src/sys/net/if_pfsync.c

2659 lines
59 KiB
C
Raw Normal View History

2023-05-18 12:23:26 +00:00
/* $OpenBSD: if_pfsync.c,v 1.315 2023/05/18 12:10:04 sashan Exp $ */
/*
* Copyright (c) 2002 Michael Shalayeff
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2009 David Gwynne <dlg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/timeout.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/pool.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/netisr.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip_ipsp.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_fsm.h>
#include <netinet/udp.h>
#ifdef INET6
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#endif /* INET6 */
#include "carp.h"
#if NCARP > 0
#include <netinet/ip_carp.h>
#endif
#define PF_DEBUGNAME "pfsync: "
#include <net/pfvar.h>
#include <net/pfvar_priv.h>
#include <net/if_pfsync.h>
#include "bpfilter.h"
#include "pfsync.h"
#define PFSYNC_DEFER_NSEC 20000000ULL
#define PFSYNC_MINPKT ( \
sizeof(struct ip) + \
sizeof(struct pfsync_header))
int pfsync_upd_tcp(struct pf_state *, struct pfsync_state_peer *,
struct pfsync_state_peer *);
int pfsync_in_clr(caddr_t, int, int, int);
int pfsync_in_iack(caddr_t, int, int, int);
int pfsync_in_upd_c(caddr_t, int, int, int);
int pfsync_in_ureq(caddr_t, int, int, int);
int pfsync_in_del(caddr_t, int, int, int);
int pfsync_in_del_c(caddr_t, int, int, int);
int pfsync_in_bus(caddr_t, int, int, int);
int pfsync_in_tdb(caddr_t, int, int, int);
int pfsync_in_ins(caddr_t, int, int, int);
int pfsync_in_upd(caddr_t, int, int, int);
int pfsync_in_eof(caddr_t, int, int, int);
int pfsync_in_error(caddr_t, int, int, int);
void pfsync_update_state_locked(struct pf_state *);
const struct {
int (*in)(caddr_t, int, int, int);
size_t len;
} pfsync_acts[] = {
/* PFSYNC_ACT_CLR */
{ pfsync_in_clr, sizeof(struct pfsync_clr) },
/* PFSYNC_ACT_OINS */
{ pfsync_in_error, 0 },
/* PFSYNC_ACT_INS_ACK */
{ pfsync_in_iack, sizeof(struct pfsync_ins_ack) },
/* PFSYNC_ACT_OUPD */
{ pfsync_in_error, 0 },
/* PFSYNC_ACT_UPD_C */
{ pfsync_in_upd_c, sizeof(struct pfsync_upd_c) },
/* PFSYNC_ACT_UPD_REQ */
{ pfsync_in_ureq, sizeof(struct pfsync_upd_req) },
/* PFSYNC_ACT_DEL */
{ pfsync_in_del, sizeof(struct pfsync_state) },
/* PFSYNC_ACT_DEL_C */
{ pfsync_in_del_c, sizeof(struct pfsync_del_c) },
/* PFSYNC_ACT_INS_F */
{ pfsync_in_error, 0 },
/* PFSYNC_ACT_DEL_F */
{ pfsync_in_error, 0 },
/* PFSYNC_ACT_BUS */
{ pfsync_in_bus, sizeof(struct pfsync_bus) },
/* PFSYNC_ACT_OTDB */
{ pfsync_in_error, 0 },
/* PFSYNC_ACT_EOF */
{ pfsync_in_error, 0 },
/* PFSYNC_ACT_INS */
{ pfsync_in_ins, sizeof(struct pfsync_state) },
/* PFSYNC_ACT_UPD */
{ pfsync_in_upd, sizeof(struct pfsync_state) },
/* PFSYNC_ACT_TDB */
{ pfsync_in_tdb, sizeof(struct pfsync_tdb) },
};
struct pfsync_q {
void (*write)(struct pf_state *, void *);
size_t len;
u_int8_t action;
};
/* we have one of these for every PFSYNC_S_ */
void pfsync_out_state(struct pf_state *, void *);
void pfsync_out_iack(struct pf_state *, void *);
void pfsync_out_upd_c(struct pf_state *, void *);
void pfsync_out_del(struct pf_state *, void *);
struct pfsync_q pfsync_qs[] = {
{ pfsync_out_iack, sizeof(struct pfsync_ins_ack), PFSYNC_ACT_INS_ACK },
{ pfsync_out_upd_c, sizeof(struct pfsync_upd_c), PFSYNC_ACT_UPD_C },
{ pfsync_out_del, sizeof(struct pfsync_del_c), PFSYNC_ACT_DEL_C },
{ pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_INS },
{ pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_UPD }
};
void pfsync_q_ins(struct pf_state *, int);
void pfsync_q_del(struct pf_state *);
struct pfsync_upd_req_item {
TAILQ_ENTRY(pfsync_upd_req_item) ur_entry;
TAILQ_ENTRY(pfsync_upd_req_item) ur_snap;
struct pfsync_upd_req ur_msg;
};
TAILQ_HEAD(pfsync_upd_reqs, pfsync_upd_req_item);
struct pfsync_deferral {
TAILQ_ENTRY(pfsync_deferral) pd_entry;
struct pf_state *pd_st;
struct mbuf *pd_m;
uint64_t pd_deadline;
};
TAILQ_HEAD(pfsync_deferrals, pfsync_deferral);
#define PFSYNC_PLSIZE MAX(sizeof(struct pfsync_upd_req_item), \
sizeof(struct pfsync_deferral))
void pfsync_out_tdb(struct tdb *, void *);
struct pfsync_softc {
struct ifnet sc_if;
unsigned int sc_sync_ifidx;
struct pool sc_pool;
struct ip_moptions sc_imo;
struct in_addr sc_sync_peer;
u_int8_t sc_maxupdates;
struct ip sc_template;
struct pf_state_queue sc_qs[PFSYNC_S_COUNT];
struct mutex sc_st_mtx;
size_t sc_len;
struct pfsync_upd_reqs sc_upd_req_list;
struct mutex sc_upd_req_mtx;
int sc_initial_bulk;
int sc_link_demoted;
int sc_defer;
struct pfsync_deferrals sc_deferrals;
u_int sc_deferred;
struct mutex sc_deferrals_mtx;
struct timeout sc_deferrals_tmo;
void *sc_plus;
size_t sc_pluslen;
u_int32_t sc_ureq_sent;
int sc_bulk_tries;
struct timeout sc_bulkfail_tmo;
u_int32_t sc_ureq_received;
struct pf_state *sc_bulk_next;
struct pf_state *sc_bulk_last;
struct timeout sc_bulk_tmo;
TAILQ_HEAD(, tdb) sc_tdb_q;
struct mutex sc_tdb_mtx;
struct task sc_ltask;
struct task sc_dtask;
struct timeout sc_tmo;
};
struct pfsync_snapshot {
struct pfsync_softc *sn_sc;
struct pf_state_queue sn_qs[PFSYNC_S_COUNT];
struct pfsync_upd_reqs sn_upd_req_list;
TAILQ_HEAD(, tdb) sn_tdb_q;
size_t sn_len;
void *sn_plus;
size_t sn_pluslen;
};
struct pfsync_softc *pfsyncif = NULL;
struct cpumem *pfsynccounters;
void pfsyncattach(int);
int pfsync_clone_create(struct if_clone *, int);
int pfsync_clone_destroy(struct ifnet *);
void pfsync_update_net_tdb(struct pfsync_tdb *);
int pfsyncoutput(struct ifnet *, struct mbuf *, struct sockaddr *,
struct rtentry *);
int pfsyncioctl(struct ifnet *, u_long, caddr_t);
void pfsyncstart(struct ifqueue *);
void pfsync_syncdev_state(void *);
void pfsync_ifdetach(void *);
void pfsync_deferred(struct pf_state *, int);
void pfsync_undefer(struct pfsync_deferral *, int);
void pfsync_deferrals_tmo(void *);
void pfsync_cancel_full_update(struct pfsync_softc *);
void pfsync_request_full_update(struct pfsync_softc *);
void pfsync_request_update(u_int32_t, u_int64_t);
void pfsync_update_state_req(struct pf_state *);
void pfsync_drop(struct pfsync_softc *);
void pfsync_sendout(void);
void pfsync_send_plus(void *, size_t);
void pfsync_timeout(void *);
void pfsync_tdb_timeout(void *);
void pfsync_bulk_start(void);
void pfsync_bulk_status(u_int8_t);
void pfsync_bulk_update(void *);
void pfsync_bulk_fail(void *);
void pfsync_grab_snapshot(struct pfsync_snapshot *, struct pfsync_softc *);
void pfsync_drop_snapshot(struct pfsync_snapshot *);
void pfsync_send_dispatch(void *);
void pfsync_send_pkt(struct mbuf *);
static struct mbuf_queue pfsync_mq;
static struct task pfsync_task =
TASK_INITIALIZER(pfsync_send_dispatch, &pfsync_mq);
#define PFSYNC_MAX_BULKTRIES 12
int pfsync_sync_ok;
struct if_clone pfsync_cloner =
IF_CLONE_INITIALIZER("pfsync", pfsync_clone_create, pfsync_clone_destroy);
void
pfsyncattach(int npfsync)
{
if_clone_attach(&pfsync_cloner);
pfsynccounters = counters_alloc(pfsyncs_ncounters);
mq_init(&pfsync_mq, 4096, IPL_MPFLOOR);
}
int
pfsync_clone_create(struct if_clone *ifc, int unit)
{
struct pfsync_softc *sc;
struct ifnet *ifp;
int q;
if (unit != 0)
return (EINVAL);
pfsync_sync_ok = 1;
sc = malloc(sizeof(*pfsyncif), M_DEVBUF, M_WAITOK|M_ZERO);
for (q = 0; q < PFSYNC_S_COUNT; q++)
TAILQ_INIT(&sc->sc_qs[q]);
mtx_init(&sc->sc_st_mtx, IPL_MPFLOOR);
pool_init(&sc->sc_pool, PFSYNC_PLSIZE, 0, IPL_MPFLOOR, 0, "pfsync",
NULL);
TAILQ_INIT(&sc->sc_upd_req_list);
mtx_init(&sc->sc_upd_req_mtx, IPL_MPFLOOR);
TAILQ_INIT(&sc->sc_deferrals);
mtx_init(&sc->sc_deferrals_mtx, IPL_MPFLOOR);
timeout_set_proc(&sc->sc_deferrals_tmo, pfsync_deferrals_tmo, sc);
task_set(&sc->sc_ltask, pfsync_syncdev_state, sc);
task_set(&sc->sc_dtask, pfsync_ifdetach, sc);
sc->sc_deferred = 0;
TAILQ_INIT(&sc->sc_tdb_q);
mtx_init(&sc->sc_tdb_mtx, IPL_MPFLOOR);
sc->sc_len = PFSYNC_MINPKT;
sc->sc_maxupdates = 128;
sc->sc_imo.imo_membership = mallocarray(IP_MIN_MEMBERSHIPS,
sizeof(struct in_multi *), M_IPMOPTS, M_WAITOK|M_ZERO);
sc->sc_imo.imo_max_memberships = IP_MIN_MEMBERSHIPS;
ifp = &sc->sc_if;
snprintf(ifp->if_xname, sizeof ifp->if_xname, "pfsync%d", unit);
ifp->if_softc = sc;
ifp->if_ioctl = pfsyncioctl;
ifp->if_output = pfsyncoutput;
ifp->if_qstart = pfsyncstart;
ifp->if_type = IFT_PFSYNC;
ifp->if_hdrlen = sizeof(struct pfsync_header);
ifp->if_mtu = ETHERMTU;
ifp->if_xflags = IFXF_CLONED | IFXF_MPSAFE;
timeout_set_proc(&sc->sc_tmo, pfsync_timeout, NULL);
timeout_set_proc(&sc->sc_bulk_tmo, pfsync_bulk_update, NULL);
timeout_set_proc(&sc->sc_bulkfail_tmo, pfsync_bulk_fail, NULL);
if_attach(ifp);
if_alloc_sadl(ifp);
#if NCARP > 0
if_addgroup(ifp, "carp");
#endif
#if NBPFILTER > 0
bpfattach(&sc->sc_if.if_bpf, ifp, DLT_PFSYNC, PFSYNC_HDRLEN);
#endif
pfsyncif = sc;
return (0);
}
int
pfsync_clone_destroy(struct ifnet *ifp)
{
struct pfsync_softc *sc = ifp->if_softc;
struct ifnet *ifp0;
struct pfsync_deferral *pd;
struct pfsync_deferrals deferrals;
NET_LOCK();
#if NCARP > 0
if (!pfsync_sync_ok)
carp_group_demote_adj(&sc->sc_if, -1, "pfsync destroy");
if (sc->sc_link_demoted)
carp_group_demote_adj(&sc->sc_if, -1, "pfsync destroy");
#endif
if ((ifp0 = if_get(sc->sc_sync_ifidx)) != NULL) {
if_linkstatehook_del(ifp0, &sc->sc_ltask);
if_detachhook_del(ifp0, &sc->sc_dtask);
}
if_put(ifp0);
/* XXXSMP breaks atomicity */
NET_UNLOCK();
if_detach(ifp);
NET_LOCK();
pfsync_drop(sc);
if (sc->sc_deferred > 0) {
TAILQ_INIT(&deferrals);
mtx_enter(&sc->sc_deferrals_mtx);
TAILQ_CONCAT(&deferrals, &sc->sc_deferrals, pd_entry);
sc->sc_deferred = 0;
mtx_leave(&sc->sc_deferrals_mtx);
while ((pd = TAILQ_FIRST(&deferrals)) != NULL) {
TAILQ_REMOVE(&deferrals, pd, pd_entry);
pfsync_undefer(pd, 0);
}
}
pfsyncif = NULL;
timeout_del(&sc->sc_bulkfail_tmo);
timeout_del(&sc->sc_bulk_tmo);
timeout_del(&sc->sc_tmo);
NET_UNLOCK();
pool_destroy(&sc->sc_pool);
free(sc->sc_imo.imo_membership, M_IPMOPTS,
sc->sc_imo.imo_max_memberships * sizeof(struct in_multi *));
free(sc, M_DEVBUF, sizeof(*sc));
return (0);
}
/*
* Start output on the pfsync interface.
*/
void
pfsyncstart(struct ifqueue *ifq)
{
ifq_purge(ifq);
}
void
pfsync_syncdev_state(void *arg)
{
struct pfsync_softc *sc = arg;
struct ifnet *ifp;
if ((sc->sc_if.if_flags & IFF_UP) == 0)
return;
if ((ifp = if_get(sc->sc_sync_ifidx)) == NULL)
return;
if (ifp->if_link_state == LINK_STATE_DOWN) {
sc->sc_if.if_flags &= ~IFF_RUNNING;
if (!sc->sc_link_demoted) {
#if NCARP > 0
carp_group_demote_adj(&sc->sc_if, 1,
"pfsync link state down");
#endif
sc->sc_link_demoted = 1;
}
/* drop everything */
timeout_del(&sc->sc_tmo);
pfsync_drop(sc);
pfsync_cancel_full_update(sc);
} else if (sc->sc_link_demoted) {
sc->sc_if.if_flags |= IFF_RUNNING;
pfsync_request_full_update(sc);
}
if_put(ifp);
}
void
pfsync_ifdetach(void *arg)
{
struct pfsync_softc *sc = arg;
struct ifnet *ifp;
if ((ifp = if_get(sc->sc_sync_ifidx)) != NULL) {
if_linkstatehook_del(ifp, &sc->sc_ltask);
if_detachhook_del(ifp, &sc->sc_dtask);
}
if_put(ifp);
sc->sc_sync_ifidx = 0;
}
int
pfsync_input(struct mbuf **mp, int *offp, int proto, int af)
{
struct mbuf *n, *m = *mp;
struct pfsync_softc *sc = pfsyncif;
struct ip *ip = mtod(m, struct ip *);
struct pfsync_header *ph;
struct pfsync_subheader subh;
int offset, noff, len, count, mlen, flags = 0;
int e;
NET_ASSERT_LOCKED();
pfsyncstat_inc(pfsyncs_ipackets);
/* verify that we have a sync interface configured */
if (sc == NULL || !ISSET(sc->sc_if.if_flags, IFF_RUNNING) ||
sc->sc_sync_ifidx == 0 || !pf_status.running)
goto done;
/* verify that the packet came in on the right interface */
if (sc->sc_sync_ifidx != m->m_pkthdr.ph_ifidx) {
pfsyncstat_inc(pfsyncs_badif);
goto done;
}
sc->sc_if.if_ipackets++;
sc->sc_if.if_ibytes += m->m_pkthdr.len;
/* verify that the IP TTL is 255. */
if (ip->ip_ttl != PFSYNC_DFLTTL) {
pfsyncstat_inc(pfsyncs_badttl);
goto done;
}
offset = ip->ip_hl << 2;
n = m_pulldown(m, offset, sizeof(*ph), &noff);
if (n == NULL) {
pfsyncstat_inc(pfsyncs_hdrops);
return IPPROTO_DONE;
}
ph = (struct pfsync_header *)(n->m_data + noff);
/* verify the version */
if (ph->version != PFSYNC_VERSION) {
pfsyncstat_inc(pfsyncs_badver);
goto done;
}
len = ntohs(ph->len) + offset;
if (m->m_pkthdr.len < len) {
pfsyncstat_inc(pfsyncs_badlen);
goto done;
}
if (!bcmp(&ph->pfcksum, &pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH))
flags = PFSYNC_SI_CKSUM;
offset += sizeof(*ph);
while (offset <= len - sizeof(subh)) {
m_copydata(m, offset, sizeof(subh), &subh);
offset += sizeof(subh);
mlen = subh.len << 2;
count = ntohs(subh.count);
if (subh.action >= PFSYNC_ACT_MAX ||
subh.action >= nitems(pfsync_acts) ||
mlen < pfsync_acts[subh.action].len) {
/*
* subheaders are always followed by at least one
* message, so if the peer is new
* enough to tell us how big its messages are then we
* know enough to skip them.
*/
if (count > 0 && mlen > 0) {
offset += count * mlen;
continue;
}
pfsyncstat_inc(pfsyncs_badact);
goto done;
}
n = m_pulldown(m, offset, mlen * count, &noff);
if (n == NULL) {
pfsyncstat_inc(pfsyncs_badlen);
return IPPROTO_DONE;
}
e = pfsync_acts[subh.action].in(n->m_data + noff, mlen, count,
flags);
if (e != 0)
goto done;
offset += mlen * count;
}
done:
m_freem(m);
return IPPROTO_DONE;
}
int
pfsync_in_clr(caddr_t buf, int len, int count, int flags)
{
struct pfsync_clr *clr;
struct pf_state *st, *nexts;
struct pfi_kif *kif;
u_int32_t creatorid;
int i;
PF_LOCK();
for (i = 0; i < count; i++) {
clr = (struct pfsync_clr *)buf + len * i;
kif = NULL;
creatorid = clr->creatorid;
if (strlen(clr->ifname) &&
(kif = pfi_kif_find(clr->ifname)) == NULL)
continue;
PF_STATE_ENTER_WRITE();
RBT_FOREACH_SAFE(st, pf_state_tree_id, &tree_id, nexts) {
if (st->creatorid == creatorid &&
((kif && st->kif == kif) || !kif)) {
SET(st->state_flags, PFSTATE_NOSYNC);
pf_remove_state(st);
}
}
PF_STATE_EXIT_WRITE();
}
PF_UNLOCK();
return (0);
}
int
pfsync_in_ins(caddr_t buf, int len, int count, int flags)
{
struct pfsync_state *sp;
sa_family_t af1, af2;
int i;
PF_LOCK();
for (i = 0; i < count; i++) {
sp = (struct pfsync_state *)(buf + len * i);
af1 = sp->key[0].af;
af2 = sp->key[1].af;
/* check for invalid values */
if (sp->timeout >= PFTM_MAX ||
sp->src.state > PF_TCPS_PROXY_DST ||
sp->dst.state > PF_TCPS_PROXY_DST ||
sp->direction > PF_OUT ||
(((af1 || af2) &&
((af1 != AF_INET && af1 != AF_INET6) ||
(af2 != AF_INET && af2 != AF_INET6))) ||
(sp->af != AF_INET && sp->af != AF_INET6))) {
DPFPRINTF(LOG_NOTICE,
"pfsync_input: PFSYNC5_ACT_INS: invalid value");
pfsyncstat_inc(pfsyncs_badval);
continue;
}
if (pf_state_import(sp, flags) == ENOMEM) {
/* drop out, but process the rest of the actions */
break;
}
}
PF_UNLOCK();
return (0);
}
int
pfsync_in_iack(caddr_t buf, int len, int count, int flags)
{
struct pfsync_ins_ack *ia;
struct pf_state_cmp id_key;
struct pf_state *st;
int i;
for (i = 0; i < count; i++) {
ia = (struct pfsync_ins_ack *)(buf + len * i);
id_key.id = ia->id;
id_key.creatorid = ia->creatorid;
PF_STATE_ENTER_READ();
st = pf_find_state_byid(&id_key);
pf_state_ref(st);
PF_STATE_EXIT_READ();
if (st == NULL)
continue;
if (ISSET(st->state_flags, PFSTATE_ACK))
pfsync_deferred(st, 0);
pf_state_unref(st);
}
return (0);
}
int
pfsync_upd_tcp(struct pf_state *st, struct pfsync_state_peer *src,
struct pfsync_state_peer *dst)
{
int sync = 0;
/*
* The state should never go backwards except
* for syn-proxy states. Neither should the
* sequence window slide backwards.
*/
if ((st->src.state > src->state &&
(st->src.state < PF_TCPS_PROXY_SRC ||
src->state >= PF_TCPS_PROXY_SRC)) ||
(st->src.state == src->state &&
SEQ_GT(st->src.seqlo, ntohl(src->seqlo))))
sync++;
else
pf_state_peer_ntoh(src, &st->src);
if ((st->dst.state > dst->state) ||
(st->dst.state >= TCPS_SYN_SENT &&
SEQ_GT(st->dst.seqlo, ntohl(dst->seqlo))))
sync++;
else
pf_state_peer_ntoh(dst, &st->dst);
return (sync);
}
int
pfsync_in_upd(caddr_t buf, int len, int count, int flags)
{
struct pfsync_state *sp;
struct pf_state_cmp id_key;
struct pf_state *st;
int sync, error;
int i;
for (i = 0; i < count; i++) {
sp = (struct pfsync_state *)(buf + len * i);
/* check for invalid values */
if (sp->timeout >= PFTM_MAX ||
sp->src.state > PF_TCPS_PROXY_DST ||
sp->dst.state > PF_TCPS_PROXY_DST) {
DPFPRINTF(LOG_NOTICE,
"pfsync_input: PFSYNC_ACT_UPD: invalid value");
pfsyncstat_inc(pfsyncs_badval);
continue;
}
id_key.id = sp->id;
id_key.creatorid = sp->creatorid;
PF_STATE_ENTER_READ();
st = pf_find_state_byid(&id_key);
pf_state_ref(st);
PF_STATE_EXIT_READ();
if (st == NULL) {
/* insert the update */
PF_LOCK();
error = pf_state_import(sp, flags);
if (error)
pfsyncstat_inc(pfsyncs_badstate);
PF_UNLOCK();
continue;
}
if (ISSET(st->state_flags, PFSTATE_ACK))
pfsync_deferred(st, 1);
if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP)
sync = pfsync_upd_tcp(st, &sp->src, &sp->dst);
else {
sync = 0;
/*
* Non-TCP protocol state machine always go
* forwards
*/
if (st->src.state > sp->src.state)
sync++;
else
pf_state_peer_ntoh(&sp->src, &st->src);
if (st->dst.state > sp->dst.state)
sync++;
else
pf_state_peer_ntoh(&sp->dst, &st->dst);
}
if (sync < 2) {
pf_state_alloc_scrub_memory(&sp->dst, &st->dst);
pf_state_peer_ntoh(&sp->dst, &st->dst);
st->expire = getuptime();
st->timeout = sp->timeout;
}
st->pfsync_time = getuptime();
if (sync) {
pfsyncstat_inc(pfsyncs_stale);
pfsync_update_state(st);
schednetisr(NETISR_PFSYNC);
}
pf_state_unref(st);
}
return (0);
}
int
pfsync_in_upd_c(caddr_t buf, int len, int count, int flags)
{
struct pfsync_upd_c *up;
struct pf_state_cmp id_key;
struct pf_state *st;
int sync;
int i;
for (i = 0; i < count; i++) {
up = (struct pfsync_upd_c *)(buf + len * i);
/* check for invalid values */
if (up->timeout >= PFTM_MAX ||
up->src.state > PF_TCPS_PROXY_DST ||
up->dst.state > PF_TCPS_PROXY_DST) {
DPFPRINTF(LOG_NOTICE,
"pfsync_input: PFSYNC_ACT_UPD_C: invalid value");
pfsyncstat_inc(pfsyncs_badval);
continue;
}
id_key.id = up->id;
id_key.creatorid = up->creatorid;
PF_STATE_ENTER_READ();
st = pf_find_state_byid(&id_key);
pf_state_ref(st);
PF_STATE_EXIT_READ();
if (st == NULL) {
/* We don't have this state. Ask for it. */
pfsync_request_update(id_key.creatorid, id_key.id);
continue;
}
if (ISSET(st->state_flags, PFSTATE_ACK))
pfsync_deferred(st, 1);
if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP)
sync = pfsync_upd_tcp(st, &up->src, &up->dst);
else {
sync = 0;
/*
* Non-TCP protocol state machine always go
* forwards
*/
if (st->src.state > up->src.state)
sync++;
else
pf_state_peer_ntoh(&up->src, &st->src);
if (st->dst.state > up->dst.state)
sync++;
else
pf_state_peer_ntoh(&up->dst, &st->dst);
}
if (sync < 2) {
pf_state_alloc_scrub_memory(&up->dst, &st->dst);
pf_state_peer_ntoh(&up->dst, &st->dst);
st->expire = getuptime();
st->timeout = up->timeout;
}
st->pfsync_time = getuptime();
if (sync) {
pfsyncstat_inc(pfsyncs_stale);
pfsync_update_state(st);
schednetisr(NETISR_PFSYNC);
}
pf_state_unref(st);
}
return (0);
}
int
pfsync_in_ureq(caddr_t buf, int len, int count, int flags)
{
struct pfsync_upd_req *ur;
int i;
struct pf_state_cmp id_key;
struct pf_state *st;
for (i = 0; i < count; i++) {
ur = (struct pfsync_upd_req *)(buf + len * i);
id_key.id = ur->id;
id_key.creatorid = ur->creatorid;
if (id_key.id == 0 && id_key.creatorid == 0)
pfsync_bulk_start();
else {
PF_STATE_ENTER_READ();
st = pf_find_state_byid(&id_key);
pf_state_ref(st);
PF_STATE_EXIT_READ();
if (st == NULL) {
pfsyncstat_inc(pfsyncs_badstate);
continue;
}
if (ISSET(st->state_flags, PFSTATE_NOSYNC)) {
pf_state_unref(st);
continue;
}
pfsync_update_state_req(st);
pf_state_unref(st);
}
}
return (0);
}
int
pfsync_in_del(caddr_t buf, int len, int count, int flags)
{
struct pfsync_state *sp;
struct pf_state_cmp id_key;
struct pf_state *st;
int i;
PF_STATE_ENTER_WRITE();
for (i = 0; i < count; i++) {
sp = (struct pfsync_state *)(buf + len * i);
id_key.id = sp->id;
id_key.creatorid = sp->creatorid;
st = pf_find_state_byid(&id_key);
if (st == NULL) {
pfsyncstat_inc(pfsyncs_badstate);
continue;
}
SET(st->state_flags, PFSTATE_NOSYNC);
pf_remove_state(st);
}
PF_STATE_EXIT_WRITE();
return (0);
}
int
pfsync_in_del_c(caddr_t buf, int len, int count, int flags)
{
struct pfsync_del_c *sp;
struct pf_state_cmp id_key;
struct pf_state *st;
int i;
PF_LOCK();
PF_STATE_ENTER_WRITE();
for (i = 0; i < count; i++) {
sp = (struct pfsync_del_c *)(buf + len * i);
id_key.id = sp->id;
id_key.creatorid = sp->creatorid;
st = pf_find_state_byid(&id_key);
if (st == NULL) {
pfsyncstat_inc(pfsyncs_badstate);
continue;
}
SET(st->state_flags, PFSTATE_NOSYNC);
pf_remove_state(st);
}
PF_STATE_EXIT_WRITE();
PF_UNLOCK();
return (0);
}
int
pfsync_in_bus(caddr_t buf, int len, int count, int flags)
{
struct pfsync_softc *sc = pfsyncif;
struct pfsync_bus *bus;
/* If we're not waiting for a bulk update, who cares. */
if (sc->sc_ureq_sent == 0)
return (0);
bus = (struct pfsync_bus *)buf;
switch (bus->status) {
case PFSYNC_BUS_START:
timeout_add(&sc->sc_bulkfail_tmo, 4 * hz +
pf_pool_limits[PF_LIMIT_STATES].limit /
((sc->sc_if.if_mtu - PFSYNC_MINPKT) /
sizeof(struct pfsync_state)));
DPFPRINTF(LOG_INFO, "received bulk update start");
break;
case PFSYNC_BUS_END:
if (getuptime() - ntohl(bus->endtime) >=
sc->sc_ureq_sent) {
/* that's it, we're happy */
sc->sc_ureq_sent = 0;
sc->sc_bulk_tries = 0;
timeout_del(&sc->sc_bulkfail_tmo);
#if NCARP > 0
if (!pfsync_sync_ok)
carp_group_demote_adj(&sc->sc_if, -1,
sc->sc_link_demoted ?
"pfsync link state up" :
"pfsync bulk done");
if (sc->sc_initial_bulk) {
carp_group_demote_adj(&sc->sc_if, -32,
"pfsync init");
sc->sc_initial_bulk = 0;
}
#endif
pfsync_sync_ok = 1;
sc->sc_link_demoted = 0;
DPFPRINTF(LOG_INFO, "received valid bulk update end");
} else {
DPFPRINTF(LOG_WARNING, "received invalid "
"bulk update end: bad timestamp");
}
break;
}
return (0);
}
int
pfsync_in_tdb(caddr_t buf, int len, int count, int flags)
{
#if defined(IPSEC)
struct pfsync_tdb *tp;
int i;
for (i = 0; i < count; i++) {
tp = (struct pfsync_tdb *)(buf + len * i);
pfsync_update_net_tdb(tp);
}
#endif
return (0);
}
#if defined(IPSEC)
/* Update an in-kernel tdb. Silently fail if no tdb is found. */
void
pfsync_update_net_tdb(struct pfsync_tdb *pt)
{
struct tdb *tdb;
NET_ASSERT_LOCKED();
/* check for invalid values */
if (ntohl(pt->spi) <= SPI_RESERVED_MAX ||
(pt->dst.sa.sa_family != AF_INET &&
pt->dst.sa.sa_family != AF_INET6))
goto bad;
tdb = gettdb(ntohs(pt->rdomain), pt->spi,
(union sockaddr_union *)&pt->dst, pt->sproto);
if (tdb) {
pt->rpl = betoh64(pt->rpl);
pt->cur_bytes = betoh64(pt->cur_bytes);
/* Neither replay nor byte counter should ever decrease. */
if (pt->rpl < tdb->tdb_rpl ||
pt->cur_bytes < tdb->tdb_cur_bytes) {
tdb_unref(tdb);
goto bad;
}
tdb->tdb_rpl = pt->rpl;
tdb->tdb_cur_bytes = pt->cur_bytes;
tdb_unref(tdb);
}
return;
bad:
DPFPRINTF(LOG_WARNING, "pfsync_insert: PFSYNC_ACT_TDB_UPD: "
"invalid value");
pfsyncstat_inc(pfsyncs_badstate);
return;
}
#endif
int
pfsync_in_eof(caddr_t buf, int len, int count, int flags)
{
if (len > 0 || count > 0)
pfsyncstat_inc(pfsyncs_badact);
/* we're done. let the caller return */
return (1);
}
int
pfsync_in_error(caddr_t buf, int len, int count, int flags)
{
pfsyncstat_inc(pfsyncs_badact);
return (-1);
}
int
pfsyncoutput(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
struct rtentry *rt)
{
m_freem(m); /* drop packet */
return (EAFNOSUPPORT);
}
int
pfsyncioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct proc *p = curproc;
struct pfsync_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ip_moptions *imo = &sc->sc_imo;
struct pfsyncreq pfsyncr;
struct ifnet *ifp0, *sifp;
struct ip *ip;
int error;
switch (cmd) {
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_RUNNING) == 0 &&
(ifp->if_flags & IFF_UP)) {
ifp->if_flags |= IFF_RUNNING;
#if NCARP > 0
sc->sc_initial_bulk = 1;
carp_group_demote_adj(&sc->sc_if, 32, "pfsync init");
#endif
pfsync_request_full_update(sc);
}
if ((ifp->if_flags & IFF_RUNNING) &&
(ifp->if_flags & IFF_UP) == 0) {
ifp->if_flags &= ~IFF_RUNNING;
/* drop everything */
timeout_del(&sc->sc_tmo);
pfsync_drop(sc);
pfsync_cancel_full_update(sc);
}
break;
case SIOCSIFMTU:
if ((ifp0 = if_get(sc->sc_sync_ifidx)) == NULL)
return (EINVAL);
error = 0;
if (ifr->ifr_mtu <= PFSYNC_MINPKT ||
ifr->ifr_mtu > ifp0->if_mtu) {
error = EINVAL;
}
if_put(ifp0);
if (error)
return error;
if (ifr->ifr_mtu < ifp->if_mtu)
pfsync_sendout();
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCGETPFSYNC:
bzero(&pfsyncr, sizeof(pfsyncr));
if ((ifp0 = if_get(sc->sc_sync_ifidx)) != NULL) {
strlcpy(pfsyncr.pfsyncr_syncdev,
ifp0->if_xname, IFNAMSIZ);
}
if_put(ifp0);
pfsyncr.pfsyncr_syncpeer = sc->sc_sync_peer;
pfsyncr.pfsyncr_maxupdates = sc->sc_maxupdates;
pfsyncr.pfsyncr_defer = sc->sc_defer;
return (copyout(&pfsyncr, ifr->ifr_data, sizeof(pfsyncr)));
case SIOCSETPFSYNC:
if ((error = suser(p)) != 0)
return (error);
if ((error = copyin(ifr->ifr_data, &pfsyncr, sizeof(pfsyncr))))
return (error);
if (pfsyncr.pfsyncr_syncpeer.s_addr == 0)
sc->sc_sync_peer.s_addr = INADDR_PFSYNC_GROUP;
else
sc->sc_sync_peer.s_addr =
pfsyncr.pfsyncr_syncpeer.s_addr;
if (pfsyncr.pfsyncr_maxupdates > 255)
return (EINVAL);
sc->sc_maxupdates = pfsyncr.pfsyncr_maxupdates;
sc->sc_defer = pfsyncr.pfsyncr_defer;
if (pfsyncr.pfsyncr_syncdev[0] == 0) {
if ((ifp0 = if_get(sc->sc_sync_ifidx)) != NULL) {
if_linkstatehook_del(ifp0, &sc->sc_ltask);
if_detachhook_del(ifp0, &sc->sc_dtask);
}
if_put(ifp0);
sc->sc_sync_ifidx = 0;
if (imo->imo_num_memberships > 0) {
in_delmulti(imo->imo_membership[
--imo->imo_num_memberships]);
imo->imo_ifidx = 0;
}
break;
}
if ((sifp = if_unit(pfsyncr.pfsyncr_syncdev)) == NULL)
return (EINVAL);
ifp0 = if_get(sc->sc_sync_ifidx);
if (sifp->if_mtu < sc->sc_if.if_mtu || (ifp0 != NULL &&
sifp->if_mtu < ifp0->if_mtu) ||
sifp->if_mtu < MCLBYTES - sizeof(struct ip))
pfsync_sendout();
if (ifp0) {
if_linkstatehook_del(ifp0, &sc->sc_ltask);
if_detachhook_del(ifp0, &sc->sc_dtask);
}
if_put(ifp0);
sc->sc_sync_ifidx = sifp->if_index;
if (imo->imo_num_memberships > 0) {
in_delmulti(imo->imo_membership[--imo->imo_num_memberships]);
imo->imo_ifidx = 0;
}
if (sc->sc_sync_peer.s_addr == INADDR_PFSYNC_GROUP) {
struct in_addr addr;
if (!(sifp->if_flags & IFF_MULTICAST)) {
sc->sc_sync_ifidx = 0;
if_put(sifp);
return (EADDRNOTAVAIL);
}
addr.s_addr = INADDR_PFSYNC_GROUP;
if ((imo->imo_membership[0] =
in_addmulti(&addr, sifp)) == NULL) {
sc->sc_sync_ifidx = 0;
if_put(sifp);
return (ENOBUFS);
}
imo->imo_num_memberships++;
imo->imo_ifidx = sc->sc_sync_ifidx;
imo->imo_ttl = PFSYNC_DFLTTL;
imo->imo_loop = 0;
}
ip = &sc->sc_template;
bzero(ip, sizeof(*ip));
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(sc->sc_template) >> 2;
ip->ip_tos = IPTOS_LOWDELAY;
/* len and id are set later */
ip->ip_off = htons(IP_DF);
ip->ip_ttl = PFSYNC_DFLTTL;
ip->ip_p = IPPROTO_PFSYNC;
ip->ip_src.s_addr = INADDR_ANY;
ip->ip_dst.s_addr = sc->sc_sync_peer.s_addr;
if_linkstatehook_add(sifp, &sc->sc_ltask);
if_detachhook_add(sifp, &sc->sc_dtask);
if_put(sifp);
pfsync_request_full_update(sc);
break;
default:
return (ENOTTY);
}
return (0);
}
void
pfsync_out_state(struct pf_state *st, void *buf)
{
struct pfsync_state *sp = buf;
pf_state_export(sp, st);
}
void
pfsync_out_iack(struct pf_state *st, void *buf)
{
struct pfsync_ins_ack *iack = buf;
iack->id = st->id;
iack->creatorid = st->creatorid;
}
void
pfsync_out_upd_c(struct pf_state *st, void *buf)
{
struct pfsync_upd_c *up = buf;
bzero(up, sizeof(*up));
up->id = st->id;
pf_state_peer_hton(&st->src, &up->src);
pf_state_peer_hton(&st->dst, &up->dst);
up->creatorid = st->creatorid;
up->timeout = st->timeout;
}
void
pfsync_out_del(struct pf_state *st, void *buf)
{
struct pfsync_del_c *dp = buf;
dp->id = st->id;
dp->creatorid = st->creatorid;
SET(st->state_flags, PFSTATE_NOSYNC);
}
void
pfsync_grab_snapshot(struct pfsync_snapshot *sn, struct pfsync_softc *sc)
{
int q;
struct pf_state *st;
struct pfsync_upd_req_item *ur;
#if defined(IPSEC)
struct tdb *tdb;
#endif
sn->sn_sc = sc;
mtx_enter(&sc->sc_st_mtx);
mtx_enter(&sc->sc_upd_req_mtx);
mtx_enter(&sc->sc_tdb_mtx);
for (q = 0; q < PFSYNC_S_COUNT; q++) {
TAILQ_INIT(&sn->sn_qs[q]);
while ((st = TAILQ_FIRST(&sc->sc_qs[q])) != NULL) {
TAILQ_REMOVE(&sc->sc_qs[q], st, sync_list);
2023-05-18 12:23:26 +00:00
mtx_enter(&st->mtx);
if (st->snapped == 0) {
TAILQ_INSERT_TAIL(&sn->sn_qs[q], st, sync_snap);
st->snapped = 1;
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
} else {
/*
* item is on snapshot list already, so we can
* skip it now.
*/
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
pf_state_unref(st);
}
}
}
TAILQ_INIT(&sn->sn_upd_req_list);
while ((ur = TAILQ_FIRST(&sc->sc_upd_req_list)) != NULL) {
TAILQ_REMOVE(&sc->sc_upd_req_list, ur, ur_entry);
TAILQ_INSERT_TAIL(&sn->sn_upd_req_list, ur, ur_snap);
}
TAILQ_INIT(&sn->sn_tdb_q);
#if defined(IPSEC)
while ((tdb = TAILQ_FIRST(&sc->sc_tdb_q)) != NULL) {
TAILQ_REMOVE(&sc->sc_tdb_q, tdb, tdb_sync_entry);
TAILQ_INSERT_TAIL(&sn->sn_tdb_q, tdb, tdb_sync_snap);
mtx_enter(&tdb->tdb_mtx);
KASSERT(!ISSET(tdb->tdb_flags, TDBF_PFSYNC_SNAPPED));
SET(tdb->tdb_flags, TDBF_PFSYNC_SNAPPED);
mtx_leave(&tdb->tdb_mtx);
}
#endif
sn->sn_len = sc->sc_len;
sc->sc_len = PFSYNC_MINPKT;
sn->sn_plus = sc->sc_plus;
sc->sc_plus = NULL;
sn->sn_pluslen = sc->sc_pluslen;
sc->sc_pluslen = 0;
mtx_leave(&sc->sc_tdb_mtx);
mtx_leave(&sc->sc_upd_req_mtx);
mtx_leave(&sc->sc_st_mtx);
}
void
pfsync_drop_snapshot(struct pfsync_snapshot *sn)
{
struct pf_state *st;
struct pfsync_upd_req_item *ur;
#if defined(IPSEC)
struct tdb *t;
#endif
int q;
for (q = 0; q < PFSYNC_S_COUNT; q++) {
if (TAILQ_EMPTY(&sn->sn_qs[q]))
continue;
while ((st = TAILQ_FIRST(&sn->sn_qs[q])) != NULL) {
2023-05-18 12:23:26 +00:00
mtx_enter(&st->mtx);
KASSERT(st->sync_state == q);
KASSERT(st->snapped == 1);
TAILQ_REMOVE(&sn->sn_qs[q], st, sync_snap);
st->sync_state = PFSYNC_S_NONE;
st->snapped = 0;
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
pf_state_unref(st);
}
}
while ((ur = TAILQ_FIRST(&sn->sn_upd_req_list)) != NULL) {
TAILQ_REMOVE(&sn->sn_upd_req_list, ur, ur_snap);
pool_put(&sn->sn_sc->sc_pool, ur);
}
#if defined(IPSEC)
while ((t = TAILQ_FIRST(&sn->sn_tdb_q)) != NULL) {
TAILQ_REMOVE(&sn->sn_tdb_q, t, tdb_sync_snap);
mtx_enter(&t->tdb_mtx);
KASSERT(ISSET(t->tdb_flags, TDBF_PFSYNC_SNAPPED));
CLR(t->tdb_flags, TDBF_PFSYNC_SNAPPED);
CLR(t->tdb_flags, TDBF_PFSYNC);
mtx_leave(&t->tdb_mtx);
}
#endif
}
int
pfsync_is_snapshot_empty(struct pfsync_snapshot *sn)
{
int q;
for (q = 0; q < PFSYNC_S_COUNT; q++)
if (!TAILQ_EMPTY(&sn->sn_qs[q]))
return (0);
if (!TAILQ_EMPTY(&sn->sn_upd_req_list))
return (0);
if (!TAILQ_EMPTY(&sn->sn_tdb_q))
return (0);
return (sn->sn_plus == NULL);
}
void
pfsync_drop(struct pfsync_softc *sc)
{
struct pfsync_snapshot sn;
pfsync_grab_snapshot(&sn, sc);
pfsync_drop_snapshot(&sn);
}
void
pfsync_send_dispatch(void *xmq)
{
struct mbuf_queue *mq = xmq;
struct pfsync_softc *sc;
struct mbuf *m;
struct mbuf_list ml;
int error;
mq_delist(mq, &ml);
if (ml_empty(&ml))
return;
NET_LOCK();
sc = pfsyncif;
if (sc == NULL) {
ml_purge(&ml);
goto done;
}
while ((m = ml_dequeue(&ml)) != NULL) {
if ((error = ip_output(m, NULL, NULL, IP_RAWOUTPUT,
&sc->sc_imo, NULL, 0)) == 0)
pfsyncstat_inc(pfsyncs_opackets);
else {
DPFPRINTF(LOG_DEBUG,
"ip_output() @ %s failed (%d)\n", __func__, error);
pfsyncstat_inc(pfsyncs_oerrors);
}
}
done:
NET_UNLOCK();
}
void
pfsync_send_pkt(struct mbuf *m)
{
if (mq_enqueue(&pfsync_mq, m) != 0) {
pfsyncstat_inc(pfsyncs_oerrors);
DPFPRINTF(LOG_DEBUG, "mq_enqueue() @ %s failed, queue full\n",
__func__);
} else
task_add(net_tq(0), &pfsync_task);
}
void
pfsync_sendout(void)
{
struct pfsync_snapshot sn;
struct pfsync_softc *sc = pfsyncif;
#if NBPFILTER > 0
struct ifnet *ifp = &sc->sc_if;
#endif
struct mbuf *m;
struct ip *ip;
struct pfsync_header *ph;
struct pfsync_subheader *subh;
struct pf_state *st;
struct pfsync_upd_req_item *ur;
int offset;
int q, count = 0;
if (sc == NULL || sc->sc_len == PFSYNC_MINPKT)
return;
if (!ISSET(sc->sc_if.if_flags, IFF_RUNNING) ||
#if NBPFILTER > 0
(ifp->if_bpf == NULL && sc->sc_sync_ifidx == 0)) {
#else
sc->sc_sync_ifidx == 0) {
#endif
pfsync_drop(sc);
return;
}
pfsync_grab_snapshot(&sn, sc);
/*
* Check below is sufficient to prevent us from sending empty packets,
* but it does not stop us from sending short packets.
*/
if (pfsync_is_snapshot_empty(&sn))
return;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
sc->sc_if.if_oerrors++;
pfsyncstat_inc(pfsyncs_onomem);
pfsync_drop_snapshot(&sn);
return;
}
if (max_linkhdr + sn.sn_len > MHLEN) {
MCLGETL(m, M_DONTWAIT, max_linkhdr + sn.sn_len);
if (!ISSET(m->m_flags, M_EXT)) {
m_free(m);
sc->sc_if.if_oerrors++;
pfsyncstat_inc(pfsyncs_onomem);
pfsync_drop_snapshot(&sn);
return;
}
}
m->m_data += max_linkhdr;
m->m_len = m->m_pkthdr.len = sn.sn_len;
/* build the ip header */
ip = mtod(m, struct ip *);
bcopy(&sc->sc_template, ip, sizeof(*ip));
offset = sizeof(*ip);
ip->ip_len = htons(m->m_pkthdr.len);
ip->ip_id = htons(ip_randomid());
/* build the pfsync header */
ph = (struct pfsync_header *)(m->m_data + offset);
bzero(ph, sizeof(*ph));
offset += sizeof(*ph);
ph->version = PFSYNC_VERSION;
ph->len = htons(sn.sn_len - sizeof(*ip));
bcopy(pf_status.pf_chksum, ph->pfcksum, PF_MD5_DIGEST_LENGTH);
if (!TAILQ_EMPTY(&sn.sn_upd_req_list)) {
subh = (struct pfsync_subheader *)(m->m_data + offset);
offset += sizeof(*subh);
count = 0;
while ((ur = TAILQ_FIRST(&sn.sn_upd_req_list)) != NULL) {
TAILQ_REMOVE(&sn.sn_upd_req_list, ur, ur_snap);
bcopy(&ur->ur_msg, m->m_data + offset,
sizeof(ur->ur_msg));
offset += sizeof(ur->ur_msg);
pool_put(&sc->sc_pool, ur);
count++;
}
bzero(subh, sizeof(*subh));
subh->len = sizeof(ur->ur_msg) >> 2;
subh->action = PFSYNC_ACT_UPD_REQ;
subh->count = htons(count);
}
/* has someone built a custom region for us to add? */
if (sn.sn_plus != NULL) {
bcopy(sn.sn_plus, m->m_data + offset, sn.sn_pluslen);
offset += sn.sn_pluslen;
sn.sn_plus = NULL; /* XXX memory leak ? */
}
#if defined(IPSEC)
if (!TAILQ_EMPTY(&sn.sn_tdb_q)) {
struct tdb *t;
subh = (struct pfsync_subheader *)(m->m_data + offset);
offset += sizeof(*subh);
count = 0;
while ((t = TAILQ_FIRST(&sn.sn_tdb_q)) != NULL) {
TAILQ_REMOVE(&sn.sn_tdb_q, t, tdb_sync_snap);
pfsync_out_tdb(t, m->m_data + offset);
offset += sizeof(struct pfsync_tdb);
mtx_enter(&t->tdb_mtx);
KASSERT(ISSET(t->tdb_flags, TDBF_PFSYNC_SNAPPED));
CLR(t->tdb_flags, TDBF_PFSYNC_SNAPPED);
CLR(t->tdb_flags, TDBF_PFSYNC);
mtx_leave(&t->tdb_mtx);
tdb_unref(t);
count++;
}
bzero(subh, sizeof(*subh));
subh->action = PFSYNC_ACT_TDB;
subh->len = sizeof(struct pfsync_tdb) >> 2;
subh->count = htons(count);
}
#endif
/* walk the queues */
for (q = 0; q < PFSYNC_S_COUNT; q++) {
if (TAILQ_EMPTY(&sn.sn_qs[q]))
continue;
subh = (struct pfsync_subheader *)(m->m_data + offset);
offset += sizeof(*subh);
count = 0;
while ((st = TAILQ_FIRST(&sn.sn_qs[q])) != NULL) {
2023-05-18 12:23:26 +00:00
mtx_enter(&st->mtx);
TAILQ_REMOVE(&sn.sn_qs[q], st, sync_snap);
KASSERT(st->sync_state == q);
KASSERT(st->snapped == 1);
st->sync_state = PFSYNC_S_NONE;
st->snapped = 0;
pfsync_qs[q].write(st, m->m_data + offset);
offset += pfsync_qs[q].len;
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
pf_state_unref(st);
count++;
}
bzero(subh, sizeof(*subh));
subh->action = pfsync_qs[q].action;
subh->len = pfsync_qs[q].len >> 2;
subh->count = htons(count);
}
/* we're done, let's put it on the wire */
#if NBPFILTER > 0
if (ifp->if_bpf) {
m->m_data += sizeof(*ip);
m->m_len = m->m_pkthdr.len = sn.sn_len - sizeof(*ip);
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
m->m_data -= sizeof(*ip);
m->m_len = m->m_pkthdr.len = sn.sn_len;
}
if (sc->sc_sync_ifidx == 0) {
sc->sc_len = PFSYNC_MINPKT;
m_freem(m);
return;
}
#endif
sc->sc_if.if_opackets++;
sc->sc_if.if_obytes += m->m_pkthdr.len;
m->m_pkthdr.ph_rtableid = sc->sc_if.if_rdomain;
pfsync_send_pkt(m);
}
void
pfsync_insert_state(struct pf_state *st)
{
struct pfsync_softc *sc = pfsyncif;
NET_ASSERT_LOCKED();
if (ISSET(st->rule.ptr->rule_flag, PFRULE_NOSYNC) ||
st->key[PF_SK_WIRE]->proto == IPPROTO_PFSYNC) {
SET(st->state_flags, PFSTATE_NOSYNC);
return;
}
if (sc == NULL || !ISSET(sc->sc_if.if_flags, IFF_RUNNING) ||
ISSET(st->state_flags, PFSTATE_NOSYNC))
return;
if (sc->sc_len == PFSYNC_MINPKT)
timeout_add_sec(&sc->sc_tmo, 1);
pfsync_q_ins(st, PFSYNC_S_INS);
st->sync_updates = 0;
}
int
pfsync_defer(struct pf_state *st, struct mbuf *m, struct pfsync_deferral **ppd)
{
struct pfsync_softc *sc = pfsyncif;
struct pfsync_deferral *pd;
unsigned int sched;
NET_ASSERT_LOCKED();
if (!sc->sc_defer ||
ISSET(st->state_flags, PFSTATE_NOSYNC) ||
m->m_flags & (M_BCAST|M_MCAST))
return (0);
pd = pool_get(&sc->sc_pool, M_NOWAIT);
if (pd == NULL)
return (0);
/*
* deferral queue grows faster, than timeout can consume,
* we have to ask packet (caller) to help timer and dispatch
* one deferral for us.
*
* We wish to call pfsync_undefer() here. Unfortunately we can't,
* because pfsync_undefer() will be calling to ip_output(),
* which in turn will call to pf_test(), which would then attempt
* to grab PF_LOCK() we currently hold.
*/
if (sc->sc_deferred >= 128) {
mtx_enter(&sc->sc_deferrals_mtx);
*ppd = TAILQ_FIRST(&sc->sc_deferrals);
if (*ppd != NULL) {
TAILQ_REMOVE(&sc->sc_deferrals, *ppd, pd_entry);
sc->sc_deferred--;
}
mtx_leave(&sc->sc_deferrals_mtx);
} else
*ppd = NULL;
m->m_pkthdr.pf.flags |= PF_TAG_GENERATED;
SET(st->state_flags, PFSTATE_ACK);
pd->pd_st = pf_state_ref(st);
pd->pd_m = m;
pd->pd_deadline = getnsecuptime() + PFSYNC_DEFER_NSEC;
mtx_enter(&sc->sc_deferrals_mtx);
sched = TAILQ_EMPTY(&sc->sc_deferrals);
TAILQ_INSERT_TAIL(&sc->sc_deferrals, pd, pd_entry);
sc->sc_deferred++;
mtx_leave(&sc->sc_deferrals_mtx);
if (sched)
timeout_add_nsec(&sc->sc_deferrals_tmo, PFSYNC_DEFER_NSEC);
schednetisr(NETISR_PFSYNC);
return (1);
}
void
pfsync_undefer_notify(struct pfsync_deferral *pd)
{
struct pf_pdesc pdesc;
struct pf_state *st = pd->pd_st;
/*
* pf_remove_state removes the state keys and sets st->timeout
* to PFTM_UNLINKED. this is done under NET_LOCK which should
* be held here, so we can use PFTM_UNLINKED as a test for
* whether the state keys are set for the address family
* lookup.
*/
if (st->timeout == PFTM_UNLINKED)
return;
if (st->rt == PF_ROUTETO) {
if (pf_setup_pdesc(&pdesc, st->key[PF_SK_WIRE]->af,
st->direction, st->kif, pd->pd_m, NULL) != PF_PASS)
return;
switch (st->key[PF_SK_WIRE]->af) {
case AF_INET:
pf_route(&pdesc, st);
break;
#ifdef INET6
case AF_INET6:
pf_route6(&pdesc, st);
break;
#endif /* INET6 */
default:
unhandled_af(st->key[PF_SK_WIRE]->af);
}
pd->pd_m = pdesc.m;
} else {
switch (st->key[PF_SK_WIRE]->af) {
case AF_INET:
ip_output(pd->pd_m, NULL, NULL, 0, NULL, NULL, 0);
break;
#ifdef INET6
case AF_INET6:
ip6_output(pd->pd_m, NULL, NULL, 0, NULL, NULL);
break;
#endif /* INET6 */
default:
unhandled_af(st->key[PF_SK_WIRE]->af);
}
pd->pd_m = NULL;
}
}
void
pfsync_free_deferral(struct pfsync_deferral *pd)
{
struct pfsync_softc *sc = pfsyncif;
pf_state_unref(pd->pd_st);
m_freem(pd->pd_m);
pool_put(&sc->sc_pool, pd);
}
void
pfsync_undefer(struct pfsync_deferral *pd, int drop)
{
struct pfsync_softc *sc = pfsyncif;
NET_ASSERT_LOCKED();
if (sc == NULL)
return;
CLR(pd->pd_st->state_flags, PFSTATE_ACK);
if (!drop)
pfsync_undefer_notify(pd);
pfsync_free_deferral(pd);
}
void
pfsync_deferrals_tmo(void *arg)
{
struct pfsync_softc *sc = arg;
struct pfsync_deferral *pd;
uint64_t now, nsec = 0;
struct pfsync_deferrals pds = TAILQ_HEAD_INITIALIZER(pds);
now = getnsecuptime();
mtx_enter(&sc->sc_deferrals_mtx);
for (;;) {
pd = TAILQ_FIRST(&sc->sc_deferrals);
if (pd == NULL)
break;
if (now < pd->pd_deadline) {
nsec = pd->pd_deadline - now;
break;
}
TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry);
sc->sc_deferred--;
TAILQ_INSERT_TAIL(&pds, pd, pd_entry);
}
mtx_leave(&sc->sc_deferrals_mtx);
if (nsec > 0) {
/* we were looking at a pd, but it wasn't old enough */
timeout_add_nsec(&sc->sc_deferrals_tmo, nsec);
}
if (TAILQ_EMPTY(&pds))
return;
NET_LOCK();
while ((pd = TAILQ_FIRST(&pds)) != NULL) {
TAILQ_REMOVE(&pds, pd, pd_entry);
pfsync_undefer(pd, 0);
}
NET_UNLOCK();
}
void
pfsync_deferred(struct pf_state *st, int drop)
{
struct pfsync_softc *sc = pfsyncif;
struct pfsync_deferral *pd;
NET_ASSERT_LOCKED();
mtx_enter(&sc->sc_deferrals_mtx);
TAILQ_FOREACH(pd, &sc->sc_deferrals, pd_entry) {
if (pd->pd_st == st) {
TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry);
sc->sc_deferred--;
break;
}
}
mtx_leave(&sc->sc_deferrals_mtx);
if (pd != NULL)
pfsync_undefer(pd, drop);
}
void
pfsync_update_state(struct pf_state *st)
{
struct pfsync_softc *sc = pfsyncif;
int sync = 0;
NET_ASSERT_LOCKED();
if (sc == NULL || !ISSET(sc->sc_if.if_flags, IFF_RUNNING))
return;
if (ISSET(st->state_flags, PFSTATE_ACK))
pfsync_deferred(st, 0);
if (ISSET(st->state_flags, PFSTATE_NOSYNC)) {
if (st->sync_state != PFSYNC_S_NONE)
pfsync_q_del(st);
return;
}
if (sc->sc_len == PFSYNC_MINPKT)
timeout_add_sec(&sc->sc_tmo, 1);
switch (st->sync_state) {
case PFSYNC_S_UPD_C:
case PFSYNC_S_UPD:
case PFSYNC_S_INS:
/* we're already handling it */
if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) {
st->sync_updates++;
if (st->sync_updates >= sc->sc_maxupdates)
sync = 1;
}
break;
case PFSYNC_S_IACK:
pfsync_q_del(st);
case PFSYNC_S_NONE:
pfsync_q_ins(st, PFSYNC_S_UPD_C);
st->sync_updates = 0;
break;
default:
panic("pfsync_update_state: unexpected sync state %d",
st->sync_state);
}
if (sync || (getuptime() - st->pfsync_time) < 2)
schednetisr(NETISR_PFSYNC);
}
void
pfsync_cancel_full_update(struct pfsync_softc *sc)
{
if (timeout_pending(&sc->sc_bulkfail_tmo) ||
timeout_pending(&sc->sc_bulk_tmo)) {
#if NCARP > 0
if (!pfsync_sync_ok)
carp_group_demote_adj(&sc->sc_if, -1,
"pfsync bulk cancelled");
if (sc->sc_initial_bulk) {
carp_group_demote_adj(&sc->sc_if, -32,
"pfsync init");
sc->sc_initial_bulk = 0;
}
#endif
pfsync_sync_ok = 1;
DPFPRINTF(LOG_INFO, "cancelling bulk update");
}
timeout_del(&sc->sc_bulkfail_tmo);
timeout_del(&sc->sc_bulk_tmo);
sc->sc_bulk_next = NULL;
sc->sc_bulk_last = NULL;
sc->sc_ureq_sent = 0;
sc->sc_bulk_tries = 0;
}
void
pfsync_request_full_update(struct pfsync_softc *sc)
{
if (sc->sc_sync_ifidx != 0 && ISSET(sc->sc_if.if_flags, IFF_RUNNING)) {
/* Request a full state table update. */
sc->sc_ureq_sent = getuptime();
#if NCARP > 0
if (!sc->sc_link_demoted && pfsync_sync_ok)
carp_group_demote_adj(&sc->sc_if, 1,
"pfsync bulk start");
#endif
pfsync_sync_ok = 0;
DPFPRINTF(LOG_INFO, "requesting bulk update");
timeout_add(&sc->sc_bulkfail_tmo, 4 * hz +
pf_pool_limits[PF_LIMIT_STATES].limit /
((sc->sc_if.if_mtu - PFSYNC_MINPKT) /
sizeof(struct pfsync_state)));
pfsync_request_update(0, 0);
}
}
void
pfsync_request_update(u_int32_t creatorid, u_int64_t id)
{
struct pfsync_softc *sc = pfsyncif;
struct pfsync_upd_req_item *item;
size_t nlen, sclen;
int retry;
/*
* this code does nothing to prevent multiple update requests for the
* same state being generated.
*/
item = pool_get(&sc->sc_pool, PR_NOWAIT);
if (item == NULL) {
/* XXX stats */
return;
}
item->ur_msg.id = id;
item->ur_msg.creatorid = creatorid;
for (;;) {
mtx_enter(&sc->sc_upd_req_mtx);
nlen = sizeof(struct pfsync_upd_req);
if (TAILQ_EMPTY(&sc->sc_upd_req_list))
nlen += sizeof(struct pfsync_subheader);
sclen = atomic_add_long_nv(&sc->sc_len, nlen);
retry = (sclen > sc->sc_if.if_mtu);
if (retry)
atomic_sub_long(&sc->sc_len, nlen);
else
TAILQ_INSERT_TAIL(&sc->sc_upd_req_list, item, ur_entry);
mtx_leave(&sc->sc_upd_req_mtx);
if (!retry)
break;
pfsync_sendout();
}
schednetisr(NETISR_PFSYNC);
}
void
pfsync_update_state_req(struct pf_state *st)
{
struct pfsync_softc *sc = pfsyncif;
if (sc == NULL)
panic("pfsync_update_state_req: nonexistent instance");
if (ISSET(st->state_flags, PFSTATE_NOSYNC)) {
if (st->sync_state != PFSYNC_S_NONE)
pfsync_q_del(st);
return;
}
switch (st->sync_state) {
case PFSYNC_S_UPD_C:
case PFSYNC_S_IACK:
pfsync_q_del(st);
case PFSYNC_S_NONE:
pfsync_q_ins(st, PFSYNC_S_UPD);
schednetisr(NETISR_PFSYNC);
return;
case PFSYNC_S_INS:
case PFSYNC_S_UPD:
case PFSYNC_S_DEL:
/* we're already handling it */
return;
default:
panic("pfsync_update_state_req: unexpected sync state %d",
st->sync_state);
}
}
void
pfsync_delete_state(struct pf_state *st)
{
struct pfsync_softc *sc = pfsyncif;
NET_ASSERT_LOCKED();
if (sc == NULL || !ISSET(sc->sc_if.if_flags, IFF_RUNNING))
return;
if (ISSET(st->state_flags, PFSTATE_ACK))
pfsync_deferred(st, 1);
if (ISSET(st->state_flags, PFSTATE_NOSYNC)) {
if (st->sync_state != PFSYNC_S_NONE)
pfsync_q_del(st);
return;
}
if (sc->sc_len == PFSYNC_MINPKT)
timeout_add_sec(&sc->sc_tmo, 1);
switch (st->sync_state) {
case PFSYNC_S_INS:
/* we never got to tell the world so just forget about it */
pfsync_q_del(st);
return;
case PFSYNC_S_UPD_C:
case PFSYNC_S_UPD:
case PFSYNC_S_IACK:
pfsync_q_del(st);
/*
* FALLTHROUGH to putting it on the del list
* Note on reference count bookkeeping:
* pfsync_q_del() drops reference for queue
* ownership. But the st entry survives, because
* our caller still holds a reference.
*/
case PFSYNC_S_NONE:
/*
* We either fall through here, or there is no reference to
* st owned by pfsync queues at this point.
*
* Calling pfsync_q_ins() puts st to del queue. The pfsync_q_ins()
* grabs a reference for delete queue.
*/
pfsync_q_ins(st, PFSYNC_S_DEL);
return;
default:
panic("pfsync_delete_state: unexpected sync state %d",
st->sync_state);
}
}
void
pfsync_clear_states(u_int32_t creatorid, const char *ifname)
{
struct pfsync_softc *sc = pfsyncif;
struct {
struct pfsync_subheader subh;
struct pfsync_clr clr;
} __packed r;
NET_ASSERT_LOCKED();
if (sc == NULL || !ISSET(sc->sc_if.if_flags, IFF_RUNNING))
return;
bzero(&r, sizeof(r));
r.subh.action = PFSYNC_ACT_CLR;
r.subh.len = sizeof(struct pfsync_clr) >> 2;
r.subh.count = htons(1);
strlcpy(r.clr.ifname, ifname, sizeof(r.clr.ifname));
r.clr.creatorid = creatorid;
pfsync_send_plus(&r, sizeof(r));
}
void
pfsync_iack(struct pf_state *st)
{
pfsync_q_ins(st, PFSYNC_S_IACK);
schednetisr(NETISR_PFSYNC);
}
void
pfsync_q_ins(struct pf_state *st, int q)
{
struct pfsync_softc *sc = pfsyncif;
size_t nlen, sclen;
if (sc->sc_len < PFSYNC_MINPKT)
panic("pfsync pkt len is too low %zd", sc->sc_len);
do {
mtx_enter(&sc->sc_st_mtx);
2023-05-18 12:23:26 +00:00
mtx_enter(&st->mtx);
/*
* There are either two threads trying to update the
* the same state, or the state is just being processed
* (is on snapshot queue).
*/
if (st->sync_state != PFSYNC_S_NONE) {
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
mtx_leave(&sc->sc_st_mtx);
break;
}
nlen = pfsync_qs[q].len;
if (TAILQ_EMPTY(&sc->sc_qs[q]))
nlen += sizeof(struct pfsync_subheader);
sclen = atomic_add_long_nv(&sc->sc_len, nlen);
if (sclen > sc->sc_if.if_mtu) {
atomic_sub_long(&sc->sc_len, nlen);
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
mtx_leave(&sc->sc_st_mtx);
pfsync_sendout();
continue;
}
pf_state_ref(st);
TAILQ_INSERT_TAIL(&sc->sc_qs[q], st, sync_list);
st->sync_state = q;
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
mtx_leave(&sc->sc_st_mtx);
} while (0);
}
void
pfsync_q_del(struct pf_state *st)
{
struct pfsync_softc *sc = pfsyncif;
int q;
mtx_enter(&sc->sc_st_mtx);
2023-05-18 12:23:26 +00:00
mtx_enter(&st->mtx);
q = st->sync_state;
/*
* re-check under mutex
* if state is snapped already, then just bail out, because we came
* too late, the state is being just processed/dispatched to peer.
*/
if ((q == PFSYNC_S_NONE) || (st->snapped)) {
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
mtx_leave(&sc->sc_st_mtx);
return;
}
atomic_sub_long(&sc->sc_len, pfsync_qs[q].len);
TAILQ_REMOVE(&sc->sc_qs[q], st, sync_list);
if (TAILQ_EMPTY(&sc->sc_qs[q]))
atomic_sub_long(&sc->sc_len, sizeof (struct pfsync_subheader));
st->sync_state = PFSYNC_S_NONE;
2023-05-18 12:23:26 +00:00
mtx_leave(&st->mtx);
mtx_leave(&sc->sc_st_mtx);
pf_state_unref(st);
}
#if defined(IPSEC)
void
pfsync_update_tdb(struct tdb *t, int output)
{
struct pfsync_softc *sc = pfsyncif;
size_t nlen, sclen;
if (sc == NULL)
return;
if (!ISSET(t->tdb_flags, TDBF_PFSYNC)) {
do {
mtx_enter(&sc->sc_tdb_mtx);
nlen = sizeof(struct pfsync_tdb);
mtx_enter(&t->tdb_mtx);
if (ISSET(t->tdb_flags, TDBF_PFSYNC)) {
/* we've lost race, no action for us then */
mtx_leave(&t->tdb_mtx);
mtx_leave(&sc->sc_tdb_mtx);
break;
}
if (TAILQ_EMPTY(&sc->sc_tdb_q))
nlen += sizeof(struct pfsync_subheader);
sclen = atomic_add_long_nv(&sc->sc_len, nlen);
if (sclen > sc->sc_if.if_mtu) {
atomic_sub_long(&sc->sc_len, nlen);
mtx_leave(&t->tdb_mtx);
mtx_leave(&sc->sc_tdb_mtx);
pfsync_sendout();
continue;
}
TAILQ_INSERT_TAIL(&sc->sc_tdb_q, t, tdb_sync_entry);
tdb_ref(t);
SET(t->tdb_flags, TDBF_PFSYNC);
mtx_leave(&t->tdb_mtx);
mtx_leave(&sc->sc_tdb_mtx);
t->tdb_updates = 0;
} while (0);
} else {
if (++t->tdb_updates >= sc->sc_maxupdates)
schednetisr(NETISR_PFSYNC);
}
mtx_enter(&t->tdb_mtx);
if (output)
SET(t->tdb_flags, TDBF_PFSYNC_RPL);
else
CLR(t->tdb_flags, TDBF_PFSYNC_RPL);
mtx_leave(&t->tdb_mtx);
}
#endif
#if defined(IPSEC)
void
pfsync_delete_tdb(struct tdb *t)
{
struct pfsync_softc *sc = pfsyncif;
size_t nlen;
if (sc == NULL || !ISSET(t->tdb_flags, TDBF_PFSYNC))
return;
mtx_enter(&sc->sc_tdb_mtx);
/*
* if tdb entry is just being processed (found in snapshot),
* then it can not be deleted. we just came too late
*/
if (ISSET(t->tdb_flags, TDBF_PFSYNC_SNAPPED)) {
mtx_leave(&sc->sc_tdb_mtx);
return;
}
TAILQ_REMOVE(&sc->sc_tdb_q, t, tdb_sync_entry);
mtx_enter(&t->tdb_mtx);
CLR(t->tdb_flags, TDBF_PFSYNC);
mtx_leave(&t->tdb_mtx);
nlen = sizeof(struct pfsync_tdb);
if (TAILQ_EMPTY(&sc->sc_tdb_q))
nlen += sizeof(struct pfsync_subheader);
atomic_sub_long(&sc->sc_len, nlen);
mtx_leave(&sc->sc_tdb_mtx);
tdb_unref(t);
}
#endif
void
pfsync_out_tdb(struct tdb *t, void *buf)
{
struct pfsync_tdb *ut = buf;
bzero(ut, sizeof(*ut));
ut->spi = t->tdb_spi;
bcopy(&t->tdb_dst, &ut->dst, sizeof(ut->dst));
/*
* When a failover happens, the master's rpl is probably above
* what we see here (we may be up to a second late), so
* increase it a bit for outbound tdbs to manage most such
* situations.
*
* For now, just add an offset that is likely to be larger
* than the number of packets we can see in one second. The RFC
* just says the next packet must have a higher seq value.
*
* XXX What is a good algorithm for this? We could use
* a rate-determined increase, but to know it, we would have
* to extend struct tdb.
* XXX pt->rpl can wrap over MAXINT, but if so the real tdb
* will soon be replaced anyway. For now, just don't handle
* this edge case.
*/
#define RPL_INCR 16384
ut->rpl = htobe64(t->tdb_rpl + (ISSET(t->tdb_flags, TDBF_PFSYNC_RPL) ?
RPL_INCR : 0));
ut->cur_bytes = htobe64(t->tdb_cur_bytes);
ut->sproto = t->tdb_sproto;
ut->rdomain = htons(t->tdb_rdomain);
}
void
pfsync_bulk_start(void)
{
struct pfsync_softc *sc = pfsyncif;
NET_ASSERT_LOCKED();
/*
* pf gc via pfsync_state_in_use reads sc_bulk_next and
* sc_bulk_last while exclusively holding the pf_state_list
* rwlock. make sure it can't race with us setting these
* pointers. they basically act as hazards, and borrow the
* lists state reference count.
*/
rw_enter_read(&pf_state_list.pfs_rwl);
/* get a consistent view of the list pointers */
mtx_enter(&pf_state_list.pfs_mtx);
if (sc->sc_bulk_next == NULL)
sc->sc_bulk_next = TAILQ_FIRST(&pf_state_list.pfs_list);
sc->sc_bulk_last = TAILQ_LAST(&pf_state_list.pfs_list, pf_state_queue);
mtx_leave(&pf_state_list.pfs_mtx);
rw_exit_read(&pf_state_list.pfs_rwl);
DPFPRINTF(LOG_INFO, "received bulk update request");
if (sc->sc_bulk_last == NULL)
pfsync_bulk_status(PFSYNC_BUS_END);
else {
sc->sc_ureq_received = getuptime();
pfsync_bulk_status(PFSYNC_BUS_START);
timeout_add(&sc->sc_bulk_tmo, 0);
}
}
void
pfsync_bulk_update(void *arg)
{
struct pfsync_softc *sc;
struct pf_state *st;
int i = 0;
NET_LOCK();
sc = pfsyncif;
if (sc == NULL)
goto out;
rw_enter_read(&pf_state_list.pfs_rwl);
st = sc->sc_bulk_next;
sc->sc_bulk_next = NULL;
if (st == NULL) {
rw_exit_read(&pf_state_list.pfs_rwl);
goto out;
}
for (;;) {
if (st->sync_state == PFSYNC_S_NONE &&
st->timeout < PFTM_MAX &&
st->pfsync_time <= sc->sc_ureq_received) {
pfsync_update_state_req(st);
i++;
}
st = TAILQ_NEXT(st, entry_list);
if ((st == NULL) || (st == sc->sc_bulk_last)) {
/* we're done */
sc->sc_bulk_last = NULL;
pfsync_bulk_status(PFSYNC_BUS_END);
break;
}
if (i > 1 && (sc->sc_if.if_mtu - sc->sc_len) <
sizeof(struct pfsync_state)) {
/* we've filled a packet */
sc->sc_bulk_next = st;
timeout_add(&sc->sc_bulk_tmo, 1);
break;
}
}
rw_exit_read(&pf_state_list.pfs_rwl);
out:
NET_UNLOCK();
}
void
pfsync_bulk_status(u_int8_t status)
{
struct {
struct pfsync_subheader subh;
struct pfsync_bus bus;
} __packed r;
struct pfsync_softc *sc = pfsyncif;
bzero(&r, sizeof(r));
r.subh.action = PFSYNC_ACT_BUS;
r.subh.len = sizeof(struct pfsync_bus) >> 2;
r.subh.count = htons(1);
r.bus.creatorid = pf_status.hostid;
r.bus.endtime = htonl(getuptime() - sc->sc_ureq_received);
r.bus.status = status;
pfsync_send_plus(&r, sizeof(r));
}
void
pfsync_bulk_fail(void *arg)
{
struct pfsync_softc *sc;
NET_LOCK();
sc = pfsyncif;
if (sc == NULL)
goto out;
if (sc->sc_bulk_tries++ < PFSYNC_MAX_BULKTRIES) {
/* Try again */
timeout_add_sec(&sc->sc_bulkfail_tmo, 5);
pfsync_request_update(0, 0);
} else {
/* Pretend like the transfer was ok */
sc->sc_ureq_sent = 0;
sc->sc_bulk_tries = 0;
#if NCARP > 0
if (!pfsync_sync_ok)
carp_group_demote_adj(&sc->sc_if, -1,
sc->sc_link_demoted ?
"pfsync link state up" :
"pfsync bulk fail");
if (sc->sc_initial_bulk) {
carp_group_demote_adj(&sc->sc_if, -32,
"pfsync init");
sc->sc_initial_bulk = 0;
}
#endif
pfsync_sync_ok = 1;
sc->sc_link_demoted = 0;
DPFPRINTF(LOG_ERR, "failed to receive bulk update");
}
out:
NET_UNLOCK();
}
void
pfsync_send_plus(void *plus, size_t pluslen)
{
struct pfsync_softc *sc = pfsyncif;
if (sc->sc_len + pluslen > sc->sc_if.if_mtu)
pfsync_sendout();
sc->sc_plus = plus;
sc->sc_pluslen = pluslen;
atomic_add_long(&sc->sc_len, pluslen);
pfsync_sendout();
}
int
pfsync_is_up(void)
{
struct pfsync_softc *sc = pfsyncif;
if (sc == NULL || !ISSET(sc->sc_if.if_flags, IFF_RUNNING))
return (0);
return (1);
}
int
pfsync_state_in_use(struct pf_state *st)
{
struct pfsync_softc *sc = pfsyncif;
if (sc == NULL)
return (0);
rw_assert_wrlock(&pf_state_list.pfs_rwl);
if (st->sync_state != PFSYNC_S_NONE ||
st == sc->sc_bulk_next ||
st == sc->sc_bulk_last)
return (1);
return (0);
}
void
pfsync_timeout(void *arg)
{
NET_LOCK();
pfsync_sendout();
NET_UNLOCK();
}
/* this is a softnet/netisr handler */
void
pfsyncintr(void)
{
pfsync_sendout();
}
int
pfsync_sysctl_pfsyncstat(void *oldp, size_t *oldlenp, void *newp)
{
struct pfsyncstats pfsyncstat;
CTASSERT(sizeof(pfsyncstat) == (pfsyncs_ncounters * sizeof(uint64_t)));
memset(&pfsyncstat, 0, sizeof pfsyncstat);
counters_read(pfsynccounters, (uint64_t *)&pfsyncstat,
pfsyncs_ncounters);
return (sysctl_rdstruct(oldp, oldlenp, newp,
&pfsyncstat, sizeof(pfsyncstat)));
}
int
pfsync_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
size_t newlen)
{
/* All sysctl names at this level are terminal. */
if (namelen != 1)
return (ENOTDIR);
switch (name[0]) {
case PFSYNCCTL_STATS:
return (pfsync_sysctl_pfsyncstat(oldp, oldlenp, newp));
default:
return (ENOPROTOOPT);
}
}