src/sys/dev/ofw/ofw_regulator.c

493 lines
12 KiB
C

/* $OpenBSD: ofw_regulator.c,v 1.19 2023/04/15 03:19:43 dlg Exp $ */
/*
* Copyright (c) 2016 Mark Kettenis
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_gpio.h>
#include <dev/ofw/ofw_pinctrl.h>
#include <dev/ofw/ofw_regulator.h>
#define REGULATOR_VOLTAGE 0
#define REGULATOR_CURRENT 1
LIST_HEAD(, regulator_device) regulator_devices =
LIST_HEAD_INITIALIZER(regulator_devices);
LIST_HEAD(, regulator_notifier) regulator_notifiers =
LIST_HEAD_INITIALIZER(regulator_notifiers);
int regulator_type(int);
uint32_t regulator_gpio_get(int);
int regulator_gpio_set(int, uint32_t);
void regulator_do_notify(uint32_t, uint32_t);
void
regulator_register(struct regulator_device *rd)
{
rd->rd_volt_min = OF_getpropint(rd->rd_node,
"regulator-min-microvolt", 0);
rd->rd_volt_max = OF_getpropint(rd->rd_node,
"regulator-max-microvolt", ~0);
KASSERT(rd->rd_volt_min <= rd->rd_volt_max);
rd->rd_amp_min = OF_getpropint(rd->rd_node,
"regulator-min-microamp", 0);
rd->rd_amp_max = OF_getpropint(rd->rd_node,
"regulator-max-microamp", ~0);
KASSERT(rd->rd_amp_min <= rd->rd_amp_max);
rd->rd_ramp_delay =
OF_getpropint(rd->rd_node, "regulator-ramp-delay", 0);
if (rd->rd_get_voltage && rd->rd_set_voltage) {
uint32_t voltage = rd->rd_get_voltage(rd->rd_cookie);
if (voltage < rd->rd_volt_min)
rd->rd_set_voltage(rd->rd_cookie, rd->rd_volt_min);
if (voltage > rd->rd_volt_max)
rd->rd_set_voltage(rd->rd_cookie, rd->rd_volt_max);
}
if (rd->rd_get_current && rd->rd_set_current) {
uint32_t current = rd->rd_get_current(rd->rd_cookie);
if (current < rd->rd_amp_min)
rd->rd_set_current(rd->rd_cookie, rd->rd_amp_min);
if (current > rd->rd_amp_max)
rd->rd_set_current(rd->rd_cookie, rd->rd_amp_max);
}
rd->rd_phandle = OF_getpropint(rd->rd_node, "phandle", 0);
if (rd->rd_phandle == 0)
return;
LIST_INSERT_HEAD(&regulator_devices, rd, rd_list);
if (rd->rd_get_voltage) {
regulator_do_notify(rd->rd_phandle,
regulator_get_voltage(rd->rd_phandle));
}
if (rd->rd_get_current) {
regulator_do_notify(rd->rd_phandle,
regulator_get_current(rd->rd_phandle));
}
}
int
regulator_type(int node)
{
char type[16] = { 0 };
OF_getprop(node, "regulator-type", type, sizeof(type));
if (strcmp(type, "current") == 0)
return REGULATOR_CURRENT;
return REGULATOR_VOLTAGE;
}
int
regulator_fixed_set(int node, int enable)
{
uint32_t *gpio;
uint32_t startup_delay;
int len;
char *prop = "gpio";
/*
* This regulator may rely on another. That "parent" regulator
* may be used by multiple other devices/regulators, so unless
* we refcnt use of a regulator we can only turn it on.
*/
if (enable)
regulator_enable(OF_getpropint(node, "vin-supply", 0));
pinctrl_byname(node, "default");
/* The "gpio"/"gpios" property is optional. */
len = OF_getproplen(node, prop);
if (len < 0) {
prop = "gpios";
len = OF_getproplen(node, prop);
if (len < 0)
return 0;
}
/*
* We deliberately ignore the "enable-active-high" property
* here. Its presence (or absence) is used to override the
* polarity encoded by the GPIO flags in the device tree. But
* supporting this behaviour is awkward since it would require
* interpreting the GPIO flags here which would be a layer
* violation since those flags may be driver-specific. In
* practice the presence of "enable-active-high" is always
* aligned with the polarity encoded by the GPIO flags and any
* discrepancy is considered to be a bug by the Linux device
* tree maintainers.
*/
gpio = malloc(len, M_TEMP, M_WAITOK);
OF_getpropintarray(node, prop, gpio, len);
gpio_controller_config_pin(gpio, GPIO_CONFIG_OUTPUT);
if (enable)
gpio_controller_set_pin(gpio, 1);
else
gpio_controller_set_pin(gpio, 0);
free(gpio, M_TEMP, len);
startup_delay = OF_getpropint(node, "startup-delay-us", 0);
if (enable && startup_delay > 0)
delay(startup_delay);
return 0;
}
int
regulator_set(uint32_t phandle, int enable)
{
struct regulator_device *rd;
int node;
if (phandle == 0)
return ENODEV;
node = OF_getnodebyphandle(phandle);
if (node == 0)
return ENODEV;
/* Never turn off regulators that should always be on. */
if (OF_getproplen(node, "regulator-always-on") == 0 && !enable)
return 0;
LIST_FOREACH(rd, &regulator_devices, rd_list) {
if (rd->rd_phandle == phandle)
break;
}
if (rd && rd->rd_enable)
return rd->rd_enable(rd->rd_cookie, enable);
if (OF_is_compatible(node, "regulator-fixed"))
return regulator_fixed_set(node, enable);
return ENODEV;
}
int
regulator_enable(uint32_t phandle)
{
return regulator_set(phandle, 1);
}
int
regulator_disable(uint32_t phandle)
{
return regulator_set(phandle, 0);
}
uint32_t
regulator_get_voltage(uint32_t phandle)
{
struct regulator_device *rd;
int node;
if (phandle == 0)
return 0;
LIST_FOREACH(rd, &regulator_devices, rd_list) {
if (rd->rd_phandle == phandle)
break;
}
if (rd && rd->rd_get_voltage)
return rd->rd_get_voltage(rd->rd_cookie);
node = OF_getnodebyphandle(phandle);
if (node == 0)
return 0;
if (OF_is_compatible(node, "regulator-fixed"))
return OF_getpropint(node, "regulator-min-microvolt", 0);
if (OF_is_compatible(node, "regulator-gpio") &&
regulator_type(node) == REGULATOR_VOLTAGE)
return regulator_gpio_get(node);
return 0;
}
int
regulator_set_voltage(uint32_t phandle, uint32_t voltage)
{
struct regulator_device *rd;
uint32_t old, delta;
int error, node;
if (phandle == 0)
return ENODEV;
LIST_FOREACH(rd, &regulator_devices, rd_list) {
if (rd->rd_phandle == phandle)
break;
}
/* Check limits. */
if (rd && (voltage < rd->rd_volt_min || voltage > rd->rd_volt_max))
return EINVAL;
if (rd && rd->rd_set_voltage) {
regulator_do_notify(rd->rd_phandle, voltage);
old = rd->rd_get_voltage(rd->rd_cookie);
error = rd->rd_set_voltage(rd->rd_cookie, voltage);
if (voltage > old && rd->rd_ramp_delay > 0) {
delta = voltage - old;
delay(howmany(delta, rd->rd_ramp_delay));
}
regulator_do_notify(rd->rd_phandle, voltage);
return error;
}
node = OF_getnodebyphandle(phandle);
if (node == 0)
return ENODEV;
if (OF_is_compatible(node, "regulator-fixed") &&
OF_getpropint(node, "regulator-min-microvolt", 0) == voltage)
return 0;
if (OF_is_compatible(node, "regulator-gpio") &&
regulator_type(node) == REGULATOR_VOLTAGE)
return regulator_gpio_set(node, voltage);
return ENODEV;
}
uint32_t
regulator_get_current(uint32_t phandle)
{
struct regulator_device *rd;
int node;
if (phandle == 0)
return 0;
LIST_FOREACH(rd, &regulator_devices, rd_list) {
if (rd->rd_phandle == phandle)
break;
}
if (rd && rd->rd_get_current)
return rd->rd_get_current(rd->rd_cookie);
node = OF_getnodebyphandle(phandle);
if (node == 0)
return 0;
if (OF_is_compatible(node, "regulator-fixed"))
return OF_getpropint(node, "regulator-min-microamp", 0);
if (OF_is_compatible(node, "regulator-gpio") &&
regulator_type(node) == REGULATOR_CURRENT)
return regulator_gpio_get(node);
return 0;
}
int
regulator_set_current(uint32_t phandle, uint32_t current)
{
struct regulator_device *rd;
uint32_t old, delta;
int error, node;
if (phandle == 0)
return ENODEV;
LIST_FOREACH(rd, &regulator_devices, rd_list) {
if (rd->rd_phandle == phandle)
break;
}
/* Check limits. */
if (rd && (current < rd->rd_amp_min || current > rd->rd_amp_max))
return EINVAL;
if (rd && rd->rd_set_current) {
regulator_do_notify(rd->rd_phandle, current);
old = rd->rd_get_current(rd->rd_cookie);
error = rd->rd_set_current(rd->rd_cookie, current);
if (current > old && rd->rd_ramp_delay > 0) {
delta = current - old;
delay(howmany(delta, rd->rd_ramp_delay));
}
regulator_do_notify(rd->rd_phandle, current);
return error;
}
node = OF_getnodebyphandle(phandle);
if (node == 0)
return ENODEV;
if (OF_is_compatible(node, "regulator-fixed") &&
OF_getpropint(node, "regulator-min-microamp", 0) == current)
return 0;
if (OF_is_compatible(node, "regulator-gpio") &&
regulator_type(node) == REGULATOR_CURRENT)
return regulator_gpio_set(node, current);
return ENODEV;
}
uint32_t
regulator_gpio_get(int node)
{
uint32_t *gpio, *gpios, *states;
uint32_t idx, value;
int glen, slen, i;
pinctrl_byname(node, "default");
if ((glen = OF_getproplen(node, "gpios")) <= 0)
return EINVAL;
if ((slen = OF_getproplen(node, "states")) <= 0)
return EINVAL;
if (slen % (2 * sizeof(uint32_t)) != 0)
return EINVAL;
gpios = malloc(glen, M_TEMP, M_WAITOK);
states = malloc(slen, M_TEMP, M_WAITOK);
OF_getpropintarray(node, "gpios", gpios, glen);
OF_getpropintarray(node, "states", states, slen);
i = 0;
idx = 0;
gpio = gpios;
while (gpio && gpio < gpios + (glen / sizeof(uint32_t))) {
if (gpio_controller_get_pin(gpio))
idx |= (1 << i);
gpio = gpio_controller_next_pin(gpio);
i++;
}
value = 0;
for (i = 0; i < slen / (2 * sizeof(uint32_t)); i++) {
if (states[2 * i + 1] == idx) {
value = states[2 * i];
break;
}
}
if (i >= slen / (2 * sizeof(uint32_t)))
return 0;
free(gpios, M_TEMP, glen);
free(states, M_TEMP, slen);
return value;
}
int
regulator_gpio_set(int node, uint32_t value)
{
uint32_t phandle = OF_getpropint(node, "phandle", 0);
uint32_t *gpio, *gpios, *states;
uint32_t min, max;
uint32_t idx;
int glen, slen, i;
pinctrl_byname(node, "default");
if (regulator_type(node) == REGULATOR_VOLTAGE) {
min = OF_getpropint(node, "regulator-min-microvolt", 0);
max = OF_getpropint(node, "regulator-max-microvolt", 0);
}
if (regulator_type(node) == REGULATOR_CURRENT) {
min = OF_getpropint(node, "regulator-min-microamp", 0);
max = OF_getpropint(node, "regulator-max-microamp", 0);
}
/* Check limits. */
if (value < min || value > max)
return EINVAL;
if ((glen = OF_getproplen(node, "gpios")) <= 0)
return EINVAL;
if ((slen = OF_getproplen(node, "states")) <= 0)
return EINVAL;
if (slen % (2 * sizeof(uint32_t)) != 0)
return EINVAL;
gpios = malloc(glen, M_TEMP, M_WAITOK);
states = malloc(slen, M_TEMP, M_WAITOK);
OF_getpropintarray(node, "gpios", gpios, glen);
OF_getpropintarray(node, "states", states, slen);
idx = 0;
for (i = 0; i < slen / (2 * sizeof(uint32_t)); i++) {
if (states[2 * i] < min || states[2 * i] > max)
continue;
if (states[2 * i] == value) {
idx = states[2 * i + 1];
break;
}
}
if (i >= slen / (2 * sizeof(uint32_t)))
return EINVAL;
regulator_do_notify(phandle, value);
i = 0;
gpio = gpios;
while (gpio && gpio < gpios + (glen / sizeof(uint32_t))) {
gpio_controller_set_pin(gpio, !!(idx & (1 << i)));
gpio = gpio_controller_next_pin(gpio);
i++;
}
regulator_do_notify(phandle, value);
free(gpios, M_TEMP, glen);
free(states, M_TEMP, slen);
return 0;
}
void
regulator_notify(struct regulator_notifier *rn)
{
LIST_INSERT_HEAD(&regulator_notifiers, rn, rn_list);
}
void
regulator_do_notify(uint32_t phandle, uint32_t value)
{
struct regulator_notifier *rn;
LIST_FOREACH(rn, &regulator_notifiers, rn_list) {
if (rn->rn_phandle == phandle)
rn->rn_notify(rn->rn_cookie, value);
}
}