sync with OpenBSD -current

This commit is contained in:
purplerain 2023-11-29 19:53:16 +00:00
parent 8b84d503c1
commit ed26f93d8c
Signed by: purplerain
GPG key ID: F42C07F07E2E35B7
33 changed files with 305 additions and 301 deletions

View file

@ -1,4 +1,4 @@
/* $OpenBSD: cm_pmeth.c,v 1.10 2022/11/26 16:08:51 tb Exp $ */
/* $OpenBSD: cm_pmeth.c,v 1.11 2023/11/29 21:35:57 tb Exp $ */
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2010.
*/
@ -143,7 +143,7 @@ pkey_cmac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
break;
case EVP_PKEY_CTRL_CIPHER:
if (!CMAC_Init(cmctx, NULL, 0, p2, ctx->engine))
if (!CMAC_Init(cmctx, NULL, 0, p2, NULL))
return 0;
break;

View file

@ -1,4 +1,4 @@
/* $OpenBSD: cmac.c,v 1.14 2023/07/08 14:27:14 beck Exp $ */
/* $OpenBSD: cmac.c,v 1.16 2023/11/29 21:35:57 tb Exp $ */
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project.
*/
@ -59,37 +59,52 @@
#include "evp_local.h"
/*
* This implementation follows https://doi.org/10.6028/NIST.SP.800-38B
*/
/*
* CMAC context. k1 and k2 are the secret subkeys, computed as in section 6.1.
* The temporary block tbl is a scratch buffer that holds intermediate secrets.
*/
struct CMAC_CTX_st {
/* Cipher context to use */
EVP_CIPHER_CTX cctx;
/* Keys k1 and k2 */
unsigned char k1[EVP_MAX_BLOCK_LENGTH];
unsigned char k2[EVP_MAX_BLOCK_LENGTH];
/* Temporary block */
unsigned char tbl[EVP_MAX_BLOCK_LENGTH];
/* Last (possibly partial) block */
unsigned char last_block[EVP_MAX_BLOCK_LENGTH];
/* Number of bytes in last block: -1 means context not initialised */
/* Bytes in last block. -1 means not initialized. */
int nlast_block;
};
/* Make temporary keys K1 and K2 */
/*
* SP 800-38B, section 6.1, steps 2 and 3: given the input key l, calculate
* the subkeys k1 and k2: shift l one bit to the left. If the most significant
* bit of l was 1, additionally xor the result with Rb to get kn.
*
* Step 2: calculate k1 with l being the intermediate block CIPH_K(0),
* Step 3: calculate k2 from l == k1.
*
* Per 5.3, Rb is the lexically first irreducible polynomial of degree b with
* the minimum number of non-zero terms. This gives R128 = (1 << 128) | 0x87
* and R64 = (1 << 64) | 0x1b for the only supported block sizes 128 and 64.
*/
static void
make_kn(unsigned char *k1, unsigned char *l, int bl)
make_kn(unsigned char *kn, const unsigned char *l, int bl)
{
unsigned char mask, Rb;
int i;
/* Shift block to left, including carry */
for (i = 0; i < bl; i++) {
k1[i] = l[i] << 1;
if (i < bl - 1 && l[i + 1] & 0x80)
k1[i] |= 1;
}
/* If MSB set fixup with R */
if (l[0] & 0x80)
k1[bl - 1] ^= bl == 16 ? 0x87 : 0x1b;
/* Choose Rb according to the block size in bytes. */
Rb = bl == 16 ? 0x87 : 0x1b;
/* Compute l << 1 up to last byte. */
for (i = 0; i < bl - 1; i++)
kn[i] = (l[i] << 1) | (l[i + 1] >> 7);
/* Only xor with Rb if the MSB is one. */
mask = 0 - (l[0] >> 7);
kn[bl - 1] = (l[bl - 1] << 1) ^ (Rb & mask);
}
CMAC_CTX *
@ -160,44 +175,61 @@ CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen,
const EVP_CIPHER *cipher, ENGINE *impl)
{
static unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH];
int bl;
/* All zeros means restart */
if (!key && !cipher && !impl && keylen == 0) {
if (key == NULL && cipher == NULL && keylen == 0) {
/* Not initialised */
if (ctx->nlast_block == -1)
return 0;
if (!EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, zero_iv))
return 0;
memset(ctx->tbl, 0, EVP_CIPHER_CTX_block_size(&ctx->cctx));
explicit_bzero(ctx->tbl, sizeof(ctx->tbl));
ctx->nlast_block = 0;
return 1;
}
/* Initialise context */
if (cipher && !EVP_EncryptInit_ex(&ctx->cctx, cipher, impl, NULL, NULL))
return 0;
/* Non-NULL key means initialisation complete */
if (key) {
int bl;
if (!EVP_CIPHER_CTX_cipher(&ctx->cctx))
/* Initialise context. */
if (cipher != NULL) {
if (!EVP_EncryptInit_ex(&ctx->cctx, cipher, NULL, NULL, NULL))
return 0;
}
/* Non-NULL key means initialisation is complete. */
if (key != NULL) {
if (EVP_CIPHER_CTX_cipher(&ctx->cctx) == NULL)
return 0;
/* make_kn() only supports block sizes of 8 and 16 bytes. */
bl = EVP_CIPHER_CTX_block_size(&ctx->cctx);
if (bl != 8 && bl != 16)
return 0;
/*
* Section 6.1, step 1: store the intermediate secret CIPH_K(0)
* in ctx->tbl.
*/
if (!EVP_CIPHER_CTX_set_key_length(&ctx->cctx, keylen))
return 0;
if (!EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, key, zero_iv))
return 0;
bl = EVP_CIPHER_CTX_block_size(&ctx->cctx);
if (!EVP_Cipher(&ctx->cctx, ctx->tbl, zero_iv, bl))
return 0;
/* Section 6.1, step 2: compute k1 from intermediate secret. */
make_kn(ctx->k1, ctx->tbl, bl);
/* Section 6.1, step 3: compute k2 from k1. */
make_kn(ctx->k2, ctx->k1, bl);
explicit_bzero(ctx->tbl, bl);
/* Reset context again ready for first data block */
/* Destroy intermediate secret and reset last block count. */
explicit_bzero(ctx->tbl, sizeof(ctx->tbl));
ctx->nlast_block = 0;
/* Reset context again to get ready for the first data block. */
if (!EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, zero_iv))
return 0;
/* Zero tbl so resume works */
memset(ctx->tbl, 0, bl);
ctx->nlast_block = 0;
}
return 1;
}
LCRYPTO_ALIAS(CMAC_Init);