device *, int, int, int);
|
|
void stge_mii_statchg(struct device *);
|
|
|
|
int stge_mediachange(struct ifnet *);
|
|
void stge_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
int stge_match(struct device *, void *, void *);
|
|
void stge_attach(struct device *, struct device *, void *);
|
|
|
|
int stge_copy_small = 0;
|
|
|
|
const struct cfattach stge_ca = {
|
|
sizeof(struct stge_softc), stge_match, stge_attach,
|
|
};
|
|
|
|
struct cfdriver stge_cd = {
|
|
NULL, "stge", DV_IFNET
|
|
};
|
|
|
|
uint32_t stge_mii_bitbang_read(struct device *);
|
|
void stge_mii_bitbang_write(struct device *, uint32_t);
|
|
|
|
const struct mii_bitbang_ops stge_mii_bitbang_ops = {
|
|
stge_mii_bitbang_read,
|
|
stge_mii_bitbang_write,
|
|
{
|
|
PC_MgmtData, /* MII_BIT_MDO */
|
|
PC_MgmtData, /* MII_BIT_MDI */
|
|
PC_MgmtClk, /* MII_BIT_MDC */
|
|
PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
|
|
0, /* MII_BIT_DIR_PHY_HOST */
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
const struct pci_matchid stge_devices[] = {
|
|
{ PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021 },
|
|
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T },
|
|
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST1023 },
|
|
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST2021 },
|
|
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021 },
|
|
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021_ALT },
|
|
{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021 },
|
|
{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT }
|
|
};
|
|
|
|
int
|
|
stge_match(struct device *parent, void *match, void *aux)
|
|
{
|
|
return (pci_matchbyid((struct pci_attach_args *)aux, stge_devices,
|
|
sizeof(stge_devices) / sizeof(stge_devices[0])));
|
|
}
|
|
|
|
void
|
|
stge_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct stge_softc *sc = (struct stge_softc *) self;
|
|
struct pci_attach_args *pa = aux;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr = NULL;
|
|
bus_space_tag_t iot, memt;
|
|
bus_space_handle_t ioh, memh;
|
|
bus_dma_segment_t seg;
|
|
bus_size_t iosize;
|
|
int ioh_valid, memh_valid;
|
|
int i, rseg, error;
|
|
|
|
timeout_set(&sc->sc_timeout, stge_tick, sc);
|
|
|
|
sc->sc_rev = PCI_REVISION(pa->pa_class);
|
|
|
|
/*
|
|
* Map the device.
|
|
*/
|
|
ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
|
|
PCI_MAPREG_TYPE_IO, 0,
|
|
&iot, &ioh, NULL, &iosize, 0) == 0);
|
|
memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
|
|
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
|
|
&memt, &memh, NULL, &iosize, 0) == 0);
|
|
|
|
if (memh_valid) {
|
|
sc->sc_st = memt;
|
|
sc->sc_sh = memh;
|
|
} else if (ioh_valid) {
|
|
sc->sc_st = iot;
|
|
sc->sc_sh = ioh;
|
|
} else {
|
|
printf(": unable to map device registers\n");
|
|
return;
|
|
}
|
|
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
/* Get it out of power save mode if needed. */
|
|
pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
|
|
|
|
/*
|
|
* Map and establish our interrupt.
|
|
*/
|
|
if (pci_intr_map(pa, &ih)) {
|
|
printf(": unable to map interrupt\n");
|
|
goto fail_0;
|
|
}
|
|
intrstr = pci_intr_string(pc, ih);
|
|
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc,
|
|
sc->sc_dev.dv_xname);
|
|
if (sc->sc_ih == NULL) {
|
|
printf(": unable to establish interrupt");
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
goto fail_0;
|
|
}
|
|
printf(": %s", intrstr);
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
0)) != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct stge_control_data), 1,
|
|
sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct stge_control_data), NULL,
|
|
0)) != 0) {
|
|
printf("%s: unable to load control data DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps. Note that rev B.3
|
|
* and earlier seem to have a bug regarding multi-fragment
|
|
* packets. We need to limit the number of Tx segments on
|
|
* such chips to 1.
|
|
*/
|
|
for (i = 0; i < STGE_NTXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
STGE_JUMBO_FRAMELEN, STGE_NTXFRAGS, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].ds_dmamap)) != 0) {
|
|
printf("%s: unable to create tx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < STGE_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
|
|
printf("%s: unable to create rx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_5;
|
|
}
|
|
sc->sc_rxsoft[i].ds_mbuf = NULL;
|
|
}
|
|
|
|
/*
|
|
* Determine if we're copper or fiber. It affects how we
|
|
* reset the card.
|
|
*/
|
|
if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
|
|
sc->sc_usefiber = 1;
|
|
else
|
|
sc->sc_usefiber = 0;
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
stge_reset(sc);
|
|
|
|
/*
|
|
* Reading the station address from the EEPROM doesn't seem
|
|
* to work, at least on my sample boards. Instead, since
|
|
* the reset sequence does AutoInit, read it from the station
|
|
* address registers. For Sundance 1023 you can only read it
|
|
* from EEPROM.
|
|
*/
|
|
if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_SUNDANCE_ST1023) {
|
|
sc->sc_arpcom.ac_enaddr[0] = CSR_READ_2(sc,
|
|
STGE_StationAddress0) & 0xff;
|
|
sc->sc_arpcom.ac_enaddr[1] = CSR_READ_2(sc,
|
|
STGE_StationAddress0) >> 8;
|
|
sc->sc_arpcom.ac_enaddr[2] = CSR_READ_2(sc,
|
|
STGE_StationAddress1) & 0xff;
|
|
sc->sc_arpcom.ac_enaddr[3] = CSR_READ_2(sc,
|
|
STGE_StationAddress1) >> 8;
|
|
sc->sc_arpcom.ac_enaddr[4] = CSR_READ_2(sc,
|
|
STGE_StationAddress2) & 0xff;
|
|
sc->sc_arpcom.ac_enaddr[5] = CSR_READ_2(sc,
|
|
STGE_StationAddress2) >> 8;
|
|
sc->sc_stge1023 = 0;
|
|
} else {
|
|
uint16_t myaddr[ETHER_ADDR_LEN / 2];
|
|
for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
|
|
stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
|
|
&myaddr[i]);
|
|
myaddr[i] = letoh16(myaddr[i]);
|
|
}
|
|
(void)memcpy(sc->sc_arpcom.ac_enaddr, myaddr,
|
|
sizeof(sc->sc_arpcom.ac_enaddr));
|
|
sc->sc_stge1023 = 1;
|
|
}
|
|
|
|
printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
|
|
|
|
/*
|
|
* Read some important bits from the PhyCtrl register.
|
|
*/
|
|
sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
|
|
(PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
|
|
|
|
/*
|
|
* Initialize our media structures and probe the MII.
|
|
*/
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = stge_mii_readreg;
|
|
sc->sc_mii.mii_writereg = stge_mii_writereg;
|
|
sc->sc_mii.mii_statchg = stge_mii_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
|
|
stge_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
ifp = &sc->sc_arpcom.ac_if;
|
|
strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = stge_ioctl;
|
|
ifp->if_start = stge_start;
|
|
ifp->if_watchdog = stge_watchdog;
|
|
#ifdef STGE_JUMBO
|
|
ifp->if_hardmtu = STGE_JUMBO_MTU;
|
|
#endif
|
|
ifq_init_maxlen(&ifp->if_snd, STGE_NTXDESC - 1);
|
|
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
|
|
#if NVLAN > 0
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
|
|
#endif
|
|
|
|
/*
|
|
* The manual recommends disabling early transmit, so we
|
|
* do. It's disabled anyway, if using IP checksumming,
|
|
* since the entire packet must be in the FIFO in order
|
|
* for the chip to perform the checksum.
|
|
*/
|
|
sc->sc_txthresh = 0x0fff;
|
|
|
|
/*
|
|
* Disable MWI if the PCI layer tells us to.
|
|
*/
|
|
sc->sc_DMACtrl = 0;
|
|
#ifdef fake
|
|
if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
|
|
sc->sc_DMACtrl |= DMAC_MWIDisable;
|
|
#endif
|
|
|
|
#ifdef STGE_CHECKSUM
|
|
/*
|
|
* We can do IPv4/TCPv4/UDPv4 checksums in hardware.
|
|
*/
|
|
sc->sc_arpcom.ac_if.if_capabilities |= IFCAP_CSUM_IPv4 |
|
|
IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
|
|
#endif
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < STGE_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].ds_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < STGE_NTXDESC; i++) {
|
|
if (sc->sc_txsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].ds_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
|
|
sizeof(struct stge_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
stge_dma_wait(struct stge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < STGE_TIMEOUT; i++) {
|
|
delay(2);
|
|
if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == STGE_TIMEOUT)
|
|
printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
/*
|
|
* stge_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
void
|
|
stge_start(struct ifnet *ifp)
|
|
{
|
|
struct stge_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0;
|
|
struct stge_descsoft *ds;
|
|
struct stge_tfd *tfd;
|
|
bus_dmamap_t dmamap;
|
|
int error, firsttx, nexttx, opending, seg, totlen;
|
|
uint64_t csum_flags = 0, tfc;
|
|
|
|
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of pending transmissions
|
|
* and the first descriptor we will use.
|
|
*/
|
|
opending = sc->sc_txpending;
|
|
firsttx = STGE_NEXTTX(sc->sc_txlast);
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
for (;;) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
m0 = ifq_deq_begin(&ifp->if_snd);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Leave one unused descriptor at the end of the
|
|
* list to prevent wrapping completely around.
|
|
*/
|
|
if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
|
|
ifq_deq_rollback(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Get the last and next available transmit descriptor.
|
|
*/
|
|
nexttx = STGE_NEXTTX(sc->sc_txlast);
|
|
tfd = &sc->sc_txdescs[nexttx];
|
|
ds = &sc->sc_txsoft[nexttx];
|
|
|
|
dmamap = ds->ds_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the allotted number of segments, or we
|
|
* were short on resources. For the too-many-segments
|
|
* case, we simply report an error and drop the packet,
|
|
* since we can't sanely copy a jumbo packet to a single
|
|
* buffer.
|
|
*/
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
if (error == EFBIG) {
|
|
printf("%s: Tx packet consumes too many "
|
|
"DMA segments (%u), dropping...\n",
|
|
sc->sc_dev.dv_xname, dmamap->dm_nsegs);
|
|
ifq_deq_commit(&ifp->if_snd, m0);
|
|
m_freem(m0);
|
|
continue;
|
|
}
|
|
/*
|
|
* Short on resources, just stop for now.
|
|
*/
|
|
ifq_deq_rollback(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
|
|
ifq_deq_commit(&ifp->if_snd, m0);
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Initialize the fragment list. */
|
|
for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
|
|
tfd->tfd_frags[seg].frag_word0 =
|
|
htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
|
|
FRAG_LEN(dmamap->dm_segs[seg].ds_len));
|
|
totlen += dmamap->dm_segs[seg].ds_len;
|
|
}
|
|
|
|
#ifdef STGE_CHECKSUM
|
|
/*
|
|
* Initialize checksumming flags in the descriptor.
|
|
* Byte-swap constants so the compiler can optimize.
|
|
*/
|
|
if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
|
|
csum_flags |= TFD_IPChecksumEnable;
|
|
|
|
if (m0->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
|
|
csum_flags |= TFD_TCPChecksumEnable;
|
|
else if (m0->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
|
|
csum_flags |= TFD_UDPChecksumEnable;
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the descriptor and give it to the chip.
|
|
*/
|
|
tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
|
|
TFD_FragCount(seg) | csum_flags;
|
|
if ((nexttx & STGE_TXINTR_SPACING_MASK) == 0)
|
|
tfc |= TFD_TxDMAIndicate;
|
|
|
|
#if NVLAN > 0
|
|
/* Check if we have a VLAN tag to insert. */
|
|
if (m0->m_flags & M_VLANTAG)
|
|
tfc |= (TFD_VLANTagInsert |
|
|
TFD_VID(m0->m_pkthdr.ether_vtag));
|
|
#endif
|
|
|
|
tfd->tfd_control = htole64(tfc);
|
|
|
|
/* Sync the descriptor. */
|
|
STGE_CDTXSYNC(sc, nexttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Kick the transmit DMA logic.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_DMACtrl,
|
|
sc->sc_DMACtrl | DMAC_TxDMAPollNow);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later.
|
|
*/
|
|
ds->ds_mbuf = m0;
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txpending++;
|
|
sc->sc_txlast = nexttx;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap_ether(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
|
|
#endif /* NBPFILTER > 0 */
|
|
}
|
|
|
|
if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
}
|
|
|
|
if (sc->sc_txpending != opending) {
|
|
/*
|
|
* We enqueued packets. If the transmitter was idle,
|
|
* reset the txdirty pointer.
|
|
*/
|
|
if (opending == 0)
|
|
sc->sc_txdirty = firsttx;
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* stge_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
void
|
|
stge_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct stge_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* Sweep up first, since we don't interrupt every frame.
|
|
*/
|
|
stge_txintr(sc);
|
|
if (sc->sc_txpending != 0) {
|
|
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
|
|
(void) stge_init(ifp);
|
|
|
|
/* Try to get more packets going. */
|
|
stge_start(ifp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* stge_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
int
|
|
stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct stge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
stge_init(ifp);
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
error = ENETRESET;
|
|
else
|
|
stge_init(ifp);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
stge_stop(ifp, 1);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
stge_iff(sc);
|
|
error = 0;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* stge_intr:
|
|
*
|
|
* Interrupt service routine.
|
|
*/
|
|
int
|
|
stge_intr(void *arg)
|
|
{
|
|
struct stge_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
uint32_t txstat;
|
|
int wantinit;
|
|
uint16_t isr;
|
|
|
|
if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
|
|
return (0);
|
|
|
|
for (wantinit = 0; wantinit == 0;) {
|
|
isr = CSR_READ_2(sc, STGE_IntStatusAck);
|
|
if ((isr & sc->sc_IntEnable) == 0)
|
|
break;
|
|
|
|
/* Host interface errors. */
|
|
if (isr & IS_HostError) {
|
|
printf("%s: Host interface error\n",
|
|
sc->sc_dev.dv_xname);
|
|
wantinit = 1;
|
|
continue;
|
|
}
|
|
|
|
/* Receive interrupts. */
|
|
if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
|
|
stge_rxintr(sc);
|
|
if (isr & IS_RFDListEnd) {
|
|
printf("%s: receive ring overflow\n",
|
|
sc->sc_dev.dv_xname);
|
|
/*
|
|
* XXX Should try to recover from this
|
|
* XXX more gracefully.
|
|
*/
|
|
wantinit = 1;
|
|
}
|
|
}
|
|
|
|
/* Transmit interrupts. */
|
|
if (isr & (IS_TxDMAComplete|IS_TxComplete))
|
|
stge_txintr(sc);
|
|
|
|
/* Statistics overflow. */
|
|
if (isr & IS_UpdateStats)
|
|
stge_stats_update(sc);
|
|
|
|
/* Transmission errors. */
|
|
if (isr & IS_TxComplete) {
|
|
for (;;) {
|
|
txstat = CSR_READ_4(sc, STGE_TxStatus);
|
|
if ((txstat & TS_TxComplete) == 0)
|
|
break;
|
|
if (txstat & TS_TxUnderrun) {
|
|
sc->sc_txthresh++;
|
|
if (sc->sc_txthresh > 0x0fff)
|
|
sc->sc_txthresh = 0x0fff;
|
|
printf("%s: transmit underrun, new "
|
|
"threshold: %d bytes\n",
|
|
sc->sc_dev.dv_xname,
|
|
sc->sc_txthresh << 5);
|
|
}
|
|
if (txstat & TS_MaxCollisions)
|
|
printf("%s: excessive collisions\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
wantinit = 1;
|
|
}
|
|
|
|
}
|
|
|
|
if (wantinit)
|
|
stge_init(ifp);
|
|
|
|
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
|
|
|
|
/* Try to get more packets going. */
|
|
stge_start(ifp);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* stge_txintr:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
void
|
|
stge_txintr(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct stge_descsoft *ds;
|
|
uint64_t control;
|
|
int i;
|
|
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
|
|
i = STGE_NEXTTX(i), sc->sc_txpending--) {
|
|
ds = &sc->sc_txsoft[i];
|
|
|
|
STGE_CDTXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
control = letoh64(sc->sc_txdescs[i].tfd_control);
|
|
if ((control & TFD_TFDDone) == 0)
|
|
break;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
|
|
0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
sc->sc_txdirty = i;
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (sc->sc_txpending == 0)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* stge_rxintr:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
void
|
|
stge_rxintr(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct stge_descsoft *ds;
|
|
struct mbuf *m, *tailm;
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
uint64_t status;
|
|
int i, len;
|
|
|
|
for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
|
|
STGE_CDRXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
status = letoh64(sc->sc_rxdescs[i].rfd_status);
|
|
|
|
if ((status & RFD_RFDDone) == 0)
|
|
break;
|
|
|
|
if (__predict_false(sc->sc_rxdiscard)) {
|
|
STGE_INIT_RXDESC(sc, i);
|
|
if (status & RFD_FrameEnd) {
|
|
/* Reset our state. */
|
|
sc->sc_rxdiscard = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
m = ds->ds_mbuf;
|
|
|
|
/*
|
|
* Add a new receive buffer to the ring.
|
|
*/
|
|
if (stge_add_rxbuf(sc, i) != 0) {
|
|
/*
|
|
* Failed, throw away what we've done so
|
|
* far, and discard the rest of the packet.
|
|
*/
|
|
ifp->if_ierrors++;
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
STGE_INIT_RXDESC(sc, i);
|
|
if ((status & RFD_FrameEnd) == 0)
|
|
sc->sc_rxdiscard = 1;
|
|
m_freem(sc->sc_rxhead);
|
|
STGE_RXCHAIN_RESET(sc);
|
|
continue;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (status & RFD_FrameStart) {
|
|
KASSERT(sc->sc_rxhead == NULL);
|
|
KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
|
|
}
|
|
#endif
|
|
|
|
STGE_RXCHAIN_LINK(sc, m);
|
|
|
|
/*
|
|
* If this is not the end of the packet, keep
|
|
* looking.
|
|
*/
|
|
if ((status & RFD_FrameEnd) == 0) {
|
|
sc->sc_rxlen += m->m_len;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Okay, we have the entire packet now...
|
|
*/
|
|
*sc->sc_rxtailp = NULL;
|
|
m = sc->sc_rxhead;
|
|
tailm = sc->sc_rxtail;
|
|
|
|
STGE_RXCHAIN_RESET(sc);
|
|
|
|
/*
|
|
* If the packet had an error, drop it. Note we
|
|
* count the error later in the periodic stats update.
|
|
*/
|
|
if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
|
|
RFD_RxAlignmentError | RFD_RxFCSError |
|
|
RFD_RxLengthError)) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* No errors.
|
|
*
|
|
* Note we have configured the chip to not include
|
|
* the CRC at the end of the packet.
|
|
*/
|
|
len = RFD_RxDMAFrameLen(status);
|
|
tailm->m_len = len - sc->sc_rxlen;
|
|
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*/
|
|
if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
|
|
struct mbuf *nm;
|
|
MGETHDR(nm, M_DONTWAIT, MT_DATA);
|
|
if (nm == NULL) {
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
nm->m_data += 2;
|
|
nm->m_pkthdr.len = nm->m_len = len;
|
|
m_copydata(m, 0, len, mtod(nm, caddr_t));
|
|
m_freem(m);
|
|
m = nm;
|
|
}
|
|
|
|
/*
|
|
* Set the incoming checksum information for the packet.
|
|
*/
|
|
if ((status & RFD_IPDetected) &&
|
|
(!(status & RFD_IPError)))
|
|
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
|
|
if ((status & RFD_TCPDetected) &&
|
|
(!(status & RFD_TCPError)))
|
|
m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
|
|
else if ((status & RFD_UDPDetected) &&
|
|
(!(status & RFD_UDPError)))
|
|
m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
|
|
|
|
#if NVLAN > 0
|
|
/* Check for VLAN tagged packets. */
|
|
if (status & RFD_VLANDetected) {
|
|
m->m_pkthdr.ether_vtag = RFD_TCI(status);
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
#endif
|
|
|
|
m->m_pkthdr.len = len;
|
|
|
|
ml_enqueue(&ml, m);
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->sc_rxptr = i;
|
|
|
|
if_input(ifp, &ml);
|
|
}
|
|
|
|
/*
|
|
* stge_tick:
|
|
*
|
|
* One second timer, used to tick the MII.
|
|
*/
|
|
void
|
|
stge_tick(void *arg)
|
|
{
|
|
struct stge_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
stge_stats_update(sc);
|
|
splx(s);
|
|
|
|
timeout_add_sec(&sc->sc_timeout, 1);
|
|
}
|
|
|
|
/*
|
|
* stge_stats_update:
|
|
*
|
|
* Read the TC9021 statistics counters.
|
|
*/
|
|
void
|
|
stge_stats_update(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
|
|
(void) CSR_READ_4(sc, STGE_OctetRcvOk);
|
|
|
|
ifp->if_ierrors +=
|
|
(u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors);
|
|
|
|
(void) CSR_READ_4(sc, STGE_OctetXmtdOk);
|
|
|
|
ifp->if_collisions +=
|
|
CSR_READ_4(sc, STGE_LateCollisions) +
|
|
CSR_READ_4(sc, STGE_MultiColFrames) +
|
|
CSR_READ_4(sc, STGE_SingleColFrames);
|
|
|
|
ifp->if_oerrors +=
|
|
(u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
|
|
(u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal);
|
|
}
|
|
|
|
/*
|
|
* stge_reset:
|
|
*
|
|
* Perform a soft reset on the TC9021.
|
|
*/
|
|
void
|
|
stge_reset(struct stge_softc *sc)
|
|
{
|
|
uint32_t ac;
|
|
int i;
|
|
|
|
ac = CSR_READ_4(sc, STGE_AsicCtrl);
|
|
|
|
/*
|
|
* Only assert RstOut if we're fiber. We need GMII clocks
|
|
* to be present in order for the reset to complete on fiber
|
|
* cards.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_AsicCtrl,
|
|
ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
|
|
AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
|
|
(sc->sc_usefiber ? AC_RstOut : 0));
|
|
|
|
delay(50000);
|
|
|
|
for (i = 0; i < STGE_TIMEOUT; i++) {
|
|
delay(5000);
|
|
if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == STGE_TIMEOUT)
|
|
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
|
|
|
|
delay(1000);
|
|
}
|
|
|
|
/*
|
|
* stge_init: [ ifnet interface function ]
|
|
*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
int
|
|
stge_init(struct ifnet *ifp)
|
|
{
|
|
struct stge_softc *sc = ifp->if_softc;
|
|
struct stge_descsoft *ds;
|
|
int i, error = 0;
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
stge_stop(ifp, 0);
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
stge_reset(sc);
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
for (i = 0; i < STGE_NTXDESC; i++) {
|
|
sc->sc_txdescs[i].tfd_next = htole64(
|
|
STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
|
|
sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
|
|
}
|
|
sc->sc_txpending = 0;
|
|
sc->sc_txdirty = 0;
|
|
sc->sc_txlast = STGE_NTXDESC - 1;
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < STGE_NRXDESC; i++) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
if (ds->ds_mbuf == NULL) {
|
|
if ((error = stge_add_rxbuf(sc, i)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
stge_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
} else
|
|
STGE_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
sc->sc_rxdiscard = 0;
|
|
STGE_RXCHAIN_RESET(sc);
|
|
|
|
/* Set the station address. */
|
|
if (sc->sc_stge1023) {
|
|
CSR_WRITE_2(sc, STGE_StationAddress0,
|
|
sc->sc_arpcom.ac_enaddr[0] | sc->sc_arpcom.ac_enaddr[1] << 8);
|
|
CSR_WRITE_2(sc, STGE_StationAddress1,
|
|
sc->sc_arpcom.ac_enaddr[2] | sc->sc_arpcom.ac_enaddr[3] << 8);
|
|
CSR_WRITE_2(sc, STGE_StationAddress2,
|
|
sc->sc_arpcom.ac_enaddr[4] | sc->sc_arpcom.ac_enaddr[5] << 8);
|
|
} else {
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, STGE_StationAddress0 + i,
|
|
sc->sc_arpcom.ac_enaddr[i]);
|
|
}
|
|
|
|
/*
|
|
* Set the statistics masks. Disable all the RMON stats,
|
|
* and disable selected stats in the non-RMON stats registers.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
|
|
CSR_WRITE_4(sc, STGE_StatisticsMask,
|
|
(1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
|
|
(1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
|
|
(1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
|
|
(1U << 21));
|
|
|
|
/* Program promiscuous mode and multicast filters. */
|
|
stge_iff(sc);
|
|
|
|
/*
|
|
* Give the transmit and receive ring to the chip.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrLo,
|
|
STGE_CDTXADDR(sc, sc->sc_txdirty));
|
|
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrLo,
|
|
STGE_CDRXADDR(sc, sc->sc_rxptr));
|
|
|
|
/*
|
|
* Initialize the Tx auto-poll period. It's OK to make this number
|
|
* large (255 is the max, but we use 127) -- we explicitly kick the
|
|
* transmit engine when there's actually a packet.
|
|
*/
|
|
CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
|
|
|
|
/* ..and the Rx auto-poll period. */
|
|
CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
|
|
|
|
/* Initialize the Tx start threshold. */
|
|
CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
|
|
|
|
/* RX DMA thresholds, from linux */
|
|
CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
|
|
CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
|
|
|
|
/* Rx early threshold, from Linux */
|
|
CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
|
|
|
|
/* Tx DMA thresholds, from Linux */
|
|
CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
|
|
CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
|
|
|
|
/*
|
|
* Initialize the Rx DMA interrupt control register. We
|
|
* request an interrupt after every incoming packet, but
|
|
* defer it for 32us (64 * 512 ns). When the number of
|
|
* interrupts pending reaches 8, we stop deferring the
|
|
* interrupt, and signal it immediately.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
|
|
RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
|
|
|
|
/*
|
|
* Initialize the interrupt mask.
|
|
*/
|
|
sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
|
|
IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
|
|
CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
|
|
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
|
|
|
|
/*
|
|
* Configure the DMA engine.
|
|
* XXX Should auto-tune TxBurstLimit.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
|
|
DMAC_TxBurstLimit(3));
|
|
|
|
/*
|
|
* Send a PAUSE frame when we reach 29,696 bytes in the Rx
|
|
* FIFO, and send an un-PAUSE frame when we reach 3056 bytes
|
|
* in the Rx FIFO.
|
|
*/
|
|
CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
|
|
CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
|
|
|
|
/*
|
|
* Set the maximum frame size.
|
|
*/
|
|
#ifdef STGE_JUMBO
|
|
CSR_WRITE_2(sc, STGE_MaxFrameSize, STGE_JUMBO_FRAMELEN);
|
|
#else
|
|
CSR_WRITE_2(sc, STGE_MaxFrameSize, ETHER_MAX_LEN);
|
|
#endif
|
|
|
|
/*
|
|
* Initialize MacCtrl -- do it before setting the media,
|
|
* as setting the media will actually program the register.
|
|
*
|
|
* Note: We have to poke the IFS value before poking
|
|
* anything else.
|
|
*/
|
|
sc->sc_MACCtrl = MC_IFSSelect(0);
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
|
|
|
|
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
|
|
sc->sc_MACCtrl |= MC_AutoVLANuntagging;
|
|
|
|
sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
|
|
|
|
if (sc->sc_rev >= 6) { /* >= B.2 */
|
|
/* Multi-frag frame bug work-around. */
|
|
CSR_WRITE_2(sc, STGE_DebugCtrl,
|
|
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
|
|
|
|
/* Tx Poll Now bug work-around. */
|
|
CSR_WRITE_2(sc, STGE_DebugCtrl,
|
|
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
|
|
|
|
/* Rx Poll Now bug work-around. */
|
|
CSR_WRITE_2(sc, STGE_DebugCtrl,
|
|
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
|
|
}
|
|
|
|
/*
|
|
* Set the current media.
|
|
*/
|
|
mii_mediachg(&sc->sc_mii);
|
|
|
|
/*
|
|
* Start the one second MII clock.
|
|
*/
|
|
timeout_add_sec(&sc->sc_timeout, 1);
|
|
|
|
/*
|
|
* ...all done!
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
|
|
out:
|
|
if (error)
|
|
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* stge_drain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
void
|
|
stge_rxdrain(struct stge_softc *sc)
|
|
{
|
|
struct stge_descsoft *ds;
|
|
int i;
|
|
|
|
for (i = 0; i < STGE_NRXDESC; i++) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
ds->ds_mbuf->m_next = NULL;
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* stge_stop: [ ifnet interface function ]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
void
|
|
stge_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct stge_softc *sc = ifp->if_softc;
|
|
struct stge_descsoft *ds;
|
|
int i;
|
|
|
|
/*
|
|
* Stop the one second clock.
|
|
*/
|
|
timeout_del(&sc->sc_timeout);
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
ifp->if_timer = 0;
|
|
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
|
|
/*
|
|
* Disable interrupts.
|
|
*/
|
|
CSR_WRITE_2(sc, STGE_IntEnable, 0);
|
|
|
|
/*
|
|
* Stop receiver, transmitter, and stats update.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_MACCtrl,
|
|
MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
|
|
|
|
/*
|
|
* Stop the transmit and receive DMA.
|
|
*/
|
|
stge_dma_wait(sc);
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
for (i = 0; i < STGE_NTXDESC; i++) {
|
|
ds = &sc->sc_txsoft[i];
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
if (disable)
|
|
stge_rxdrain(sc);
|
|
}
|
|
|
|
static int
|
|
stge_eeprom_wait(struct stge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < STGE_TIMEOUT; i++) {
|
|
delay(1000);
|
|
if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* stge_read_eeprom:
|
|
*
|
|
* Read data from the serial EEPROM.
|
|
*/
|
|
void
|
|
stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
|
|
{
|
|
|
|
if (stge_eeprom_wait(sc))
|
|
printf("%s: EEPROM failed to come ready\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
CSR_WRITE_2(sc, STGE_EepromCtrl,
|
|
EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
|
|
if (stge_eeprom_wait(sc))
|
|
printf("%s: EEPROM read timed out\n",
|
|
sc->sc_dev.dv_xname);
|
|
*data = CSR_READ_2(sc, STGE_EepromData);
|
|
}
|
|
|
|
/*
|
|
* stge_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
int
|
|
stge_add_rxbuf(struct stge_softc *sc, int idx)
|
|
{
|
|
struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
m->m_data = m->m_ext.ext_buf + 2;
|
|
m->m_len = MCLBYTES - 2;
|
|
|
|
if (ds->ds_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
|
|
ds->ds_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, idx, error);
|
|
panic("stge_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
STGE_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* stge_iff:
|
|
*
|
|
* Set up the receive filter.
|
|
*/
|
|
void
|
|
stge_iff(struct stge_softc *sc)
|
|
{
|
|
struct arpcom *ac = &sc->sc_arpcom;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
uint32_t crc;
|
|
uint32_t mchash[2];
|
|
|
|
memset(mchash, 0, sizeof(mchash));
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
/*
|
|
* Always accept broadcast packets.
|
|
* Always accept frames destined to our station address.
|
|
*/
|
|
sc->sc_ReceiveMode = RM_ReceiveBroadcast | RM_ReceiveUnicast;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
|
|
else
|
|
sc->sc_ReceiveMode |= RM_ReceiveMulticast;
|
|
} else {
|
|
/*
|
|
* Set up the multicast address filter by passing all
|
|
* multicast addresses through a CRC generator, and then
|
|
* using the low-order 6 bits as an index into the 64 bit
|
|
* multicast hash table. The high order bits select the
|
|
* register, while the rest of the bits select the bit
|
|
* within the register.
|
|
*/
|
|
sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
|
|
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
crc = ether_crc32_be(enm->enm_addrlo,
|
|
ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 6 least significant bits. */
|
|
crc &= 0x3f;
|
|
|
|
/* Set the corresponding bit in the hash table. */
|
|
mchash[crc >> 5] |= 1 << (crc & 0x1f);
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
|
|
CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
|
|
CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
|
|
CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
|
|
}
|
|
|
|
/*
|
|
* stge_mii_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the MII of the TC9021.
|
|
*/
|
|
int
|
|
stge_mii_readreg(struct device *self, int phy, int reg)
|
|
{
|
|
|
|
return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
|
|
}
|
|
|
|
/*
|
|
* stge_mii_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the MII of the TC9021.
|
|
*/
|
|
void
|
|
stge_mii_writereg(struct device *self, int phy, int reg, int val)
|
|
{
|
|
|
|
mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
|
|
}
|
|
|
|
/*
|
|
* stge_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
void
|
|
stge_mii_statchg(struct device *self)
|
|
{
|
|
struct stge_softc *sc = (struct stge_softc *) self;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
|
|
sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
|
|
MC_TxFlowControlEnable);
|
|
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
|
|
sc->sc_MACCtrl |= MC_DuplexSelect;
|
|
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
|
|
sc->sc_MACCtrl |= MC_RxFlowControlEnable;
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
|
|
sc->sc_MACCtrl |= MC_TxFlowControlEnable;
|
|
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
|
|
}
|
|
|
|
/*
|
|
* sste_mii_bitbang_read: [mii bit-bang interface function]
|
|
*
|
|
* Read the MII serial port for the MII bit-bang module.
|
|
*/
|
|
uint32_t
|
|
stge_mii_bitbang_read(struct device *self)
|
|
{
|
|
struct stge_softc *sc = (void *) self;
|
|
|
|
return (CSR_READ_1(sc, STGE_PhyCtrl));
|
|
}
|
|
|
|
/*
|
|
* stge_mii_bitbang_write: [mii big-bang interface function]
|
|
*
|
|
* Write the MII serial port for the MII bit-bang module.
|
|
*/
|
|
void
|
|
stge_mii_bitbang_write(struct device *self, uint32_t val)
|
|
{
|
|
struct stge_softc *sc = (void *) self;
|
|
|
|
CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
|
|
}
|
|
|
|
/*
|
|
* stge_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Get the current interface media status.
|
|
*/
|
|
void
|
|
stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct stge_softc *sc = ifp->if_softc;
|
|
|
|
mii_pollstat(&sc->sc_mii);
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
}
|
|
|
|
/*
|
|
* stge_mediachange: [ifmedia interface function]
|
|
*
|
|
* Set hardware to newly-selected media.
|
|
*/
|
|
int
|
|
stge_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct stge_softc *sc = ifp->if_softc;
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
mii_mediachg(&sc->sc_mii);
|
|
return (0);
|
|
}
|