src/sys/dev/pci/drm/drm_drv.c

2071 lines
51 KiB
C

/*
* Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
*
* Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Author Rickard E. (Rik) Faith <faith@valinux.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <sys/param.h>
#include <sys/fcntl.h>
#include <sys/specdev.h>
#include <sys/vnode.h>
#include <machine/bus.h>
#ifdef __HAVE_ACPI
#include <dev/acpi/acpidev.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/dsdt.h>
#endif
#include <linux/debugfs.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mount.h>
#include <linux/pseudo_fs.h>
#include <linux/slab.h>
#include <linux/srcu.h>
#include <linux/xarray.h>
#include <linux/suspend.h>
#include <drm/drm_accel.h>
#include <drm/drm_cache.h>
#include <drm/drm_client.h>
#include <drm/drm_color_mgmt.h>
#include <drm/drm_drv.h>
#include <drm/drm_file.h>
#include <drm/drm_managed.h>
#include <drm/drm_mode_object.h>
#include <drm/drm_print.h>
#include <drm/drm_privacy_screen_machine.h>
#include <drm/drm_gem.h>
#include "drm_crtc_internal.h"
#include "drm_internal.h"
#include "drm_legacy.h"
MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
MODULE_DESCRIPTION("DRM shared core routines");
MODULE_LICENSE("GPL and additional rights");
DEFINE_XARRAY_ALLOC(drm_minors_xa);
/*
* If the drm core fails to init for whatever reason,
* we should prevent any drivers from registering with it.
* It's best to check this at drm_dev_init(), as some drivers
* prefer to embed struct drm_device into their own device
* structure and call drm_dev_init() themselves.
*/
static bool drm_core_init_complete;
static struct dentry *drm_debugfs_root;
#ifdef notyet
DEFINE_STATIC_SRCU(drm_unplug_srcu);
#endif
/*
* Some functions are only called once on init regardless of how many times
* drm attaches. In linux this is handled via module_init()/module_exit()
*/
int drm_refcnt;
struct drm_softc {
struct device sc_dev;
struct drm_device *sc_drm;
int sc_allocated;
};
struct drm_attach_args {
struct drm_device *drm;
const struct drm_driver *driver;
char *busid;
bus_dma_tag_t dmat;
bus_space_tag_t bst;
size_t busid_len;
int is_agp;
struct pci_attach_args *pa;
int primary;
};
void drm_linux_init(void);
void drm_linux_exit(void);
int drm_linux_acpi_notify(struct aml_node *, int, void *);
int drm_dequeue_event(struct drm_device *, struct drm_file *, size_t,
struct drm_pending_event **);
int drmprint(void *, const char *);
int drmsubmatch(struct device *, void *, void *);
const struct pci_device_id *
drm_find_description(int, int, const struct pci_device_id *);
int drm_file_cmp(struct drm_file *, struct drm_file *);
SPLAY_PROTOTYPE(drm_file_tree, drm_file, link, drm_file_cmp);
#define DRMDEVCF_PRIMARY 0
#define drmdevcf_primary cf_loc[DRMDEVCF_PRIMARY] /* spec'd as primary? */
#define DRMDEVCF_PRIMARY_UNK -1
/*
* DRM Minors
* A DRM device can provide several char-dev interfaces on the DRM-Major. Each
* of them is represented by a drm_minor object. Depending on the capabilities
* of the device-driver, different interfaces are registered.
*
* Minors can be accessed via dev->$minor_name. This pointer is either
* NULL or a valid drm_minor pointer and stays valid as long as the device is
* valid. This means, DRM minors have the same life-time as the underlying
* device. However, this doesn't mean that the minor is active. Minors are
* registered and unregistered dynamically according to device-state.
*/
static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
{
if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
return &drm_minors_xa;
#if IS_ENABLED(CONFIG_DRM_ACCEL)
else if (type == DRM_MINOR_ACCEL)
return &accel_minors_xa;
#endif
else
return ERR_PTR(-EOPNOTSUPP);
}
static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
enum drm_minor_type type)
{
switch (type) {
case DRM_MINOR_PRIMARY:
return &dev->primary;
case DRM_MINOR_RENDER:
return &dev->render;
case DRM_MINOR_ACCEL:
return &dev->accel;
default:
BUG();
}
}
static void drm_minor_alloc_release(struct drm_device *dev, void *data)
{
struct drm_minor *minor = data;
WARN_ON(dev != minor->dev);
#ifdef __linux__
put_device(minor->kdev);
#endif
xa_erase(drm_minor_get_xa(minor->type), minor->index);
}
/*
* DRM used to support 64 devices, for backwards compatibility we need to maintain the
* minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
* and 128-191 are render nodes.
* After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
* Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
* range.
*/
#define DRM_MINOR_LIMIT(t) ({ \
typeof(t) _t = (t); \
_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
})
#define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
{
struct drm_minor *minor;
int r;
minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
if (!minor)
return -ENOMEM;
minor->type = type;
minor->dev = dev;
r = xa_alloc(drm_minor_get_xa(type), &minor->index,
NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
r = xa_alloc(&drm_minors_xa, &minor->index,
NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
if (r < 0)
return r;
r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
if (r)
return r;
#ifdef __linux__
minor->kdev = drm_sysfs_minor_alloc(minor);
if (IS_ERR(minor->kdev))
return PTR_ERR(minor->kdev);
#endif
*drm_minor_get_slot(dev, type) = minor;
return 0;
}
static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
{
struct drm_minor *minor;
void *entry;
int ret;
DRM_DEBUG("\n");
minor = *drm_minor_get_slot(dev, type);
if (!minor)
return 0;
#ifdef __linux__
if (minor->type == DRM_MINOR_ACCEL) {
accel_debugfs_init(minor, minor->index);
} else {
ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
if (ret) {
DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
goto err_debugfs;
}
}
ret = device_add(minor->kdev);
if (ret)
goto err_debugfs;
#else
drm_debugfs_root = NULL;
#endif
/* replace NULL with @minor so lookups will succeed from now on */
entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
if (xa_is_err(entry)) {
ret = xa_err(entry);
goto err_debugfs;
}
WARN_ON(entry);
DRM_DEBUG("new minor registered %d\n", minor->index);
return 0;
err_debugfs:
#ifdef __linux__
drm_debugfs_cleanup(minor);
#endif
return ret;
}
static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
{
struct drm_minor *minor;
minor = *drm_minor_get_slot(dev, type);
#ifdef __linux__
if (!minor || !device_is_registered(minor->kdev))
#else
if (!minor)
#endif
return;
/* replace @minor with NULL so lookups will fail from now on */
xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
#ifdef __linux__
device_del(minor->kdev);
#endif
dev_set_drvdata(minor->kdev, NULL); /* safety belt */
drm_debugfs_cleanup(minor);
}
/*
* Looks up the given minor-ID and returns the respective DRM-minor object. The
* refence-count of the underlying device is increased so you must release this
* object with drm_minor_release().
*
* As long as you hold this minor, it is guaranteed that the object and the
* minor->dev pointer will stay valid! However, the device may get unplugged and
* unregistered while you hold the minor.
*/
struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
{
struct drm_minor *minor;
xa_lock(minor_xa);
minor = xa_load(minor_xa, minor_id);
if (minor)
drm_dev_get(minor->dev);
xa_unlock(minor_xa);
if (!minor) {
return ERR_PTR(-ENODEV);
} else if (drm_dev_is_unplugged(minor->dev)) {
drm_dev_put(minor->dev);
return ERR_PTR(-ENODEV);
}
return minor;
}
void drm_minor_release(struct drm_minor *minor)
{
drm_dev_put(minor->dev);
}
/**
* DOC: driver instance overview
*
* A device instance for a drm driver is represented by &struct drm_device. This
* is allocated and initialized with devm_drm_dev_alloc(), usually from
* bus-specific ->probe() callbacks implemented by the driver. The driver then
* needs to initialize all the various subsystems for the drm device like memory
* management, vblank handling, modesetting support and initial output
* configuration plus obviously initialize all the corresponding hardware bits.
* Finally when everything is up and running and ready for userspace the device
* instance can be published using drm_dev_register().
*
* There is also deprecated support for initializing device instances using
* bus-specific helpers and the &drm_driver.load callback. But due to
* backwards-compatibility needs the device instance have to be published too
* early, which requires unpretty global locking to make safe and is therefore
* only support for existing drivers not yet converted to the new scheme.
*
* When cleaning up a device instance everything needs to be done in reverse:
* First unpublish the device instance with drm_dev_unregister(). Then clean up
* any other resources allocated at device initialization and drop the driver's
* reference to &drm_device using drm_dev_put().
*
* Note that any allocation or resource which is visible to userspace must be
* released only when the final drm_dev_put() is called, and not when the
* driver is unbound from the underlying physical struct &device. Best to use
* &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
* related functions.
*
* devres managed resources like devm_kmalloc() can only be used for resources
* directly related to the underlying hardware device, and only used in code
* paths fully protected by drm_dev_enter() and drm_dev_exit().
*
* Display driver example
* ~~~~~~~~~~~~~~~~~~~~~~
*
* The following example shows a typical structure of a DRM display driver.
* The example focus on the probe() function and the other functions that is
* almost always present and serves as a demonstration of devm_drm_dev_alloc().
*
* .. code-block:: c
*
* struct driver_device {
* struct drm_device drm;
* void *userspace_facing;
* struct clk *pclk;
* };
*
* static const struct drm_driver driver_drm_driver = {
* [...]
* };
*
* static int driver_probe(struct platform_device *pdev)
* {
* struct driver_device *priv;
* struct drm_device *drm;
* int ret;
*
* priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
* struct driver_device, drm);
* if (IS_ERR(priv))
* return PTR_ERR(priv);
* drm = &priv->drm;
*
* ret = drmm_mode_config_init(drm);
* if (ret)
* return ret;
*
* priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
* if (!priv->userspace_facing)
* return -ENOMEM;
*
* priv->pclk = devm_clk_get(dev, "PCLK");
* if (IS_ERR(priv->pclk))
* return PTR_ERR(priv->pclk);
*
* // Further setup, display pipeline etc
*
* platform_set_drvdata(pdev, drm);
*
* drm_mode_config_reset(drm);
*
* ret = drm_dev_register(drm);
* if (ret)
* return ret;
*
* drm_fbdev_generic_setup(drm, 32);
*
* return 0;
* }
*
* // This function is called before the devm_ resources are released
* static int driver_remove(struct platform_device *pdev)
* {
* struct drm_device *drm = platform_get_drvdata(pdev);
*
* drm_dev_unregister(drm);
* drm_atomic_helper_shutdown(drm)
*
* return 0;
* }
*
* // This function is called on kernel restart and shutdown
* static void driver_shutdown(struct platform_device *pdev)
* {
* drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
* }
*
* static int __maybe_unused driver_pm_suspend(struct device *dev)
* {
* return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
* }
*
* static int __maybe_unused driver_pm_resume(struct device *dev)
* {
* drm_mode_config_helper_resume(dev_get_drvdata(dev));
*
* return 0;
* }
*
* static const struct dev_pm_ops driver_pm_ops = {
* SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
* };
*
* static struct platform_driver driver_driver = {
* .driver = {
* [...]
* .pm = &driver_pm_ops,
* },
* .probe = driver_probe,
* .remove = driver_remove,
* .shutdown = driver_shutdown,
* };
* module_platform_driver(driver_driver);
*
* Drivers that want to support device unplugging (USB, DT overlay unload) should
* use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
* regions that is accessing device resources to prevent use after they're
* released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
* shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
* drm_atomic_helper_shutdown() is called. This means that if the disable code
* paths are protected, they will not run on regular driver module unload,
* possibly leaving the hardware enabled.
*/
/**
* drm_put_dev - Unregister and release a DRM device
* @dev: DRM device
*
* Called at module unload time or when a PCI device is unplugged.
*
* Cleans up all DRM device, calling drm_lastclose().
*
* Note: Use of this function is deprecated. It will eventually go away
* completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
* instead to make sure that the device isn't userspace accessible any more
* while teardown is in progress, ensuring that userspace can't access an
* inconsistent state.
*/
void drm_put_dev(struct drm_device *dev)
{
DRM_DEBUG("\n");
if (!dev) {
DRM_ERROR("cleanup called no dev\n");
return;
}
drm_dev_unregister(dev);
drm_dev_put(dev);
}
EXPORT_SYMBOL(drm_put_dev);
/**
* drm_dev_enter - Enter device critical section
* @dev: DRM device
* @idx: Pointer to index that will be passed to the matching drm_dev_exit()
*
* This function marks and protects the beginning of a section that should not
* be entered after the device has been unplugged. The section end is marked
* with drm_dev_exit(). Calls to this function can be nested.
*
* Returns:
* True if it is OK to enter the section, false otherwise.
*/
bool drm_dev_enter(struct drm_device *dev, int *idx)
{
#ifdef notyet
*idx = srcu_read_lock(&drm_unplug_srcu);
if (dev->unplugged) {
srcu_read_unlock(&drm_unplug_srcu, *idx);
return false;
}
#endif
return true;
}
EXPORT_SYMBOL(drm_dev_enter);
/**
* drm_dev_exit - Exit device critical section
* @idx: index returned from drm_dev_enter()
*
* This function marks the end of a section that should not be entered after
* the device has been unplugged.
*/
void drm_dev_exit(int idx)
{
#ifdef notyet
srcu_read_unlock(&drm_unplug_srcu, idx);
#endif
}
EXPORT_SYMBOL(drm_dev_exit);
/**
* drm_dev_unplug - unplug a DRM device
* @dev: DRM device
*
* This unplugs a hotpluggable DRM device, which makes it inaccessible to
* userspace operations. Entry-points can use drm_dev_enter() and
* drm_dev_exit() to protect device resources in a race free manner. This
* essentially unregisters the device like drm_dev_unregister(), but can be
* called while there are still open users of @dev.
*/
void drm_dev_unplug(struct drm_device *dev)
{
STUB();
#ifdef notyet
/*
* After synchronizing any critical read section is guaranteed to see
* the new value of ->unplugged, and any critical section which might
* still have seen the old value of ->unplugged is guaranteed to have
* finished.
*/
dev->unplugged = true;
synchronize_srcu(&drm_unplug_srcu);
drm_dev_unregister(dev);
/* Clear all CPU mappings pointing to this device */
unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
#endif
}
EXPORT_SYMBOL(drm_dev_unplug);
#ifdef __linux__
/*
* DRM internal mount
* We want to be able to allocate our own "struct address_space" to control
* memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
* stand-alone address_space objects, so we need an underlying inode. As there
* is no way to allocate an independent inode easily, we need a fake internal
* VFS mount-point.
*
* The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
* frees it again. You are allowed to use iget() and iput() to get references to
* the inode. But each drm_fs_inode_new() call must be paired with exactly one
* drm_fs_inode_free() call (which does not have to be the last iput()).
* We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
* between multiple inode-users. You could, technically, call
* iget() + drm_fs_inode_free() directly after alloc and sometime later do an
* iput(), but this way you'd end up with a new vfsmount for each inode.
*/
static int drm_fs_cnt;
static struct vfsmount *drm_fs_mnt;
static int drm_fs_init_fs_context(struct fs_context *fc)
{
return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
}
static struct file_system_type drm_fs_type = {
.name = "drm",
.owner = THIS_MODULE,
.init_fs_context = drm_fs_init_fs_context,
.kill_sb = kill_anon_super,
};
static struct inode *drm_fs_inode_new(void)
{
struct inode *inode;
int r;
r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
if (r < 0) {
DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
return ERR_PTR(r);
}
inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
if (IS_ERR(inode))
simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
return inode;
}
static void drm_fs_inode_free(struct inode *inode)
{
if (inode) {
iput(inode);
simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
}
}
#endif /* __linux__ */
/**
* DOC: component helper usage recommendations
*
* DRM drivers that drive hardware where a logical device consists of a pile of
* independent hardware blocks are recommended to use the :ref:`component helper
* library<component>`. For consistency and better options for code reuse the
* following guidelines apply:
*
* - The entire device initialization procedure should be run from the
* &component_master_ops.master_bind callback, starting with
* devm_drm_dev_alloc(), then binding all components with
* component_bind_all() and finishing with drm_dev_register().
*
* - The opaque pointer passed to all components through component_bind_all()
* should point at &struct drm_device of the device instance, not some driver
* specific private structure.
*
* - The component helper fills the niche where further standardization of
* interfaces is not practical. When there already is, or will be, a
* standardized interface like &drm_bridge or &drm_panel, providing its own
* functions to find such components at driver load time, like
* drm_of_find_panel_or_bridge(), then the component helper should not be
* used.
*/
static void drm_dev_init_release(struct drm_device *dev, void *res)
{
drm_legacy_ctxbitmap_cleanup(dev);
drm_legacy_remove_map_hash(dev);
#ifdef __linux__
drm_fs_inode_free(dev->anon_inode);
put_device(dev->dev);
#endif
/* Prevent use-after-free in drm_managed_release when debugging is
* enabled. Slightly awkward, but can't really be helped. */
dev->dev = NULL;
mutex_destroy(&dev->master_mutex);
mutex_destroy(&dev->clientlist_mutex);
mutex_destroy(&dev->filelist_mutex);
mutex_destroy(&dev->struct_mutex);
mutex_destroy(&dev->debugfs_mutex);
drm_legacy_destroy_members(dev);
}
#ifdef notyet
static int drm_dev_init(struct drm_device *dev,
const struct drm_driver *driver,
struct device *parent)
{
struct inode *inode;
int ret;
if (!drm_core_init_complete) {
DRM_ERROR("DRM core is not initialized\n");
return -ENODEV;
}
if (WARN_ON(!parent))
return -EINVAL;
kref_init(&dev->ref);
dev->dev = get_device(parent);
dev->driver = driver;
INIT_LIST_HEAD(&dev->managed.resources);
spin_lock_init(&dev->managed.lock);
/* no per-device feature limits by default */
dev->driver_features = ~0u;
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
(drm_core_check_feature(dev, DRIVER_RENDER) ||
drm_core_check_feature(dev, DRIVER_MODESET))) {
DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
return -EINVAL;
}
drm_legacy_init_members(dev);
INIT_LIST_HEAD(&dev->filelist);
INIT_LIST_HEAD(&dev->filelist_internal);
INIT_LIST_HEAD(&dev->clientlist);
INIT_LIST_HEAD(&dev->vblank_event_list);
INIT_LIST_HEAD(&dev->debugfs_list);
spin_lock_init(&dev->event_lock);
mutex_init(&dev->struct_mutex);
mutex_init(&dev->filelist_mutex);
mutex_init(&dev->clientlist_mutex);
mutex_init(&dev->master_mutex);
mutex_init(&dev->debugfs_mutex);
ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
if (ret)
return ret;
inode = drm_fs_inode_new();
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
goto err;
}
dev->anon_inode = inode;
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
if (ret)
goto err;
} else {
if (drm_core_check_feature(dev, DRIVER_RENDER)) {
ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
if (ret)
goto err;
}
ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
if (ret)
goto err;
}
ret = drm_legacy_create_map_hash(dev);
if (ret)
goto err;
drm_legacy_ctxbitmap_init(dev);
if (drm_core_check_feature(dev, DRIVER_GEM)) {
ret = drm_gem_init(dev);
if (ret) {
DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
goto err;
}
}
dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
if (!dev->unique) {
ret = -ENOMEM;
goto err;
}
return 0;
err:
drm_managed_release(dev);
return ret;
}
static void devm_drm_dev_init_release(void *data)
{
drm_dev_put(data);
}
static int devm_drm_dev_init(struct device *parent,
struct drm_device *dev,
const struct drm_driver *driver)
{
int ret;
ret = drm_dev_init(dev, driver, parent);
if (ret)
return ret;
return devm_add_action_or_reset(parent,
devm_drm_dev_init_release, dev);
}
#endif
void *__devm_drm_dev_alloc(struct device *parent,
const struct drm_driver *driver,
size_t size, size_t offset)
{
void *container;
struct drm_device *drm;
#ifdef notyet
int ret;
#endif
container = kzalloc(size, GFP_KERNEL);
if (!container)
return ERR_PTR(-ENOMEM);
drm = container + offset;
#ifdef notyet
ret = devm_drm_dev_init(parent, drm, driver);
if (ret) {
kfree(container);
return ERR_PTR(ret);
}
drmm_add_final_kfree(drm, container);
#endif
return container;
}
EXPORT_SYMBOL(__devm_drm_dev_alloc);
#ifdef notyet
/**
* drm_dev_alloc - Allocate new DRM device
* @driver: DRM driver to allocate device for
* @parent: Parent device object
*
* This is the deprecated version of devm_drm_dev_alloc(), which does not support
* subclassing through embedding the struct &drm_device in a driver private
* structure, and which does not support automatic cleanup through devres.
*
* RETURNS:
* Pointer to new DRM device, or ERR_PTR on failure.
*/
struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
struct device *parent)
{
struct drm_device *dev;
int ret;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return ERR_PTR(-ENOMEM);
ret = drm_dev_init(dev, driver, parent);
if (ret) {
kfree(dev);
return ERR_PTR(ret);
}
drmm_add_final_kfree(dev, dev);
return dev;
}
EXPORT_SYMBOL(drm_dev_alloc);
#endif
static void drm_dev_release(struct kref *ref)
{
struct drm_device *dev = container_of(ref, struct drm_device, ref);
if (dev->driver->release)
dev->driver->release(dev);
drm_managed_release(dev);
kfree(dev->managed.final_kfree);
}
/**
* drm_dev_get - Take reference of a DRM device
* @dev: device to take reference of or NULL
*
* This increases the ref-count of @dev by one. You *must* already own a
* reference when calling this. Use drm_dev_put() to drop this reference
* again.
*
* This function never fails. However, this function does not provide *any*
* guarantee whether the device is alive or running. It only provides a
* reference to the object and the memory associated with it.
*/
void drm_dev_get(struct drm_device *dev)
{
if (dev)
kref_get(&dev->ref);
}
EXPORT_SYMBOL(drm_dev_get);
/**
* drm_dev_put - Drop reference of a DRM device
* @dev: device to drop reference of or NULL
*
* This decreases the ref-count of @dev by one. The device is destroyed if the
* ref-count drops to zero.
*/
void drm_dev_put(struct drm_device *dev)
{
if (dev)
kref_put(&dev->ref, drm_dev_release);
}
EXPORT_SYMBOL(drm_dev_put);
static int create_compat_control_link(struct drm_device *dev)
{
struct drm_minor *minor;
char *name;
int ret;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
if (!minor)
return 0;
/*
* Some existing userspace out there uses the existing of the controlD*
* sysfs files to figure out whether it's a modeset driver. It only does
* readdir, hence a symlink is sufficient (and the least confusing
* option). Otherwise controlD* is entirely unused.
*
* Old controlD chardev have been allocated in the range
* 64-127.
*/
name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
if (!name)
return -ENOMEM;
ret = sysfs_create_link(minor->kdev->kobj.parent,
&minor->kdev->kobj,
name);
kfree(name);
return ret;
}
static void remove_compat_control_link(struct drm_device *dev)
{
struct drm_minor *minor;
char *name;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return;
minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
if (!minor)
return;
name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
if (!name)
return;
sysfs_remove_link(minor->kdev->kobj.parent, name);
kfree(name);
}
/**
* drm_dev_register - Register DRM device
* @dev: Device to register
* @flags: Flags passed to the driver's .load() function
*
* Register the DRM device @dev with the system, advertise device to user-space
* and start normal device operation. @dev must be initialized via drm_dev_init()
* previously.
*
* Never call this twice on any device!
*
* NOTE: To ensure backward compatibility with existing drivers method this
* function calls the &drm_driver.load method after registering the device
* nodes, creating race conditions. Usage of the &drm_driver.load methods is
* therefore deprecated, drivers must perform all initialization before calling
* drm_dev_register().
*
* RETURNS:
* 0 on success, negative error code on failure.
*/
int drm_dev_register(struct drm_device *dev, unsigned long flags)
{
const struct drm_driver *driver = dev->driver;
int ret;
if (!driver->load)
drm_mode_config_validate(dev);
WARN_ON(!dev->managed.final_kfree);
if (drm_dev_needs_global_mutex(dev))
mutex_lock(&drm_global_mutex);
ret = drm_minor_register(dev, DRM_MINOR_RENDER);
if (ret)
goto err_minors;
ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
if (ret)
goto err_minors;
ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
if (ret)
goto err_minors;
ret = create_compat_control_link(dev);
if (ret)
goto err_minors;
dev->registered = true;
if (driver->load) {
ret = driver->load(dev, flags);
if (ret)
goto err_minors;
}
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
ret = drm_modeset_register_all(dev);
if (ret)
goto err_unload;
}
DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
driver->name, driver->major, driver->minor,
driver->patchlevel, driver->date,
dev->dev ? dev_name(dev->dev) : "virtual device",
dev->primary ? dev->primary->index : dev->accel->index);
goto out_unlock;
err_unload:
if (dev->driver->unload)
dev->driver->unload(dev);
err_minors:
remove_compat_control_link(dev);
drm_minor_unregister(dev, DRM_MINOR_ACCEL);
drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
drm_minor_unregister(dev, DRM_MINOR_RENDER);
out_unlock:
if (drm_dev_needs_global_mutex(dev))
mutex_unlock(&drm_global_mutex);
return ret;
}
EXPORT_SYMBOL(drm_dev_register);
/**
* drm_dev_unregister - Unregister DRM device
* @dev: Device to unregister
*
* Unregister the DRM device from the system. This does the reverse of
* drm_dev_register() but does not deallocate the device. The caller must call
* drm_dev_put() to drop their final reference, unless it is managed with devres
* (as devices allocated with devm_drm_dev_alloc() are), in which case there is
* already an unwind action registered.
*
* A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
* which can be called while there are still open users of @dev.
*
* This should be called first in the device teardown code to make sure
* userspace can't access the device instance any more.
*/
void drm_dev_unregister(struct drm_device *dev)
{
if (drm_core_check_feature(dev, DRIVER_LEGACY))
drm_lastclose(dev);
dev->registered = false;
drm_client_dev_unregister(dev);
if (drm_core_check_feature(dev, DRIVER_MODESET))
drm_modeset_unregister_all(dev);
if (dev->driver->unload)
dev->driver->unload(dev);
drm_legacy_pci_agp_destroy(dev);
drm_legacy_rmmaps(dev);
remove_compat_control_link(dev);
drm_minor_unregister(dev, DRM_MINOR_ACCEL);
drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
drm_minor_unregister(dev, DRM_MINOR_RENDER);
}
EXPORT_SYMBOL(drm_dev_unregister);
/*
* DRM Core
* The DRM core module initializes all global DRM objects and makes them
* available to drivers. Once setup, drivers can probe their respective
* devices.
* Currently, core management includes:
* - The "DRM-Global" key/value database
* - Global ID management for connectors
* - DRM major number allocation
* - DRM minor management
* - DRM sysfs class
* - DRM debugfs root
*
* Furthermore, the DRM core provides dynamic char-dev lookups. For each
* interface registered on a DRM device, you can request minor numbers from DRM
* core. DRM core takes care of major-number management and char-dev
* registration. A stub ->open() callback forwards any open() requests to the
* registered minor.
*/
#ifdef __linux__
static int drm_stub_open(struct inode *inode, struct file *filp)
{
const struct file_operations *new_fops;
struct drm_minor *minor;
int err;
DRM_DEBUG("\n");
minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
if (IS_ERR(minor))
return PTR_ERR(minor);
new_fops = fops_get(minor->dev->driver->fops);
if (!new_fops) {
err = -ENODEV;
goto out;
}
replace_fops(filp, new_fops);
if (filp->f_op->open)
err = filp->f_op->open(inode, filp);
else
err = 0;
out:
drm_minor_release(minor);
return err;
}
static const struct file_operations drm_stub_fops = {
.owner = THIS_MODULE,
.open = drm_stub_open,
.llseek = noop_llseek,
};
#endif /* __linux__ */
static void drm_core_exit(void)
{
drm_privacy_screen_lookup_exit();
accel_core_exit();
#ifdef __linux__
unregister_chrdev(DRM_MAJOR, "drm");
debugfs_remove(drm_debugfs_root);
drm_sysfs_destroy();
#endif
WARN_ON(!xa_empty(&drm_minors_xa));
drm_connector_ida_destroy();
}
static int __init drm_core_init(void)
{
#ifdef __linux__
int ret;
#endif
drm_connector_ida_init();
drm_memcpy_init_early();
#ifdef __linux__
ret = drm_sysfs_init();
if (ret < 0) {
DRM_ERROR("Cannot create DRM class: %d\n", ret);
goto error;
}
drm_debugfs_root = debugfs_create_dir("dri", NULL);
ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
if (ret < 0)
goto error;
ret = accel_core_init();
if (ret < 0)
goto error;
#endif
drm_privacy_screen_lookup_init();
drm_core_init_complete = true;
DRM_DEBUG("Initialized\n");
return 0;
#ifdef __linux__
error:
drm_core_exit();
return ret;
#endif
}
#ifdef __linux__
module_init(drm_core_init);
module_exit(drm_core_exit);
#endif
void
drm_attach_platform(struct drm_driver *driver, bus_space_tag_t iot,
bus_dma_tag_t dmat, struct device *dev, struct drm_device *drm)
{
struct drm_attach_args arg;
memset(&arg, 0, sizeof(arg));
arg.driver = driver;
arg.bst = iot;
arg.dmat = dmat;
arg.drm = drm;
arg.busid = dev->dv_xname;
arg.busid_len = strlen(dev->dv_xname) + 1;
config_found_sm(dev, &arg, drmprint, drmsubmatch);
}
struct drm_device *
drm_attach_pci(const struct drm_driver *driver, struct pci_attach_args *pa,
int is_agp, int primary, struct device *dev, struct drm_device *drm)
{
struct drm_attach_args arg;
struct drm_softc *sc;
arg.drm = drm;
arg.driver = driver;
arg.dmat = pa->pa_dmat;
arg.bst = pa->pa_memt;
arg.is_agp = is_agp;
arg.primary = primary;
arg.pa = pa;
arg.busid_len = 20;
arg.busid = malloc(arg.busid_len + 1, M_DRM, M_NOWAIT);
if (arg.busid == NULL) {
printf("%s: no memory for drm\n", dev->dv_xname);
return (NULL);
}
snprintf(arg.busid, arg.busid_len, "pci:%04x:%02x:%02x.%1x",
pa->pa_domain, pa->pa_bus, pa->pa_device, pa->pa_function);
sc = (struct drm_softc *)config_found_sm(dev, &arg, drmprint, drmsubmatch);
if (sc == NULL)
return NULL;
return sc->sc_drm;
}
int
drmprint(void *aux, const char *pnp)
{
if (pnp != NULL)
printf("drm at %s", pnp);
return (UNCONF);
}
int
drmsubmatch(struct device *parent, void *match, void *aux)
{
extern struct cfdriver drm_cd;
struct cfdata *cf = match;
/* only allow drm to attach */
if (cf->cf_driver == &drm_cd)
return ((*cf->cf_attach->ca_match)(parent, match, aux));
return (0);
}
int
drm_pciprobe(struct pci_attach_args *pa, const struct pci_device_id *idlist)
{
const struct pci_device_id *id_entry;
id_entry = drm_find_description(PCI_VENDOR(pa->pa_id),
PCI_PRODUCT(pa->pa_id), idlist);
if (id_entry != NULL)
return 1;
return 0;
}
int
drm_probe(struct device *parent, void *match, void *aux)
{
struct cfdata *cf = match;
struct drm_attach_args *da = aux;
if (cf->drmdevcf_primary != DRMDEVCF_PRIMARY_UNK) {
/*
* If primary-ness of device specified, either match
* exactly (at high priority), or fail.
*/
if (cf->drmdevcf_primary != 0 && da->primary != 0)
return (10);
else
return (0);
}
/* If primary-ness unspecified, it wins. */
return (1);
}
int drm_buddy_module_init(void);
void drm_buddy_module_exit(void);
void
drm_attach(struct device *parent, struct device *self, void *aux)
{
struct drm_softc *sc = (struct drm_softc *)self;
struct drm_attach_args *da = aux;
struct drm_device *dev = da->drm;
int ret;
if (drm_refcnt == 0) {
drm_linux_init();
drm_core_init();
drm_buddy_module_init();
}
drm_refcnt++;
if (dev == NULL) {
dev = malloc(sizeof(struct drm_device), M_DRM,
M_WAITOK | M_ZERO);
sc->sc_allocated = 1;
}
sc->sc_drm = dev;
kref_init(&dev->ref);
dev->dev = self;
dev->dev_private = parent;
dev->driver = da->driver;
INIT_LIST_HEAD(&dev->managed.resources);
mtx_init(&dev->managed.lock, IPL_TTY);
/* no per-device feature limits by default */
dev->driver_features = ~0u;
dev->dmat = da->dmat;
dev->bst = da->bst;
dev->unique = da->busid;
if (da->pa) {
struct pci_attach_args *pa = da->pa;
pcireg_t subsys;
subsys = pci_conf_read(pa->pa_pc, pa->pa_tag,
PCI_SUBSYS_ID_REG);
dev->pdev = &dev->_pdev;
dev->pdev->vendor = PCI_VENDOR(pa->pa_id);
dev->pdev->device = PCI_PRODUCT(pa->pa_id);
dev->pdev->subsystem_vendor = PCI_VENDOR(subsys);
dev->pdev->subsystem_device = PCI_PRODUCT(subsys);
dev->pdev->revision = PCI_REVISION(pa->pa_class);
dev->pdev->class = (PCI_CLASS(pa->pa_class) << 16) |
(PCI_SUBCLASS(pa->pa_class) << 8) |
PCI_INTERFACE(pa->pa_class);
dev->pdev->devfn = PCI_DEVFN(pa->pa_device, pa->pa_function);
dev->pdev->bus = &dev->pdev->_bus;
dev->pdev->bus->pc = pa->pa_pc;
dev->pdev->bus->number = pa->pa_bus;
dev->pdev->bus->domain_nr = pa->pa_domain;
dev->pdev->bus->bridgetag = pa->pa_bridgetag;
if (pa->pa_bridgetag != NULL) {
dev->pdev->bus->self = malloc(sizeof(struct pci_dev),
M_DRM, M_WAITOK | M_ZERO);
dev->pdev->bus->self->pc = pa->pa_pc;
dev->pdev->bus->self->tag = *pa->pa_bridgetag;
}
dev->pdev->pc = pa->pa_pc;
dev->pdev->tag = pa->pa_tag;
dev->pdev->pci = (struct pci_softc *)parent->dv_parent;
dev->pdev->_dev = parent;
#ifdef CONFIG_ACPI
dev->pdev->dev.node = acpi_find_pci(pa->pa_pc, pa->pa_tag);
aml_register_notify(dev->pdev->dev.node, NULL,
drm_linux_acpi_notify, NULL, ACPIDEV_NOPOLL);
#endif
}
mtx_init(&dev->quiesce_mtx, IPL_NONE);
mtx_init(&dev->event_lock, IPL_TTY);
rw_init(&dev->struct_mutex, "drmdevlk");
rw_init(&dev->filelist_mutex, "drmflist");
rw_init(&dev->clientlist_mutex, "drmclist");
rw_init(&dev->master_mutex, "drmmast");
ret = drmm_add_action(dev, drm_dev_init_release, NULL);
if (ret)
goto error;
SPLAY_INIT(&dev->files);
INIT_LIST_HEAD(&dev->filelist_internal);
INIT_LIST_HEAD(&dev->clientlist);
INIT_LIST_HEAD(&dev->vblank_event_list);
if (drm_core_check_feature(dev, DRIVER_RENDER)) {
ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
if (ret)
goto error;
}
ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
if (ret)
goto error;
#ifdef CONFIG_DRM_LEGACY
if (drm_core_check_feature(dev, DRIVER_USE_AGP)) {
#if IS_ENABLED(CONFIG_AGP)
if (da->is_agp)
dev->agp = drm_agp_init();
#endif
if (dev->agp != NULL) {
if (drm_mtrr_add(dev->agp->info.ai_aperture_base,
dev->agp->info.ai_aperture_size, DRM_MTRR_WC) == 0)
dev->agp->mtrr = 1;
}
}
#endif
if (dev->driver->gem_size > 0) {
KASSERT(dev->driver->gem_size >= sizeof(struct drm_gem_object));
/* XXX unique name */
pool_init(&dev->objpl, dev->driver->gem_size, 0, IPL_NONE, 0,
"drmobjpl", NULL);
}
if (drm_core_check_feature(dev, DRIVER_GEM)) {
ret = drm_gem_init(dev);
if (ret) {
DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
goto error;
}
}
drmm_add_final_kfree(dev, dev);
printf("\n");
return;
error:
drm_managed_release(dev);
dev->dev_private = NULL;
}
int
drm_detach(struct device *self, int flags)
{
struct drm_softc *sc = (struct drm_softc *)self;
struct drm_device *dev = sc->sc_drm;
drm_refcnt--;
if (drm_refcnt == 0) {
drm_buddy_module_exit();
drm_core_exit();
drm_linux_exit();
}
drm_lastclose(dev);
if (drm_core_check_feature(dev, DRIVER_GEM)) {
if (dev->driver->gem_size > 0)
pool_destroy(&dev->objpl);
}
#ifdef CONFIG_DRM_LEGACY
if (dev->agp && dev->agp->mtrr) {
int retcode;
retcode = drm_mtrr_del(0, dev->agp->info.ai_aperture_base,
dev->agp->info.ai_aperture_size, DRM_MTRR_WC);
DRM_DEBUG("mtrr_del = %d", retcode);
}
free(dev->agp, M_DRM, 0);
#endif
if (dev->pdev && dev->pdev->bus)
free(dev->pdev->bus->self, M_DRM, sizeof(struct pci_dev));
if (sc->sc_allocated)
free(dev, M_DRM, sizeof(struct drm_device));
return 0;
}
void
drm_quiesce(struct drm_device *dev)
{
mtx_enter(&dev->quiesce_mtx);
dev->quiesce = 1;
while (dev->quiesce_count > 0) {
msleep_nsec(&dev->quiesce_count, &dev->quiesce_mtx,
PZERO, "drmqui", INFSLP);
}
mtx_leave(&dev->quiesce_mtx);
}
void
drm_wakeup(struct drm_device *dev)
{
mtx_enter(&dev->quiesce_mtx);
dev->quiesce = 0;
wakeup(&dev->quiesce);
mtx_leave(&dev->quiesce_mtx);
}
int
drm_activate(struct device *self, int act)
{
struct drm_softc *sc = (struct drm_softc *)self;
struct drm_device *dev = sc->sc_drm;
switch (act) {
case DVACT_QUIESCE:
#ifdef CONFIG_ACPI
if (acpi_softc) {
switch (acpi_softc->sc_state) {
case ACPI_STATE_S0:
pm_suspend_target_state = PM_SUSPEND_TO_IDLE;
break;
case ACPI_STATE_S3:
pm_suspend_target_state = PM_SUSPEND_MEM;
break;
}
}
#else
pm_suspend_target_state = PM_SUSPEND_TO_IDLE;
#endif
drm_quiesce(dev);
break;
case DVACT_WAKEUP:
drm_wakeup(dev);
pm_suspend_target_state = PM_SUSPEND_ON;
break;
}
return (0);
}
const struct cfattach drm_ca = {
sizeof(struct drm_softc), drm_probe, drm_attach,
drm_detach, drm_activate
};
struct cfdriver drm_cd = {
0, "drm", DV_DULL
};
const struct pci_device_id *
drm_find_description(int vendor, int device, const struct pci_device_id *idlist)
{
int i = 0;
for (i = 0; idlist[i].vendor != 0; i++) {
if ((idlist[i].vendor == vendor) &&
(idlist[i].device == device ||
idlist[i].device == PCI_ANY_ID) &&
(idlist[i].subvendor == PCI_ANY_ID) &&
(idlist[i].subdevice == PCI_ANY_ID))
return &idlist[i];
}
return NULL;
}
int
drm_file_cmp(struct drm_file *f1, struct drm_file *f2)
{
return (f1->fminor < f2->fminor ? -1 : f1->fminor > f2->fminor);
}
SPLAY_GENERATE(drm_file_tree, drm_file, link, drm_file_cmp);
struct drm_file *
drm_find_file_by_minor(struct drm_device *dev, int minor)
{
struct drm_file key;
key.fminor = minor;
return (SPLAY_FIND(drm_file_tree, &dev->files, &key));
}
struct drm_device *
drm_get_device_from_kdev(dev_t kdev)
{
int unit = minor(kdev) & ((1 << CLONE_SHIFT) - 1);
/* render */
if (unit >= 128)
unit -= 128;
struct drm_softc *sc;
if (unit < drm_cd.cd_ndevs) {
sc = (struct drm_softc *)drm_cd.cd_devs[unit];
if (sc)
return sc->sc_drm;
}
return NULL;
}
void
filt_drmdetach(struct knote *kn)
{
struct drm_device *dev = kn->kn_hook;
int s;
s = spltty();
klist_remove_locked(&dev->note, kn);
splx(s);
}
int
filt_drmkms(struct knote *kn, long hint)
{
if (kn->kn_sfflags & hint)
kn->kn_fflags |= hint;
return (kn->kn_fflags != 0);
}
void
filt_drmreaddetach(struct knote *kn)
{
struct drm_file *file_priv = kn->kn_hook;
int s;
s = spltty();
klist_remove_locked(&file_priv->rsel.si_note, kn);
splx(s);
}
int
filt_drmread(struct knote *kn, long hint)
{
struct drm_file *file_priv = kn->kn_hook;
int val = 0;
if ((hint & NOTE_SUBMIT) == 0)
mtx_enter(&file_priv->minor->dev->event_lock);
val = !list_empty(&file_priv->event_list);
if ((hint & NOTE_SUBMIT) == 0)
mtx_leave(&file_priv->minor->dev->event_lock);
return (val);
}
const struct filterops drm_filtops = {
.f_flags = FILTEROP_ISFD,
.f_attach = NULL,
.f_detach = filt_drmdetach,
.f_event = filt_drmkms,
};
const struct filterops drmread_filtops = {
.f_flags = FILTEROP_ISFD,
.f_attach = NULL,
.f_detach = filt_drmreaddetach,
.f_event = filt_drmread,
};
int
drmkqfilter(dev_t kdev, struct knote *kn)
{
struct drm_device *dev = NULL;
struct drm_file *file_priv = NULL;
int s;
dev = drm_get_device_from_kdev(kdev);
if (dev == NULL || dev->dev_private == NULL)
return (ENXIO);
switch (kn->kn_filter) {
case EVFILT_READ:
mutex_lock(&dev->struct_mutex);
file_priv = drm_find_file_by_minor(dev, minor(kdev));
mutex_unlock(&dev->struct_mutex);
if (file_priv == NULL)
return (ENXIO);
kn->kn_fop = &drmread_filtops;
kn->kn_hook = file_priv;
s = spltty();
klist_insert_locked(&file_priv->rsel.si_note, kn);
splx(s);
break;
case EVFILT_DEVICE:
kn->kn_fop = &drm_filtops;
kn->kn_hook = dev;
s = spltty();
klist_insert_locked(&dev->note, kn);
splx(s);
break;
default:
return (EINVAL);
}
return (0);
}
int
drmopen(dev_t kdev, int flags, int fmt, struct proc *p)
{
struct drm_device *dev = NULL;
struct drm_file *file_priv;
struct drm_minor *dm;
int ret = 0;
int dminor, realminor, minor_type;
int need_setup = 0;
dev = drm_get_device_from_kdev(kdev);
if (dev == NULL || dev->dev_private == NULL)
return (ENXIO);
DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count));
if (flags & O_EXCL)
return (EBUSY); /* No exclusive opens */
if (drm_dev_needs_global_mutex(dev))
mutex_lock(&drm_global_mutex);
if (!atomic_fetch_inc(&dev->open_count))
need_setup = 1;
dminor = minor(kdev);
realminor = dminor & ((1 << CLONE_SHIFT) - 1);
if (realminor < 64)
minor_type = DRM_MINOR_PRIMARY;
else if (realminor >= 128 && realminor < 192)
minor_type = DRM_MINOR_RENDER;
else {
ret = ENXIO;
goto err;
}
dm = *drm_minor_get_slot(dev, minor_type);
if (dm == NULL) {
ret = ENXIO;
goto err;
}
dm->index = minor(kdev);
file_priv = drm_file_alloc(dm);
if (IS_ERR(file_priv)) {
ret = ENOMEM;
goto err;
}
/* first opener automatically becomes master */
if (drm_is_primary_client(file_priv)) {
ret = drm_master_open(file_priv);
if (ret != 0)
goto out_file_free;
}
file_priv->filp = (void *)file_priv;
file_priv->fminor = minor(kdev);
mutex_lock(&dev->filelist_mutex);
SPLAY_INSERT(drm_file_tree, &dev->files, file_priv);
mutex_unlock(&dev->filelist_mutex);
if (need_setup) {
ret = drm_legacy_setup(dev);
if (ret)
goto out_file_free;
}
if (drm_dev_needs_global_mutex(dev))
mutex_unlock(&drm_global_mutex);
return 0;
out_file_free:
drm_file_free(file_priv);
err:
atomic_dec(&dev->open_count);
if (drm_dev_needs_global_mutex(dev))
mutex_unlock(&drm_global_mutex);
return (ret);
}
int
drmclose(dev_t kdev, int flags, int fmt, struct proc *p)
{
struct drm_device *dev = drm_get_device_from_kdev(kdev);
struct drm_file *file_priv;
int retcode = 0;
if (dev == NULL)
return (ENXIO);
if (drm_dev_needs_global_mutex(dev))
mutex_lock(&drm_global_mutex);
DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count));
mutex_lock(&dev->filelist_mutex);
file_priv = drm_find_file_by_minor(dev, minor(kdev));
if (file_priv == NULL) {
DRM_ERROR("can't find authenticator\n");
retcode = EINVAL;
mutex_unlock(&dev->filelist_mutex);
goto done;
}
SPLAY_REMOVE(drm_file_tree, &dev->files, file_priv);
mutex_unlock(&dev->filelist_mutex);
drm_file_free(file_priv);
done:
if (atomic_dec_and_test(&dev->open_count))
drm_lastclose(dev);
if (drm_dev_needs_global_mutex(dev))
mutex_unlock(&drm_global_mutex);
return (retcode);
}
int
drmread(dev_t kdev, struct uio *uio, int ioflag)
{
struct drm_device *dev = drm_get_device_from_kdev(kdev);
struct drm_file *file_priv;
struct drm_pending_event *ev;
int error = 0;
if (dev == NULL)
return (ENXIO);
mutex_lock(&dev->filelist_mutex);
file_priv = drm_find_file_by_minor(dev, minor(kdev));
mutex_unlock(&dev->filelist_mutex);
if (file_priv == NULL)
return (ENXIO);
/*
* The semantics are a little weird here. We will wait until we
* have events to process, but as soon as we have events we will
* only deliver as many as we have.
* Note that events are atomic, if the read buffer will not fit in
* a whole event, we won't read any of it out.
*/
mtx_enter(&dev->event_lock);
while (error == 0 && list_empty(&file_priv->event_list)) {
if (ioflag & IO_NDELAY) {
mtx_leave(&dev->event_lock);
return (EAGAIN);
}
error = msleep_nsec(&file_priv->event_wait, &dev->event_lock,
PWAIT | PCATCH, "drmread", INFSLP);
}
if (error) {
mtx_leave(&dev->event_lock);
return (error);
}
while (drm_dequeue_event(dev, file_priv, uio->uio_resid, &ev)) {
MUTEX_ASSERT_UNLOCKED(&dev->event_lock);
/* XXX we always destroy the event on error. */
error = uiomove(ev->event, ev->event->length, uio);
kfree(ev);
if (error)
break;
mtx_enter(&dev->event_lock);
}
MUTEX_ASSERT_UNLOCKED(&dev->event_lock);
return (error);
}
/*
* Deqeue an event from the file priv in question. returning 1 if an
* event was found. We take the resid from the read as a parameter because
* we will only dequeue and event if the read buffer has space to fit the
* entire thing.
*
* We are called locked, but we will *unlock* the queue on return so that
* we may sleep to copyout the event.
*/
int
drm_dequeue_event(struct drm_device *dev, struct drm_file *file_priv,
size_t resid, struct drm_pending_event **out)
{
struct drm_pending_event *e = NULL;
int gotone = 0;
MUTEX_ASSERT_LOCKED(&dev->event_lock);
*out = NULL;
if (list_empty(&file_priv->event_list))
goto out;
e = list_first_entry(&file_priv->event_list,
struct drm_pending_event, link);
if (e->event->length > resid)
goto out;
file_priv->event_space += e->event->length;
list_del(&e->link);
*out = e;
gotone = 1;
out:
mtx_leave(&dev->event_lock);
return (gotone);
}
paddr_t
drmmmap(dev_t kdev, off_t offset, int prot)
{
return -1;
}
struct drm_dmamem *
drm_dmamem_alloc(bus_dma_tag_t dmat, bus_size_t size, bus_size_t alignment,
int nsegments, bus_size_t maxsegsz, int mapflags, int loadflags)
{
struct drm_dmamem *mem;
size_t strsize;
/*
* segs is the last member of the struct since we modify the size
* to allow extra segments if more than one are allowed.
*/
strsize = sizeof(*mem) + (sizeof(bus_dma_segment_t) * (nsegments - 1));
mem = malloc(strsize, M_DRM, M_NOWAIT | M_ZERO);
if (mem == NULL)
return (NULL);
mem->size = size;
if (bus_dmamap_create(dmat, size, nsegments, maxsegsz, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mem->map) != 0)
goto strfree;
if (bus_dmamem_alloc(dmat, size, alignment, 0, mem->segs, nsegments,
&mem->nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0)
goto destroy;
if (bus_dmamem_map(dmat, mem->segs, mem->nsegs, size,
&mem->kva, BUS_DMA_NOWAIT | mapflags) != 0)
goto free;
if (bus_dmamap_load(dmat, mem->map, mem->kva, size,
NULL, BUS_DMA_NOWAIT | loadflags) != 0)
goto unmap;
return (mem);
unmap:
bus_dmamem_unmap(dmat, mem->kva, size);
free:
bus_dmamem_free(dmat, mem->segs, mem->nsegs);
destroy:
bus_dmamap_destroy(dmat, mem->map);
strfree:
free(mem, M_DRM, 0);
return (NULL);
}
void
drm_dmamem_free(bus_dma_tag_t dmat, struct drm_dmamem *mem)
{
if (mem == NULL)
return;
bus_dmamap_unload(dmat, mem->map);
bus_dmamem_unmap(dmat, mem->kva, mem->size);
bus_dmamem_free(dmat, mem->segs, mem->nsegs);
bus_dmamap_destroy(dmat, mem->map);
free(mem, M_DRM, 0);
}
struct drm_dma_handle *
drm_pci_alloc(struct drm_device *dev, size_t size, size_t align)
{
struct drm_dma_handle *dmah;
dmah = malloc(sizeof(*dmah), M_DRM, M_WAITOK);
dmah->mem = drm_dmamem_alloc(dev->dmat, size, align, 1, size,
BUS_DMA_NOCACHE, 0);
if (dmah->mem == NULL) {
free(dmah, M_DRM, sizeof(*dmah));
return NULL;
}
dmah->busaddr = dmah->mem->segs[0].ds_addr;
dmah->size = dmah->mem->size;
dmah->vaddr = dmah->mem->kva;
return (dmah);
}
void
drm_pci_free(struct drm_device *dev, struct drm_dma_handle *dmah)
{
if (dmah == NULL)
return;
drm_dmamem_free(dev->dmat, dmah->mem);
free(dmah, M_DRM, sizeof(*dmah));
}
/*
* Compute order. Can be made faster.
*/
int
drm_order(unsigned long size)
{
int order;
unsigned long tmp;
for (order = 0, tmp = size; tmp >>= 1; ++order)
;
if (size & ~(1 << order))
++order;
return order;
}
int
drm_getpciinfo(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct drm_pciinfo *info = data;
if (dev->pdev == NULL)
return -ENOTTY;
info->domain = dev->pdev->bus->domain_nr;
info->bus = dev->pdev->bus->number;
info->dev = PCI_SLOT(dev->pdev->devfn);
info->func = PCI_FUNC(dev->pdev->devfn);
info->vendor_id = dev->pdev->vendor;
info->device_id = dev->pdev->device;
info->subvendor_id = dev->pdev->subsystem_vendor;
info->subdevice_id = dev->pdev->subsystem_device;
info->revision_id = 0;
return 0;
}