src/regress/lib/libcrypto/bn/bn_isqrt.c

331 lines
7.4 KiB
C
Raw Normal View History

/* $OpenBSD: bn_isqrt.c,v 1.4 2023/08/03 18:53:56 tb Exp $ */
/*
* Copyright (c) 2022 Theo Buehler <tb@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <err.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <openssl/bn.h>
#include "bn_local.h"
#define N_TESTS 100
/* Sample squares between 2^128 and 2^4096. */
#define LOWER_BITS 128
#define UPPER_BITS 4096
extern const uint8_t is_square_mod_11[];
extern const uint8_t is_square_mod_63[];
extern const uint8_t is_square_mod_64[];
extern const uint8_t is_square_mod_65[];
static void
hexdump(const unsigned char *buf, size_t len)
{
size_t i;
for (i = 1; i <= len; i++)
fprintf(stderr, " 0x%02hhx,%s", buf[i - 1], i % 8 ? "" : "\n");
if (len % 8)
fprintf(stderr, "\n");
}
static const uint8_t *
get_table(int modulus)
{
switch (modulus) {
case 11:
return is_square_mod_11;
case 63:
return is_square_mod_63;
case 64:
return is_square_mod_64;
case 65:
return is_square_mod_65;
default:
return NULL;
}
}
static int
check_tables(int print)
{
int fill[] = {11, 63, 64, 65};
const uint8_t *table;
uint8_t q[65];
size_t i;
int j;
int failed = 0;
for (i = 0; i < sizeof(fill) / sizeof(fill[0]); i++) {
memset(q, 0, sizeof(q));
for (j = 0; j < fill[i]; j++)
q[(j * j) % fill[i]] = 1;
if ((table = get_table(fill[i])) == NULL) {
fprintf(stderr, "failed to get table %d\n", fill[i]);
failed |= 1;
continue;
}
if (memcmp(table, q, fill[i]) != 0) {
fprintf(stderr, "table %d does not match:\n", fill[i]);
fprintf(stderr, "want:\n");
hexdump(table, fill[i]);
fprintf(stderr, "got:\n");
hexdump(q, fill[i]);
failed |= 1;
continue;
}
if (!print)
continue;
printf("const uint8_t is_square_mod_%d[] = {\n\t", fill[i]);
for (j = 0; j < fill[i]; j++) {
const char *end = " ";
if (j % 16 == 15)
end = "\n\t";
if (j + 1 == fill[i])
end = "";
printf("%d,%s", q[j], end);
}
printf("\n};\nCTASSERT(sizeof(is_square_mod_%d) == %d);\n\n",
fill[i], fill[i]);
}
return failed;
}
static int
validate_tables(void)
{
int fill[] = {11, 63, 64, 65};
const uint8_t *table;
size_t i;
int j, k;
int failed = 0;
for (i = 0; i < sizeof(fill) / sizeof(fill[0]); i++) {
if ((table = get_table(fill[i])) == NULL) {
fprintf(stderr, "failed to get table %d\n", fill[i]);
failed |= 1;
continue;
}
for (j = 0; j < fill[i]; j++) {
for (k = 0; k < fill[i]; k++) {
if (j == (k * k) % fill[i])
break;
}
if (table[j] == 0 && k < fill[i]) {
fprintf(stderr, "%d == %d^2 (mod %d)", j, k,
fill[i]);
failed |= 1;
}
if (table[j] == 1 && k == fill[i]) {
fprintf(stderr, "%d not a square (mod %d)", j,
fill[i]);
failed |= 1;
}
}
}
return failed;
}
/*
* Choose a random number n of bit length between LOWER_BITS and UPPER_BITS and
* check that n == isqrt(n^2). Random numbers n^2 <= testcase < (n + 1)^2 are
* checked to have isqrt(testcase) == n.
*/
static int
isqrt_test(void)
{
BN_CTX *ctx;
BIGNUM *n, *n_sqr, *lower, *upper, *testcase, *isqrt;
int cmp, i, is_perfect_square;
int failed = 0;
if ((ctx = BN_CTX_new()) == NULL)
errx(1, "BN_CTX_new");
BN_CTX_start(ctx);
if ((lower = BN_CTX_get(ctx)) == NULL)
errx(1, "lower = BN_CTX_get(ctx)");
if ((upper = BN_CTX_get(ctx)) == NULL)
errx(1, "upper = BN_CTX_get(ctx)");
if ((n = BN_CTX_get(ctx)) == NULL)
errx(1, "n = BN_CTX_get(ctx)");
if ((n_sqr = BN_CTX_get(ctx)) == NULL)
errx(1, "n = BN_CTX_get(ctx)");
if ((isqrt = BN_CTX_get(ctx)) == NULL)
errx(1, "result = BN_CTX_get(ctx)");
if ((testcase = BN_CTX_get(ctx)) == NULL)
errx(1, "testcase = BN_CTX_get(ctx)");
/* lower = 2^LOWER_BITS, upper = 2^UPPER_BITS. */
if (!BN_set_bit(lower, LOWER_BITS))
errx(1, "BN_set_bit(lower, %d)", LOWER_BITS);
if (!BN_set_bit(upper, UPPER_BITS))
errx(1, "BN_set_bit(upper, %d)", UPPER_BITS);
if (!bn_rand_in_range(n, lower, upper))
errx(1, "bn_rand_in_range n");
/* n_sqr = n^2 */
if (!BN_sqr(n_sqr, n, ctx))
errx(1, "BN_sqr");
if (!bn_isqrt(isqrt, &is_perfect_square, n_sqr, ctx))
errx(1, "bn_isqrt n_sqr");
if ((cmp = BN_cmp(n, isqrt)) != 0 || !is_perfect_square) {
fprintf(stderr, "n = ");
BN_print_fp(stderr, n);
fprintf(stderr, "\nn^2 is_perfect_square: %d, cmp: %d\n",
is_perfect_square, cmp);
failed = 1;
}
/* upper = 2 * n + 1 */
if (!BN_lshift1(upper, n))
errx(1, "BN_lshift1(upper, n)");
if (!BN_add_word(upper, 1))
errx(1, "BN_sub_word(upper, 1)");
/* upper = (n + 1)^2 = n^2 + upper */
if (!BN_add(upper, n_sqr, upper))
errx(1, "BN_add");
/*
* Check that isqrt((n + 1)^2) - 1 == n.
*/
if (!bn_isqrt(isqrt, &is_perfect_square, upper, ctx))
errx(1, "bn_isqrt(upper)");
if (!BN_sub_word(isqrt, 1))
errx(1, "BN_add_word(isqrt, 1)");
if ((cmp = BN_cmp(n, isqrt)) != 0 || !is_perfect_square) {
fprintf(stderr, "n = ");
BN_print_fp(stderr, n);
fprintf(stderr, "\n(n + 1)^2 is_perfect_square: %d, cmp: %d\n",
is_perfect_square, cmp);
failed = 1;
}
/*
* Test N_TESTS random numbers n^2 <= testcase < (n + 1)^2 and check
* that their isqrt is n.
*/
for (i = 0; i < N_TESTS; i++) {
if (!bn_rand_in_range(testcase, n_sqr, upper))
errx(1, "bn_rand_in_range testcase");
if (!bn_isqrt(isqrt, &is_perfect_square, testcase, ctx))
errx(1, "bn_isqrt testcase");
if ((cmp = BN_cmp(n, isqrt)) != 0 ||
(is_perfect_square && BN_cmp(n_sqr, testcase) != 0)) {
fprintf(stderr, "n = ");
BN_print_fp(stderr, n);
fprintf(stderr, "\ntestcase = ");
BN_print_fp(stderr, testcase);
fprintf(stderr,
"\ntestcase is_perfect_square: %d, cmp: %d\n",
is_perfect_square, cmp);
failed = 1;
}
}
/*
* Finally check that isqrt(n^2 - 1) + 1 == n.
*/
if (!BN_sub(testcase, n_sqr, BN_value_one()))
errx(1, "BN_sub(testcase, n_sqr, 1)");
if (!bn_isqrt(isqrt, &is_perfect_square, testcase, ctx))
errx(1, "bn_isqrt(n_sqr - 1)");
if (!BN_add_word(isqrt, 1))
errx(1, "BN_add_word(isqrt, 1)");
if ((cmp = BN_cmp(n, isqrt)) != 0 || is_perfect_square) {
fprintf(stderr, "n = ");
BN_print_fp(stderr, n);
fprintf(stderr, "\nn_sqr - 1 is_perfect_square: %d, cmp: %d\n",
is_perfect_square, cmp);
failed = 1;
}
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return failed;
}
static void
usage(void)
{
fprintf(stderr, "usage: bn_isqrt [-C]\n");
exit(1);
}
int
main(int argc, char *argv[])
{
size_t i;
int ch;
int failed = 0, print = 0;
while ((ch = getopt(argc, argv, "C")) != -1) {
switch (ch) {
case 'C':
print = 1;
break;
default:
usage();
break;
}
}
if (print)
return check_tables(1);
for (i = 0; i < N_TESTS; i++)
failed |= isqrt_test();
failed |= check_tables(0);
failed |= validate_tables();
return failed;
}