src/lib/libcrypto/evp/evp_enc.c

692 lines
17 KiB
C
Raw Normal View History

2023-12-22 02:30:11 +00:00
/* $OpenBSD: evp_enc.c,v 1.74 2023/12/21 20:50:43 tb Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/opensslconf.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include "evp_local.h"
int
EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv, int enc)
{
if (cipher != NULL)
EVP_CIPHER_CTX_cleanup(ctx);
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
}
int
2023-12-21 17:12:07 +00:00
EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine,
const unsigned char *key, const unsigned char *iv, int enc)
{
if (enc == -1)
enc = ctx->encrypt;
else {
if (enc)
enc = 1;
ctx->encrypt = enc;
}
if (cipher) {
/* Ensure a context left lying around from last time is cleared
* (the previous check attempted to avoid this if the same
2023-11-29 19:53:16 +00:00
* EVP_CIPHER could be used). */
if (ctx->cipher) {
unsigned long flags = ctx->flags;
EVP_CIPHER_CTX_cleanup(ctx);
/* Restore encrypt and flags */
ctx->encrypt = enc;
ctx->flags = flags;
}
ctx->cipher = cipher;
if (ctx->cipher->ctx_size) {
ctx->cipher_data = calloc(1, ctx->cipher->ctx_size);
if (ctx->cipher_data == NULL) {
EVPerror(ERR_R_MALLOC_FAILURE);
return 0;
}
} else {
ctx->cipher_data = NULL;
}
ctx->key_len = cipher->key_len;
ctx->flags &= EVP_CIPHER_CTX_FLAG_WRAP_ALLOW;
if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
EVPerror(EVP_R_INITIALIZATION_ERROR);
return 0;
}
}
} else if (!ctx->cipher) {
EVPerror(EVP_R_NO_CIPHER_SET);
return 0;
}
2023-12-21 17:12:07 +00:00
/* Block sizes must be a power of 2 due to the use of block_mask. */
if (ctx->cipher->block_size != 1 &&
ctx->cipher->block_size != 8 &&
ctx->cipher->block_size != 16) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
if (!(ctx->flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW) &&
EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_WRAP_MODE) {
EVPerror(EVP_R_WRAP_MODE_NOT_ALLOWED);
return 0;
}
if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
2023-11-20 02:38:22 +00:00
int iv_len;
switch (EVP_CIPHER_CTX_mode(ctx)) {
case EVP_CIPH_STREAM_CIPHER:
case EVP_CIPH_ECB_MODE:
break;
case EVP_CIPH_CFB_MODE:
case EVP_CIPH_OFB_MODE:
ctx->num = 0;
/* fall-through */
case EVP_CIPH_CBC_MODE:
2023-11-20 02:38:22 +00:00
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
if (iv_len < 0 || iv_len > sizeof(ctx->oiv)) {
EVPerror(EVP_R_IV_TOO_LARGE);
return 0;
}
2023-11-20 02:38:22 +00:00
if (iv != NULL)
memcpy(ctx->oiv, iv, iv_len);
memcpy(ctx->iv, ctx->oiv, iv_len);
break;
case EVP_CIPH_CTR_MODE:
ctx->num = 0;
2023-11-20 02:38:22 +00:00
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
if (iv_len < 0 || iv_len > sizeof(ctx->iv)) {
EVPerror(EVP_R_IV_TOO_LARGE);
return 0;
}
/* Don't reuse IV for CTR mode */
2023-11-20 02:38:22 +00:00
if (iv != NULL)
memcpy(ctx->iv, iv, iv_len);
break;
default:
return 0;
break;
}
}
if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
if (!ctx->cipher->init(ctx, key, iv, enc))
return 0;
}
2023-12-21 17:12:07 +00:00
ctx->partial_len = 0;
ctx->final_used = 0;
2023-12-21 17:12:07 +00:00
return 1;
}
int
2023-12-21 17:12:07 +00:00
EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
if (ctx->encrypt)
2023-12-21 17:12:07 +00:00
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
2023-12-01 13:02:08 +00:00
2023-12-21 17:12:07 +00:00
return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
}
int
2023-12-21 17:12:07 +00:00
EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
if (ctx->encrypt)
2023-12-21 17:12:07 +00:00
return EVP_EncryptFinal_ex(ctx, out, out_len);
2023-12-01 13:02:08 +00:00
2023-12-21 17:12:07 +00:00
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
int
2023-12-21 17:12:07 +00:00
EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
if (ctx->encrypt)
2023-12-21 17:12:07 +00:00
return EVP_EncryptFinal_ex(ctx, out, out_len);
2023-12-01 13:02:08 +00:00
2023-12-21 17:12:07 +00:00
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
int
EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit(ctx, cipher, key, iv, 1);
}
int
2023-12-21 17:12:07 +00:00
EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine,
const unsigned char *key, const unsigned char *iv)
{
2023-11-29 19:53:16 +00:00
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, 1);
}
int
EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit(ctx, cipher, key, iv, 0);
}
int
2023-12-21 17:12:07 +00:00
EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine,
const unsigned char *key, const unsigned char *iv)
{
2023-11-29 19:53:16 +00:00
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, 0);
}
2023-12-16 16:23:05 +00:00
/*
* EVP_Cipher() is an implementation detail of EVP_Cipher{Update,Final}().
* Behavior depends on EVP_CIPH_FLAG_CUSTOM_CIPHER being set on ctx->cipher.
*
* If the flag is set, do_cipher() operates in update mode if in != NULL and
* in final mode if in == NULL. It returns the number of bytes written to out
* (which may be 0) or -1 on error.
*
* If the flag is not set, do_cipher() assumes properly aligned data and that
* padding is handled correctly by the caller. Most do_cipher() methods will
* silently produce garbage and succeed. Returns 1 on success, 0 on error.
*/
int
EVP_Cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in,
2023-12-21 17:12:07 +00:00
unsigned int in_len)
2023-12-16 16:23:05 +00:00
{
2023-12-21 17:12:07 +00:00
return ctx->cipher->do_cipher(ctx, out, in, in_len);
2023-12-16 16:23:05 +00:00
}
static int
evp_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
int len;
*out_len = 0;
if (in_len < 0)
return 0;
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0) {
if ((len = ctx->cipher->do_cipher(ctx, out, in, in_len)) < 0)
return 0;
*out_len = len;
return 1;
}
if (!ctx->cipher->do_cipher(ctx, out, in, in_len))
return 0;
*out_len = in_len;
return 1;
}
int
2023-12-21 17:12:07 +00:00
EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
2023-12-16 16:23:05 +00:00
const int block_size = ctx->cipher->block_size;
2023-12-21 17:12:07 +00:00
const int block_mask = block_size - 1;
int partial_len = ctx->partial_len;
2023-12-16 16:23:05 +00:00
int len = 0, total_len = 0;
2023-12-21 17:12:07 +00:00
*out_len = 0;
2023-12-21 17:12:07 +00:00
if ((block_size & block_mask) != 0)
return 0;
2023-12-21 17:12:07 +00:00
if (in_len < 0)
return 0;
if (in_len == 0 && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)
return 1;
2023-12-16 16:23:05 +00:00
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
2023-12-21 17:12:07 +00:00
return evp_cipher(ctx, out, out_len, in, in_len);
2023-12-21 17:12:07 +00:00
if (partial_len == 0 && (in_len & block_mask) == 0)
return evp_cipher(ctx, out, out_len, in, in_len);
2023-12-16 16:23:05 +00:00
2023-12-21 17:12:07 +00:00
/* XXX - check that block_size > partial_len. */
2023-12-16 16:23:05 +00:00
if (block_size > sizeof(ctx->buf)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
2023-12-16 16:23:05 +00:00
2023-12-21 17:12:07 +00:00
if (partial_len != 0) {
int partial_needed;
2023-12-16 16:23:05 +00:00
2023-12-21 17:12:07 +00:00
if ((partial_needed = block_size - partial_len) > in_len) {
memcpy(&ctx->buf[partial_len], in, in_len);
ctx->partial_len += in_len;
return 1;
}
2023-12-16 16:23:05 +00:00
/*
2023-12-21 17:12:07 +00:00
* Once the first partial_needed bytes from in are processed,
* the number of multiples of block_size of data remaining is
* (in_len - partial_needed) & ~block_mask. Ensure that this
* plus the block processed from ctx->buf doesn't overflow.
2023-12-16 16:23:05 +00:00
*/
2023-12-21 17:12:07 +00:00
if (((in_len - partial_needed) & ~block_mask) > INT_MAX - block_size) {
2023-12-16 16:23:05 +00:00
EVPerror(EVP_R_TOO_LARGE);
return 0;
2023-12-16 16:23:05 +00:00
}
2023-12-21 17:12:07 +00:00
memcpy(&ctx->buf[partial_len], in, partial_needed);
2023-12-16 16:23:05 +00:00
len = 0;
if (!evp_cipher(ctx, out, &len, ctx->buf, block_size))
return 0;
total_len = len;
2023-12-21 17:12:07 +00:00
in_len -= partial_needed;
in += partial_needed;
2023-12-16 16:23:05 +00:00
out += len;
}
2023-12-21 17:12:07 +00:00
partial_len = in_len & block_mask;
if ((in_len -= partial_len) > 0) {
if (INT_MAX - in_len < total_len)
2023-12-16 16:23:05 +00:00
return 0;
len = 0;
2023-12-21 17:12:07 +00:00
if (!evp_cipher(ctx, out, &len, in, in_len))
2023-12-16 16:23:05 +00:00
return 0;
if (INT_MAX - len < total_len)
return 0;
total_len += len;
}
2023-12-21 17:12:07 +00:00
if (partial_len != 0)
memcpy(ctx->buf, &in[in_len], partial_len);
ctx->partial_len = partial_len;
2023-12-16 16:23:05 +00:00
2023-12-21 17:12:07 +00:00
*out_len = total_len;
2023-12-16 16:23:05 +00:00
return 1;
}
int
2023-12-21 17:12:07 +00:00
EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
2023-12-21 17:12:07 +00:00
return EVP_EncryptFinal_ex(ctx, out, out_len);
}
int
2023-12-21 17:12:07 +00:00
EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
2023-12-21 17:12:07 +00:00
const int block_size = ctx->cipher->block_size;
int partial_len = ctx->partial_len;
int pad;
2023-12-21 17:12:07 +00:00
*out_len = 0;
2023-12-16 16:23:05 +00:00
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
2023-12-21 17:12:07 +00:00
return evp_cipher(ctx, out, out_len, NULL, 0);
2023-12-21 17:12:07 +00:00
/* XXX - check that block_size > partial_len. */
if (block_size > sizeof(ctx->buf)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
2023-12-21 17:12:07 +00:00
if (block_size == 1)
return 1;
2023-12-21 17:12:07 +00:00
if ((ctx->flags & EVP_CIPH_NO_PADDING) != 0) {
if (partial_len != 0) {
EVPerror(EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
return 1;
}
2023-12-21 17:12:07 +00:00
pad = block_size - partial_len;
memset(&ctx->buf[partial_len], pad, pad);
2023-12-21 17:12:07 +00:00
return evp_cipher(ctx, out, out_len, ctx->buf, block_size);
}
int
2023-12-21 17:12:07 +00:00
EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len,
const unsigned char *in, int in_len)
{
2023-12-21 17:12:07 +00:00
const int block_size = ctx->cipher->block_size;
const int block_mask = block_size - 1;
int len = 0, total_len = 0;
2023-12-21 17:12:07 +00:00
*out_len = 0;
2023-12-21 17:12:07 +00:00
if ((block_size & block_mask) != 0)
return 0;
2023-12-21 17:12:07 +00:00
if (in_len < 0)
return 0;
if (in_len == 0 && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)
return 1;
2023-12-16 16:23:05 +00:00
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
2023-12-21 17:12:07 +00:00
return evp_cipher(ctx, out, out_len, in, in_len);
2023-12-21 17:12:07 +00:00
if ((ctx->flags & EVP_CIPH_NO_PADDING) != 0)
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
2023-12-21 17:12:07 +00:00
if (block_size > sizeof(ctx->final)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
if (ctx->final_used) {
/*
2023-12-21 17:12:07 +00:00
* final_used is only set if partial_len is 0. Therefore the
* output from EVP_EncryptUpdate() is in_len & ~block_mask.
* Ensure (in_len & ~block_mask) + block_size doesn't overflow.
*/
2023-12-21 17:12:07 +00:00
if ((in_len & ~block_mask) > INT_MAX - block_size) {
EVPerror(EVP_R_TOO_LARGE);
return 0;
}
2023-12-21 17:12:07 +00:00
memcpy(out, ctx->final, block_size);
out += block_size;
total_len = block_size;
}
2023-12-21 17:12:07 +00:00
ctx->final_used = 0;
2023-12-21 17:12:07 +00:00
len = 0;
if (!EVP_EncryptUpdate(ctx, out, &len, in, in_len))
return 0;
2023-12-21 17:12:07 +00:00
/* Keep copy of last block if a multiple of block_size was decrypted. */
if (block_size > 1 && ctx->partial_len == 0) {
if (len < block_size)
return 0;
len -= block_size;
memcpy(ctx->final, &out[len], block_size);
ctx->final_used = 1;
2023-12-21 17:12:07 +00:00
}
2023-12-21 17:12:07 +00:00
if (len > INT_MAX - total_len)
return 0;
total_len += len;
*out_len = total_len;
return 1;
}
int
2023-12-21 17:12:07 +00:00
EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
2023-12-21 17:12:07 +00:00
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
int
2023-12-21 17:12:07 +00:00
EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len)
{
2023-12-21 17:12:07 +00:00
const int block_size = ctx->cipher->block_size;
int partial_len = ctx->partial_len;
int i, pad, plain_len;
2023-12-16 16:23:05 +00:00
2023-12-21 17:12:07 +00:00
*out_len = 0;
2023-12-16 16:23:05 +00:00
if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0)
2023-12-21 17:12:07 +00:00
return evp_cipher(ctx, out, out_len, NULL, 0);
2023-12-21 17:12:07 +00:00
if ((ctx->flags & EVP_CIPH_NO_PADDING) != 0) {
if (partial_len != 0) {
EVPerror(EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
return 1;
}
2023-12-21 17:12:07 +00:00
if (block_size == 1)
return 1;
if (partial_len != 0 || !ctx->final_used) {
EVPerror(EVP_R_WRONG_FINAL_BLOCK_LENGTH);
return 0;
}
if (block_size > sizeof(ctx->final)) {
EVPerror(EVP_R_BAD_BLOCK_LENGTH);
return 0;
}
pad = ctx->final[block_size - 1];
if (pad <= 0 || pad > block_size) {
EVPerror(EVP_R_BAD_DECRYPT);
return 0;
}
plain_len = block_size - pad;
for (i = plain_len; i < block_size; i++) {
if (ctx->final[i] != pad) {
EVPerror(EVP_R_BAD_DECRYPT);
2023-12-21 17:12:07 +00:00
return 0;
}
2023-12-21 17:12:07 +00:00
}
memcpy(out, ctx->final, plain_len);
*out_len = plain_len;
return 1;
}
EVP_CIPHER_CTX *
EVP_CIPHER_CTX_new(void)
{
return calloc(1, sizeof(EVP_CIPHER_CTX));
}
void
EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx)
{
if (ctx == NULL)
return;
EVP_CIPHER_CTX_cleanup(ctx);
free(ctx);
}
void
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx)
{
memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
}
int
EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *a)
{
return EVP_CIPHER_CTX_cleanup(a);
}
int
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c)
{
if (c->cipher != NULL) {
/* XXX - Avoid leaks, so ignore return value of cleanup()... */
if (c->cipher->cleanup != NULL)
c->cipher->cleanup(c);
if (c->cipher_data != NULL)
explicit_bzero(c->cipher_data, c->cipher->ctx_size);
}
/* XXX - store size of cipher_data so we can always freezero(). */
free(c->cipher_data);
explicit_bzero(c, sizeof(EVP_CIPHER_CTX));
return 1;
}
int
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int keylen)
{
if (c->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH)
return EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_KEY_LENGTH,
keylen, NULL);
if (c->key_len == keylen)
return 1;
2023-12-22 02:30:11 +00:00
if (keylen > 0 && (c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
c->key_len = keylen;
return 1;
}
EVPerror(EVP_R_INVALID_KEY_LENGTH);
return 0;
}
int
EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad)
{
if (pad)
ctx->flags &= ~EVP_CIPH_NO_PADDING;
else
ctx->flags |= EVP_CIPH_NO_PADDING;
return 1;
}
int
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
{
int ret;
if (!ctx->cipher) {
EVPerror(EVP_R_NO_CIPHER_SET);
return 0;
}
if (!ctx->cipher->ctrl) {
EVPerror(EVP_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
ret = ctx->cipher->ctrl(ctx, type, arg, ptr);
if (ret == -1) {
EVPerror(EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED);
return 0;
}
return ret;
}
int
EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key)
{
if (ctx->cipher->flags & EVP_CIPH_RAND_KEY)
return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key);
arc4random_buf(key, ctx->key_len);
return 1;
}
int
EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in)
{
2023-12-22 02:30:11 +00:00
if (in == NULL || in->cipher == NULL) {
EVPerror(EVP_R_INPUT_NOT_INITIALIZED);
return 0;
}
EVP_CIPHER_CTX_cleanup(out);
memcpy(out, in, sizeof *out);
if (in->cipher_data && in->cipher->ctx_size) {
out->cipher_data = calloc(1, in->cipher->ctx_size);
if (out->cipher_data == NULL) {
EVPerror(ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
}
if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY,
0, out)) {
/*
* If the custom copy control failed, assume that there
* may still be pointers copied in the cipher_data that
* we do not own. This may result in a leak from a bad
* custom copy control, but that's preferable to a
* double free...
*/
freezero(out->cipher_data, in->cipher->ctx_size);
out->cipher_data = NULL;
return 0;
}
}
return 1;
}